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Preface

In the SolarisTM Operating System (Solaris OS), application developers can create applications
and libraries by using the link-editor ld(1), and execute these objects with the aid of the runtime
linker ld.so.1(1). This manual is for engineers who want to understand more fully the
concepts involved in using the Solaris OS link editors.

Note – This Solaris release supports systems that use the SPARC® and x86 families of processor
architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T. The supported
systems appear in the Solaris 10 Hardware Compatibility List at
http://www.sun.com/bigadmin/hcl. This document cites any implementation differences
between the platform types.

In this document these x86 related terms mean the following:

■ “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ “x64” points out specific 64-bit information about AMD64 or EM64T systems.
■ “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris 10 Hardware Compatibility List.

About This Manual
This manual describes the operations of the Solaris OS link-editor and runtime linker. Special
emphasis is placed on the generation and use of dynamic executables and shared objects
because of their importance in a dynamic runtime environment.

Intended Audience
This manual is intended for a range of programmers who are interested in the Solaris OS link
editors, from the curious beginner to the advanced user.

■ Beginners learn the principle operations of the link-editor and runtime linker.
■ Intermediate programmers learn to create, and use, efficient custom libraries.

17
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■ Advanced programmers, such as language-tools developers, learn how to interpret and
generate object files.

Most programmers should not need to read this manual from cover to cover.

How This Book is Organization
Chapter 1, “Introduction to the Solaris OS Link Editors,” provides an overview of the linking
processes under the Solaris OS. This chapter is intended for all programmers.

Chapter 2, “Link-Editor,” describes the functions of the link-editor. This chapter is intended for
all programmers.

Chapter 3, “Runtime Linker,” describes the execution environment and program-controlled
runtime binding of code and data. This chapter is intended for all programmers.

Chapter 4, “Shared Objects,” provides definitions of shared objects, describes their mechanisms,
and explains how to create and use them. This chapter is intended for all programmers.

Chapter 5, “Application Binary Interfaces and Versioning,” describes how to manage the
evolution of an interface provided by a dynamic object. This chapter is intended for all
programmers.

Chapter 6, “Support Interfaces,” describes interfaces for monitoring, and in some cases
modifying, link-editor and runtime linker processing. This chapter is intended for advanced
programmers.

Chapter 7, “Object File Format,” is a reference chapter on ELF files. This chapter is intended for
advanced programmers.

Chapter 8, “Thread-Local Storage,” describes Thread-Local Storage. This chapter is intended
for advanced programmers.

Chapter 9, “Mapfile Option,” describes the mapfile directives to the link-editor, which specify
the layout of the output file. This chapter is intended for advanced programmers.

Appendix A, “Link-Editor Quick Reference,” provides an overview of the most commonly used
link-editor options, and is intended for all programmers.

Appendix B, “Versioning Quick Reference,” provides naming conventions and guidelines for
versioning shared objects, and is intended for all programmers.

Appendix C, “Establishing Dependencies with Dynamic String Tokens,” provides examples of
how to use reserved dynamic string tokens to define dynamic dependencies, and is intended for
all programmers.

Appendix D, “Linker and Libraries Updates and New Features,” provides an overview of new
features and updates that have been added to the link-editors and indicates to which release
they were added.

Preface
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Throughout this document, all command-line examples use sh(1) syntax. All programming
examples are written in the C language.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Preface
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Shell Prompts in Command Examples
The following table shows the default UNIX® system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Preface
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Introduction to the Solaris OS Link Editors

This manual describes the operations of the Solaris OS link-editor and runtime linker, together
with the objects on which the link-editors operate. The basic operation of the Solaris OS link
editors involves the combination of objects. This combination results in the symbolic references
from one object being connected to the symbolic definitions within another object.

This manual expands the following areas.

Link-Editor
The link-editor, ld(1), concatenates and interprets data from one or more input files. These
files can be relocatable objects, shared objects, or archive libraries. From these input files, one
output file is created. This file is either a relocatable object, an executable application, or a
shared object. The link-editor is most commonly invoked as part of the compilation
environment.

Runtime Linker
The runtime linker, ld.so.1(1), processes dynamic executables and shared objects at
runtime, binding the executable and shared objects together to create a runnable process.

Shared Objects
Shared objects are one form of output from the link-edit phase. Shared objects are
sometimes referred to as Shared Libraries. Shared objects are importance in creating a
powerful, flexible runtime environment.

Object Files
The Solaris OS link editors work with files that conform to the executable and linking
format, otherwise referred to as ELF.

These areas, although separable into individual topics, have a great deal of overlap. While
explaining each area, this document brings together the connecting principles.
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21



Link-Editing
Link-editing takes a variety of input files, typically generated from compilers, assemblers, or
ld(1). The link-editor concatenates and interprets the data within these input files to form a
single output file. Although the link-editor provides numerous options, the output file that is
produced is one of four basic types.

■ Relocatable object – A concatenation of input relocatable objects that can be used in
subsequent link-edit phases.

■ Static executable – A concatenation of input relocatable objects that have all symbolic
references resolved. This executable represents a ready-to-run process. See “Static
Executables” on page 23.

■ Dynamic executable – A concatenation of input relocatable objects that requires
intervention by the runtime linker to produce a runnable process. A dynamic executable
might still need symbolic references bound at runtime. Dynamic executables typically have
one or more dependencies in the form of shared objects.

■ Shared object – A concatenation of input relocatable objects that provide services that might
be bound to a dynamic executable at runtime. The shared object can have dependencies on
other shared objects.

These output files, and the key link-editor options used in their creation, are shown in
Figure 1–1.

Dynamic executables and shared objects are often referred to jointly as dynamic objects.
Dynamic objects are the main focus of this document.

ld

-dn

-r

Relocatable
object

Static
executable

-dy

-G

Dynamic
executable

Shared
object

FIGURE 1–1 Static or Dynamic Link-Editing
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Static Executables
The creation of static executables has been discouraged for many releases. In fact, 64–bit system
archive libraries have never been provided. Because a static executable is built against system
archive libraries, the executable contains system implementation details. This self-containment
has a number of drawbacks.
■ The executable is immune to the benefits of system patches delivered as shared objects. The

executable therefore, must be rebuilt to take advantage of many system improvements.
■ The ability of the executable to run on future releases can be compromised.
■ The duplication of system implementation details negatively affects system performance.

With the Solaris 10 release, 32–bit system archive libraries are no longer provided. Without
these libraries, specifically libc.a, the creation of a static executable is no longer achievable
without specialized system knowledge. Note, that the link-editors capability to process static
linking options, and the processing of archive libraries, remains unchanged.

Runtime Linking
Runtime linking involves the binding of objects, usually generated from one or more previous
link-edits, to generate a runnable process. During the generation of these objects by the
link-editor, appropriate bookkeeping information is produced to represent the verified binding
requirements. This information enables the runtime linker to load, relocate, and complete the
binding process.

During process execution, the facilities of the runtime linker are made available. These facilities
can be used to extend the process' address space by adding additional shared objects on
demand. The two most common components involved in runtime linking are dynamic
executables and shared objects.

Dynamic executables are applications that are executed under the control of a runtime linker.
These applications usually have dependencies in the form of shared objects, which are located,
and bound by the runtime linker to create a runnable process. Dynamic executables are the
default output file generated by the link-editor.

Shared objects provide the key building-block to a dynamically linked system. A shared object is
similar to a dynamic executable, however, shared objects have not yet been assigned a virtual
address.

Dynamic executables usually have dependencies on one or more shared objects. Typically, one
or more shared objects must be bound to the dynamic executable to produce a runnable
process. Because shared objects can be used by many applications, aspects of their construction
directly affect shareability, versioning, and performance.

Shared object processing by the link-editor or the runtime linker can be distinguished by the
environment in which the shared object is used.

Runtime Linking
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compilation environment
Shared objects are processed by the link-editor to generate dynamic executables or other
shared objects. The shared objects become dependencies of the output file being generated.

runtime environment
Shared objects are processed by the runtime linker, together with a dynamic executable, to
produce a runnable process.

Related Topics

Dynamic Linking
Dynamic linking is a term often used to embrace a number of linking concepts. Dynamic
linking refers to those portions of the link-editing process that generate dynamic executables
and shared objects. Dynamic linking also refers to the runtime linking of these objects to
generate a runnable process. Dynamic linking enables multiple applications to use the code
provided by a shared object by binding the application to the shared object at runtime.

By separating an application from the services of standard libraries, dynamic linking also
increases the portability and extensibility of an application. This separation between the
interface of a service and its implementation enables the system to evolve while maintaining
application stability. Dynamic linking is a crucial factor in providing an application binary
interface (ABI), and is the preferred compilation method for Solaris OS applications.

Application Binary Interfaces
Binary interfaces between system and application components are defined to enable the
asynchronous evolution of these facilities. The Solaris OS link editors operate upon these
interfaces to assemble applications for execution. Although all components handled by the
Solaris OS link editors have binary interfaces, the whole set of interfaces provided by the system
is referred to as the Solaris ABI.

The Solaris ABI is a technological descendent for work on ABIs that started with the System V
Application Binary Interface. This work evolved with additions performed by SPARC
International, Inc.® for SPARC processors, called the SPARC Compliance Definition (SCD).

32–Bit Environments and 64–Bit Environments
The link-editor is provided as a 32–bit application and a 64–bit application. Each link-editor
can operate on 32–bit objects and 64–bit objects. On systems that are running a 64–bit

Related Topics
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environment, both versions of the link-editor can be executed. On systems that are running a
32–bit environment, only the 32–bit version of the link-editor can be executed. For more details
see “The 32–bit link-editor and 64–bit link-editor” on page 29.

The runtime linker is provided as a 32–bit object and a 64–bit object. The 32–bit object is used
to execute 32–bit processes, and the 64–bit object is used to execute 64–bit processes.

The operations of the link-editors on 32–bit objects and 64–bit objects are identical. This
document typically uses 32–bit examples. Cases where 64–bit processing differs from the 32–bit
processing are highlighted.

For more information on 64–bit applications, refer to the Solaris 64-bit Developer’s Guide.

Environment Variables
The link-editors support a number of environment variables that begin with the characters LD_,
for example LD_LIBRARY_PATH. Each environment variable can exist in its generic form, or can
be specified with a _32 or _64 suffix, for example LD_LIBRARY_PATH_64. This suffix makes the
environment variable specific, respectively, to 32–bit or 64–bit processes. This suffix also
overrides any generic, non-suffixed, version of the environment variable that might be in effect.

Note – Prior to the Solaris 10 release, the link-editors ignored environment variables that were
specified without a value. Therefore, in the following example, the generic environment
variable setting, /opt/lib, would have been used to search for the dependencies of the 32–bit
application prog.

$ LD_LIBRARY_PATH=/opt/lib LD_LIBRARY_PATH_32= prog

With the Solaris 10 release, environment variables specified without a value, that have a _32 or
_64 suffix, are processed. These environment variables effectively cancel any associated generic
environment variable setting. Thus in the previous example, /opt/lib will not be used to
search for the dependencies of the 32–bit application prog.

Throughout this document, any reference to link-editor environment variables uses the
generic, non-suffixed, variant. All supported environment variables are defined in ld(1) and
ld.so.1(1).

Support Tools
The Solaris OS also provides several support tools and libraries. These tools provide for the
analysis and inspection of these objects and the linking processes. These tools include
elfdump(1), lari(1), nm(1), dump(1), ldd(1), pvs(1), elf(3ELF), and a linker debugging support
library. Throughout this document, many discussions are augmented with examples of these
tools.

Related Topics
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Link-Editor

The link-editing process creates an output file from one or more input files. Output file creation
is directed by the options that are supplied to the link-editor and the input sections provided by
the input files.

All files are represented in the executable and linking format (ELF). For a complete description
of the ELF format see Chapter 7, “Object File Format.” For this introduction, two ELF structures
are introduced, sections and segments.

Sections are the smallest indivisible units that can be processed within an ELF file. Segments are
a collection of sections that represent the smallest individual units that can be mapped to a
memory image by exec(2) or by the runtime linker ld.so.1(1).

Although many types of ELF section exist, sections all fall into two categories with respect to the
link-editing phase.

■ Sections that contain program data, whose interpretation is meaningful only to the
application, such as the program instructions .text and the associated data .data and .bss.

■ Sections that contain link-editing information, such as the symbol table information found
from .symtab and .strtab, and relocation information such as .rela.text.

Basically, the link-editor concatenates the program data sections into the output file. The
link-editing information sections are interpreted by the link-editor to modify other sections.
The information sections are also used to generate new output information sections used in
later processing of the output file.

The following simple breakdown of link-editor functionality introduces the topics that are
covered in this chapter.

■ The verification and consistency checking of all options provided.
■ The concatenation of sections of the same characteristics from the input relocatable objects

to form new sections within the output file. The concatenated sections can in turn be
associated to output segments.

2C H A P T E R 2

27



■ The processing of symbol table information from both relocatable objects and shared
objects to verify and unite references with definitions. The generation of a new symbol table,
or tables, within the output file.

■ The processing of relocation information from the input relocatable objects, and the
application of this information to sections that compose the the output file. In addition,
output relocation sections might be generated for use by the runtime linker.

■ The generation of program headers that describe all the segments that are created.
■ The generation of dynamic linking information sections if necessary, which provide

information such as shared object dependencies and symbol bindings to the runtime linker.

The process of concatenating like sections and associating sections to segments is carried out
using default information within the link-editor. The default section and segment handling
provided by the link-editor is usually sufficient for most link-edits. However, these defaults can
be manipulated using the -M option with an associated mapfile. See Chapter 9, “Mapfile
Option.”

Invoking the Link-Editor
You can either run the link-editor directly from the command line or have a compiler driver
invoke the link-editor for you. In the following two sections the description of both methods are
expanded. However, using the compiler driver is the preferred choice. The compilation
environment is often the consequence of a complex and occasionally changing series of
operations known only to compiler drivers.

Direct Invocation
When you invoke the link-editor directly, you have to supply every object file and library
required to create the intended output. The link-editor makes no assumptions about the object
modules or libraries that you meant to use in creating the output. For example, the following
command instructs the link-editor to create a dynamic executable that is named a.out using
only the input file test.o.

$ ld test.o

Typically, a dynamic executable requires specialized startup code and exit processing code. This
code can be language or operating system specific, and is usually provided through files
supplied by the compiler drivers.

Additionally, you can also supply your own initialization code and termination code. This code
must be encapsulated and be labeled correctly for the code to be correctly recognized and made
available to the runtime linker. This encapsulation and labeling can also be provided through
files supplied by the compiler drivers.

Invoking the Link-Editor
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When creating runtime objects such as executables and shared objects, you should use a
compiler driver to invoke the link-editor. Direct invocation of the link-editor is recommended
only when creating intermediate relocatable objects when using the -r option.

Using a Compiler Driver
The conventional way to use the link-editor is through a language-specific compiler driver. You
supply the compiler driver, cc(1), CC(1), and so forth, with the input files that make up your
application. The compiler driver adds additional files and default libraries to complete the
link-edit. These additional files can be seen by expanding the compilation invocation.

$ cc -# -o prog main.o

/usr/ccs/bin/ld -dy /opt/COMPILER/crti.o /opt/COMPILER/crt1.o \

/usr/ccs/lib/values-Xt.o -o prog main.o \

-YP,/opt/COMPILER/lib:/usr/ccs/lib:/usr/lib -Qy -lc \

/opt/COMPILER/crtn.o

Note – The actual files included by your compiler driver and the mechanism used to display the
link-editor invocation might differ.

The 32–bit link-editor and 64–bit link-editor
The link-editor is provided as a 32–bit application and a 64–bit application. Each link-editor
can operate on 32–bit objects and 64–bit objects. However, a link-edit can not contain a mix of
32–bit objects and 64–bit objects. Although a 32–bit link-editor can generate a 64–bit object,
the size of the generated object, not including the .bss, is restricted to 2 Gbytes.

By default, the compiler drivers execute the 32–bit link-editor. This link-editor inspects the
command line to determine whether the 64–bit link-editor should be executed to complete the
link-edit.

Typically, no command-line option is required to distinguish a 32–bit link-edit or 64–bit
link-edit. The link-editor uses the ELF class of the first relocatable object on the command-line
to govern the mode in which to operate. Specialized link-edits, such as linking solely from a
mapfile or an archive library, are uninfluenced by the command-line object. These link-edits
default to a 32–bit mode, and require a command-line option to instigate a 64–bit link-edit.

The 64–bit link-editor is executed under one of the following conditions.

■ The -64 option is provided.
■ The -z altexec64 option is provided.
■ The first relocatable object on the command line is 64–bit.

Invoking the Link-Editor
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The creation of very large 32–bit objects can exhaust the virtual memory that is available to the
32–bit link-editor. The -z altexec64 option can be used to force the use of the associated
64–bit link-editor. The 64–bit link-editor provides a larger virtual address space for building
32–bit objects.

Note – The LD_ALTEXEC environment variable can also be used to specify an alternative
link-editor.

Specifying the Link-Editor Options
Most options to the link-editor can be passed through the compiler driver command line. For
the most part, the compiler and the link-editor options do not conflict. Where a conflict arises,
the compiler drivers usually provide a command-line syntax that you can use to pass specific
options to the link-editor. You can also provide options to the link-editor by setting the
LD_OPTIONS environment variable.

$ LD_OPTIONS="-R /home/me/libs -L /home/me/libs" cc -o prog main.c -lfoo

The -R and -L options are interpreted by the link-editor. These options precede any
command-line options that are received from the compiler driver.

The link-editor parses the entire option list for any invalid options or any options with invalid
associated arguments. When either of these cases are found, a suitable error message is
generated. If the error is deemed fatal, the link-edit terminates. In the following example, the
illegal option -X, and the illegal argument to the -z option, are caught by the link-editor's
checking.

$ ld -X -z sillydefs main.o

ld: illegal option -- X

ld: fatal: option -z has illegal argument ‘sillydefs’

If an option that requires an associated argument is specified twice, the link-editor produces a
suitable warning and continue with the link-edit.

$ ld -e foo ...... -e bar main.o

ld: warning: option -e appears more than once, first setting taken

The link-editor also checks the option list for any fatal inconsistencies.

$ ld -dy -a main.o

ld: fatal: option -dy and -a are incompatible

After processing all options, if no fatal error conditions have been detected, the link-editor
proceeds to process the input files.

Specifying the Link-Editor Options
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See Appendix A, “Link-Editor Quick Reference,” for the most commonly used link-editor
options, and ld(1) for a complete description of all link-editor options.

Input File Processing
The link-editor reads input files in the order in which the files appear on the command line.
Each file is opened and inspected to determine the files ELF type, and therefore determine how
the file must be processed. The file types that apply as input for the link-edit are determined by
the binding mode of the link-edit, either static or dynamic.

Under static mode, the link-editor accepts only relocatable objects or archive libraries as input
files. Under dynamic mode, the link-editor also accepts shared objects.

Relocatable objects represent the most basic input file type to the link-editing process. The
program data sections within these files are concatenated into the output file image being
generated. The link-edit information sections are organized for later use. These sections do not
become part of the output file image, as new sections are generated to take their places. Symbols
are gathered into an internal symbol table for verification and resolution. This table is then used
to create one or more symbol tables in the output image.

Although input files can be specified directly on the link-edit command-line, archive libraries
and shared objects are commonly specified using the -l option. See “Linking With Additional
Libraries” on page 33. During a link-edit, the interpretation of archive libraries and shared
objects are quite different. The next two sections expand upon these differences.

Archive Processing
Archives are built using ar(1). Archives usually consist of a collection of relocatable objects with
an archive symbol table. This symbol table provides an association of symbol definitions with
the objects that supply these definitions. By default, the link-editor provides selective extraction
of archive members. The link-editor uses unresolved symbolic references to select objects from
the archive that are required to complete the binding process. You can also explicitly extract all
members of an archive.

The link-editor extracts a relocatable object from an archive under the following conditions.

■ The archive member contains a symbol definition that satisfies a symbol reference, presently
held in the link-editor's internal symbol table. This reference is sometimes referred to as an
undefined symbol.

■ The archive member contains a data symbol definition that satisfies a tentative symbol
definition presently held in the link-editor's internal symbol table. An example is a FORTRAN
COMMON block definition, which causes the extraction of a relocatable object that defines the
same DATA symbol.

Input File Processing
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■ The archive member contains a symbol definition that matches a reference that requires
hidden visibility or protected visibility. See Table 7–20.

■ The link-editors -z allextract is in effect. This option suspends selective archive
extraction and causes all archive members to be extracted from the archive being processed.

Under selective archive extraction, a weak symbol reference does not extract an object from an
archive unless the -z weakextract option is in effect. See “Simple Resolutions” on page 42 for
more information.

Note – The options -z weakextract, -z allextract, and -z defaultextract enable you to
toggle the archive extraction mechanism among multiple archives.

With selective archive extraction, the link-editor makes multiple passes through an archive.
Relocatable objects are extracted as needed to satisfy the symbol information being
accumulated in the link-editor internal symbol table. After the link-editor has made a complete
pass through the archive without extracting any relocatable objects, the next input file is
processed.

By extracting only the relocatable objects needed when an archive is encountered, the position
of the archive on the command line can be significant. See “Position of an Archive on the
Command Line” on page 34.

Note – Although the link-editor makes multiple passes through an archive to resolve symbols,
this mechanism can be quite costly. Especially, for large archives that contain random
organizations of relocatable objects. In these cases, you should use tools like lorder(1) and
tsort(1) to order the relocatable objects within the archive. This ordering reduces the number
of passes the link-editor must carry out.

Shared Object Processing
Shared objects are indivisible whole units that have been generated by a previous link-edit of
one or more input files. When the link-editor processes a shared object, the entire contents of
the shared object become a logical part of the resulting output file image. This logical inclusion
means that all symbol entries defined in the shared object are made available to the link-editing
process. The shared object is actually copied during process execution.

The shared object's program data sections and most of the link-editing information sections are
unused by the link-editor. These sections are interpreted by the runtime linker when the shared
object is bound to generate a runnable process. However, the occurrence of a shared object is
remembered. Information is stored in the output file image to indicate that this object is a
dependency that must be made available at runtime.
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By default, all shared objects specified as part of a link-edit are recorded as dependencies in the
object being built. This recording is made regardless of whether the object being built actually
references symbols offered by the shared object. To minimize the overhead of runtime linking,
only specify those dependencies that resolve symbol references from the object being built. The
link-editor's debugging capabilities, and ldd(1) with the -u option, can be used to determine
unused dependencies. Alternatively, the link-editor's -z ignore option can suppress the
dependency recording of unused shared objects.

If a shared object has dependencies on other shared objects, these dependencies are also
processed. This processing occurs after all command-line input files have been processed, to
complete the symbol resolution process. However, the shared object names are not recorded as
dependencies in the output file image being generated.

Although the position of a shared object on the command-line has less significance than archive
processing, the position can have a global effect. Multiple symbols of the same name are allowed
to occur between relocatable objects and shared objects, and between multiple shared objects.
See “Symbol Resolution” on page 40.

The order of shared objects processed by the link-editor is maintained in the dependency
information that is stored in the output file image. The runtime linker reads this information,
and loads the specified shared objects in the same order. Therefore, the link-editor and the
runtime linker select the first occurrence of a symbol of a multiply-defined series of symbols.

Note – Multiple symbol definitions, are reported in the load map output generated using the -m
option.

Linking With Additional Libraries
Although the compiler drivers often ensure that appropriate libraries are specified to the
link-editor, frequently you must supply your own. Shared objects and archives can be specified
by explicitly naming the input files required to the link-editor. However, a more common and
more flexible method involves using the link-editor's -l option.

Library Naming Conventions
By convention, shared objects are usually designated by the prefix lib and the suffix .so.
Archives are designated by the prefix lib and the suffix .a. For example, libc.so is the shared
object version of the standard C library that is made available to the compilation environment.
libc.a is the library's archive version.

These conventions are recognized by the -l option of the link-editor. This option is commonly
used to supply additional libraries to a link-edit. The following example directs the link-editor
to search for libfoo.so. If the link-editor does not find libfoo.so, a search for libfoo.a is
made before moving on to the next directory to be searched.
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$ cc -o prog file1.c file2.c -lfoo

Note – A naming convention exists regarding the compilation environment and the runtime
environment use of shared objects. The compilation environment uses the simple .so suffix,
whereas the runtime environment commonly uses the suffix with an additional version
number. See “Naming Conventions” on page 114 and “Coordination of Versioned Filenames”
on page 160.

When link-editing in dynamic mode, you can choose to link with a mix of shared objects and
archives. When link-editing in static mode, only archive libraries are acceptable for input.

In dynamic mode, when using the -l option, the link-editor first searches the given directory
for a shared object that matches the specified name. If no match is found, the link-editor looks
for an archive library in the same directory. In static mode, when using the -l option, only
archive libraries are sought.

Linking With a Mix of Shared Objects and Archives
The library search mechanism in dynamic mode searches a given directory for a shared object,
and then searches for an archive library. Finer control of the search is possible through the -B
option.

By specifying the -B dynamic and -B static options on the command line, you can toggle the
library search between shared objects or archives respectively. For example, to link an
application with the archive libfoo.a and the shared object libbar.so, issue the following
command.

$ cc -o prog main.o file1.c -Bstatic -lfoo -Bdynamic -lbar

The -B static and -B dynamic options are not exactly symmetrical. When you specify
-B static, the link-editor does not accept shared objects as input until the next occurrence of
-B dynamic. However, when you specify -B dynamic, the link-editor first looks for shared
objects and then archive library's in any given directory.

The precise description of the previous example is that the link-editor first searches for
libfoo.a, and then for libbar.so, and if that search fails, for libbar.a. Finally, the link-editor
searches for libc.so, and if that search fails, libc.a.

Position of an Archive on the Command Line
The position of an archive on the command line can affect the output file being produced. The
link-editor searches an archive only to resolve undefined or tentative external references that
have previously been encountered. After this search is completed and any required members
have been extracted, the link-editor moves onto the next input file on the command line.
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Therefore by default, the archive is not available to resolve any new references from the input
files that follow the archive on the command line. For example, the following command directs
the link-editor to search libfoo.a only to resolve symbol references that have been obtained
from file1.c. The libfoo.a archive is not available to resolve symbol references from file2.c

or file3.c.

$ cc -o prog file1.c -Bstatic -lfoo file2.c file3.c -Bdynamic

Note – You should specify any archives at the end of the command line unless
multiple-definition conflicts require you to do otherwise.

Interdependencies between archives can exist, such that the extraction of members from one
archive must be resolved by extracting members from another archive. If these dependencies
are cyclic, the archives must be specified repeatedly on the command line to satisfy previous
references.

$ cc -o prog .... -lA -lB -lC -lA -lB -lC -lA

The determination, and maintenance, of repeated archive specifications can be tedious. The
-z rescan option makes this process simpler. Following all input file processing, this option
causes the entire archive list to be reprocessed. This processing attempts to locate additional
archive members that resolve symbol references. This archive rescanning continues until a pass
over the archive list occurs in which no new members are extracted. The previous example can
be simplified as follows.

$ cc -o prog -z rescan .... -lA -lB -lC

Directories Searched by the Link-Editor
All previous examples assume the link-editor knows where to search for the libraries listed on
the command line. By default, when linking 32–bit objects, the link-editor knows of only three
standard directories in which to look for libraries, /usr/ccs/lib, followed by /lib, and finally
/usr/lib. When linking 64–bit objects, only two standard directories are used, /lib/64
followed by /usr/lib/64. All other directories to be searched must be added to the link-editor's
search path explicitly.

You can change the link-editor search path by using a command-line option, or by using an
environment variable.

Using a Command-Line Option

You can use the -L option to add a new path name to the library search path. This option alters
the search path at the point the option is encountered on the command line. For example, the
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following command searches path1, followed by /usr/ccs/lib, /lib, and finally /usr/lib, to
find libfoo. The command searches path1 and then path2, followed by /usr/ccs/lib, /lib,
and /usr/lib, to find libbar.

$ cc -o prog main.o -Lpath1 file1.c -lfoo file2.c -Lpath2 -lbar

Path names that are defined by using the -L option are used only by the link-editor. These path
names are not recorded in the output file image being created. Therefore, these path names are
not available for use by the runtime linker.

Note – You must specify -L if you want the link-editor to search for libraries in your current
directory. You can use a period (.) to represent the current directory.

You can use the -Y option to change the default directories searched by the link-editor. The
argument supplied with this option takes the form of a colon separated list of directories. For
example, the following command searches for libfoo only in the directories
/opt/COMPILER/lib and /home/me/lib.

$ cc -o prog main.c -YP,/opt/COMPILER/lib:/home/me/lib -lfoo

The directories that are specified by using the -Y option can be supplemented by using the -L
option.

Using an Environment Variable

You can also use the environment variable LD_LIBRARY_PATH, which takes a colon-separated list
of directories, to add to the link-editor's library search path. In its most general form,
LD_LIBRARY_PATH takes two directory lists separated by a semicolon. These lists are searched
before and after the lists supplied on the command line.

The following example shows the combined effect of setting LD_LIBRARY_PATH and calling the
link-editor with several -L occurrences.

$ LD_LIBRARY_PATH=dir1:dir2;dir3

$ export LD_LIBRARY_PATH

$ cc -o prog main.c -Lpath1 ... -Lpath2 ... -Lpathn -lfoo

The effective search path is dir1:dir2:path1:path2...
pathn:dir3:/usr/ccs/lib:/lib:/usr/lib.

If no semicolon is specified as part of the LD_LIBRARY_PATH definition, the specified directory
list is interpreted after any -L options. In the following example, the effective search path is
path1:path2... pathn:dir1:dir2:/usr/ccs/lib:/lib:/usr/lib.
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$ LD_LIBRARY_PATH=dir1:dir2

$ export LD_LIBRARY_PATH

$ cc -o prog main.c -Lpath1 ... -Lpath2 ... -Lpathn -lfoo

Note – This environment variable can also be used to augment the search path of the runtime
linker. See “Directories Searched by the Runtime Linker” on page 72. To prevent this
environment variable from influencing the link-editor, use the -i option.

Directories Searched by the Runtime Linker
The runtime linker looks in two default locations for dependencies. When processing 32–bit
objects, the default locations are /lib and /usr/lib. When processing 64–bit objects, the
default locations are /lib/64 and /usr/lib/64. All other directories to be searched must be
added to the runtime linker's search path explicitly.

When a dynamic executable or shared object is linked with additional shared objects, the shared
objects are recorded as dependencies. These dependencies must be located during process
execution by the runtime linker. When linking a dynamic object, one or more search paths can
be recorded in the output file. These search paths are referred to as a runpath. The runtime
linker uses the runpath of an object to locate the dependencies of that object.

Specialized objects can be built with the -z nodefaultlib option to suppress any search of the
default location at runtime. Use of this option implies that all the dependencies of an object can
be located using its runpaths. Without this option, no matter how you augment the runtime
linker's search path, its last element is always the default location.

Note – The default search path can be administrated by using a runtime configuration file. See
“Configuring the Default Search Paths” on page 75. However, the creator of an object should
not rely on the existence of this file. You should always ensure that an object can locate its
dependencies with only its runpaths or the default location.

You can use the -R option, which takes a colon-separated list of directories, to record a runpath
in a dynamic executable or shared object. The following example records the runpath
/home/me/lib:/home/you/lib in the dynamic executable prog.

$ cc -o prog main.c -R/home/me/lib:/home/you/lib -Lpath1 \

-Lpath2 file1.c file2.c -lfoo -lbar

The runtime linker uses these paths, followed by the default location, to obtain any shared
object dependencies. In this case, this runpath is used to locate libfoo.so.1 and libbar.so.1.

The link-editor accepts multiple -R options. These multiple specifications are concatenate
together, separated by a colon. Thus, the previous example can also be expressed as follows.
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$ cc -o prog main.c -R/home/me/lib -Lpath1 -R/home/you/lib \

-Lpath2 file1.c file2.c -lfoo -lbar

For objects that can be installed in various locations, the $ORIGIN dynamic string token
provides a flexible means of recording a runpath. See “Locating Associated Dependencies” on
page 357.

Note – A historic alternative to specifying the -R option is to set the environment variable
LD_RUN_PATH, and make this available to the link-editor. The scope and function of
LD_RUN_PATH and -R are identical, but when both are specified, -R supersedes LD_RUN_PATH.

Initialization and Termination Sections
Dynamic objects can supply code that provides for runtime initialization and termination
processing. The initialization code of a dynamic object is executed once each time the dynamic
object is loaded in a process. The termination code of a dynamic object is executed once each
time the dynamic object is unloaded from a process or at process termination. This code can be
encapsulated in one of two section types, either an array of function pointers or a single code
block. Each of these section types is built from a concatenation of like sections from the input
relocatable objects.

The sections .preinitarray, .initarray and .finiarray provide arrays of runtime
pre-initialization, initialization, and termination functions, respectively. When creating a
dynamic object, the link-editor identifies these arrays with the .dynamic tag pairs
DT_PREINIT_[ARRAY/ARRAYSZ], DT_INIT_[ARRAY/ARRAYSZ], and DT_FINI_[ARRAY/ARRAYSZ]

accordingly. These tags identify the associated sections so that the sections can be called by the
runtime linker. A pre-initialization array is applicable to dynamic executables only.

Note – Functions that are assigned to these arrays must be provided from the object that is being
built.

The sections .init and .fini provide a runtime initialization and termination code block,
respectively. The compiler drivers typically supply .init and .fini sections with files they add
to the beginning and end of your input file list. These compiler provided files have the effect of
encapsulating the .init and .fini code from your relocatable objects into individual
functions. These functions are identified by the reserved symbol names _init and _fini

respectively. When creating a dynamic object, the link-editor identifies these symbols with the
.dynamic tags DT_INIT and DT_FINI accordingly. These tags identify the associated sections so
they can be called by the runtime linker.

For more information about the execution of initialization and termination code at runtime see
“Initialization and Termination Routines” on page 87.
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The registration of initialization and termination functions can be carried out directly by the
link-editor by using the -z initarray and -z finiarray options. For example, the following
command places the address of foo() in an .initarray element, and the address of bar() in a
.finiarray element.

$ cat main.c

#include <stdio.h>

void foo()

{

(void) printf("initializing: foo()\n");
}

void bar()

{

(void) printf("finalizing: bar()\n");
}

main()

{

(void) printf("main()\n");
return (0);

}

$ cc -o main -zinitarray=foo -zfiniarray=bar main.c

$ main

initializing: foo()

main()

finalizing: bar()

The creation of initialization and termination sections can be carried out directly using an
assembler. However, most compilers offer special primitives to simplify their declaration. For
example, the previous code example can be rewritten using the following #pragma definitions.
These definitions result in a call to foo() being placed in an .init section, and a call to bar()

being placed in a .fini section.

$ cat main.c

#include <stdio.h>

#pragma init (foo)

#pragma fini (bar)

.......

$ cc -o main main.c

$ main

initializing: foo()

main()

finalizing: bar()

Input File Processing

Chapter 2 • Link-Editor 39



Initialization and termination code, spread throughout several relocatable objects, can result in
different behavior when included in an archive library or shared object. The link-edit of an
application that uses this archive might extract only a fraction of the objects contained in the
archive. These objects might provide only a portion of the initialization and termination code
spread throughout the members of the archive. At runtime, only this portion of code is
executed. The same application built against the shared object will have all the accumulated
initialization and termination code executed when the dependency is loaded at runtime.

To determine the order of executing initialization and termination code within a process at
runtime is a complex issue that involves dependency analysis. Limit the content of initialization
and termination code to simplify this analysis. Simplified, self contained, initialization and
termination code provides predictable runtime behavior. See “Initialization and Termination
Order” on page 88 for more details.

Data initialization should be independent if the initialization code is involved with a dynamic
object whose memory can be dumped using dldump(3C).

Symbol Processing
During input file processing, all local symbols from the input relocatable objects are passed
through to the output file image. All global symbols from the input relocatable objects, together
with globals symbols from shared object dependencies, are accumulated internally within the
link-editor. Each global symbol supplied by an input file is searched for within this internal
symbol table. If a symbol with the same name has already been encountered from a previous
input file, a symbol resolution process is called. This resolution process determines which of
two entries from relocatable objects are kept. This resolution process also determines how
external references to shared object dependencies are established.

On completion of input file processing, and providing no fatal symbol resolution errors have
occurred, the link-editor determines if any unresolved symbol references remain. Unresolved
symbol references can cause the link-edit to terminate.

Finally, the link-editor's internal symbol table is added to the symbol tables of the image being
created.

The following sections expand upon symbol resolution and undefined symbol processing.

Symbol Resolution
Symbol resolution runs the entire spectrum, from simple and intuitive to complex and
perplexing. Most resolutions are carried out silently by the link-editor. However, some
relocations can be accompanied by warning diagnostics, while others can result in a fatal error
condition.
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The most common simple resolutions involve binding symbol references from one object to
symbol definitions within another object. This binding can occur between two relocatable
objects, or between a relocatable object and the first definition found in a shared object
dependency. Complex resolutions typically occur between two or more relocatable objects.

The resolution of two symbols depends on their attributes, the type of file that provides the
symbol, and the type of file being generated. For a complete description of symbol attributes, see
“Symbol Table Section” on page 246. For the following discussions, however, three basic symbol
types are identified.
■ Undefined – Symbols that have been referenced in a file but have not been assigned a storage

address.
■ Tentative – Symbols that have been created within a file but have not yet been sized, or

allocated in storage. These symbols appear as uninitialized C symbols, or FORTRAN COMMON
blocks within the file.

■ Defined – Symbols that have been created, and assigned storage addresses and space within
the file.

In its simplest form, symbol resolution involves the use of a precedence relationship. This
relationship has defined symbols dominate tentative symbols, which in turn dominate
undefined symbols.

The following example of C code shows how these symbol types can be generated. Undefined
symbols are prefixed with u_. Tentative symbols are prefixed with t_. Defined symbols are
prefixed with d_.

$ cat main.c

extern int u_bar;

extern int u_foo();

int t_bar;

int d_bar = 1;

d_foo()

{

return (u_foo(u_bar, t_bar, d_bar));

}

$ cc -o main.o -c main.c

$ nm -x main.o

[Index] Value Size Type Bind Other Shndx Name

...............

[8] |0x00000000|0x00000000|NOTY |GLOB |0x0 |UNDEF |u_foo

[9] |0x00000000|0x00000040|FUNC |GLOB |0x0 |2 |d_foo

[10] |0x00000004|0x00000004|OBJT |GLOB |0x0 |COMMON |t_bar

[11] |0x00000000|0x00000000|NOTY |GLOB |0x0 |UNDEF |u_bar

[12] |0x00000000|0x00000004|OBJT |GLOB |0x0 |3 |d_bar
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Simple Resolutions
Simple symbol resolutions are by far the most common. In this case, two symbols with similar
characteristics are detected, with one symbol taking precedence over the other. This symbol
resolution is carried out silently by the link-editor. For example, with symbols of the same
binding, a symbol reference from one file is bound to a defined, or tentative symbol definition,
from another file. Or, a tentative symbol definition from one file is bound to a defined symbol
definition from another file. This resolution can occur between two relocatable objects, or
between a relocatable object and the first definition found in a shared object dependency.

Symbols that undergo resolution can have either a global or weak binding. Within relocatable
objects, weak bindings have lower precedence than global binding. Relocatable object symbols
with different bindings are resolved according to a slight alteration of the basic rules.

Weak symbols can usually be defined through the compiler, either individually or as aliases to
global symbols. One mechanism uses a #pragma definition.

$ cat main.c

#pragma weak bar

#pragma weak foo = _foo

int bar = 1;

_foo()

{

return (bar);

}

$ cc -o main.o -c main.c

$ nm -x main.o

[Index] Value Size Type Bind Other Shndx Name

...............

[7] |0x00000000|0x00000004|OBJT |WEAK |0x0 |3 |bar

[8] |0x00000000|0x00000028|FUNC |WEAK |0x0 |2 |foo

[9] |0x00000000|0x00000028|FUNC |GLOB |0x0 |2 |_foo

Notice that the weak alias foo is assigned the same attributes as the global symbol _foo. This
relationship is maintained by the link-editor and results in the symbols being assigned the same
value in the output image. In symbol resolution, weak defined symbols are silently overridden
by any global definition of the same name.

Another form of simple symbol resolution, interposition, occurs between relocatable objects
and shared objects, or between multiple shared objects. In these cases, when a symbol is
multiply-defined, the relocatable object, or the first definition between multiple shared objects,
is silently taken by the link-editor. The relocatable object's definition, or the first shared object's
definition, is said to interpose on all other definitions. This interposition can be used to override
the functionality provided by another shared object. Multiply-defined symbols that occur
between relocatable objects and shared objects, or between multiple shared objects, are treated
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identically. A symbols weak binding or global binding is irrelevant. By resolving to the first
definition, regardless of the symbols binding, both the link-editor and runtime linker behave
consistently.

The combination of weak symbols defined within a shared object together with symbol
interposition over the same shared object, can provide a useful programming technique. For
example, the standard C library provides several services that you are allowed to redefine.
However, ANSI C defines a set of standard services that must be present on the system. These
services cannot be replaced in a strictly conforming program.

The function fread(3C), for example, is an ANSI C library function. The system function
read(2) is not an ANSI C library function. A conforming ANSI C program must be able to
redefine read(2) and still use fread(3C) in a predictable way.

The problem here is that read(2) underlies the fread(3C) implementation in the standard C
library. Therefore, a program that redefines read(2) might confuse the fread(3C)
implementation. To guard against this occurrence, ANSI C states that an implementation
cannot use a name that is not reserved for the implementation. Use the following #pragma
directive to define just such a reserved name. Use this name to generate an alias for the function
read(2).

#pragma weak read = _read

Thus, you can quite freely define your own read() function without compromising the
fread(3C) implementation, which in turn is implemented to use the _read() function.

The link-editor has no difficulty with this redefinition of read(), either when linking against the
shared object or archive version of the standard C library. In the former case, interposition takes
its course. In the latter case, the fact that the C library's definition of read(2) is weak allows that
definition to be quietly overridden.

Use the link-editor's -m option to write a list of all interposed symbol references, along with
section load address information, to the standard output.

Complex Resolutions
Complex resolutions occur when two symbols of the same name are found with differing
attributes. In these cases, the link-editor generates a warning message, while selecting the most
appropriate symbol. This message indicates the symbol, the attributes that conflict, and the
identity of the file from which the symbol definition is taken. In the following example, two files
with a definition of the data item array have different size requirements.

$ cat foo.c

int array[1];

$ cat bar.c
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int array[2] = { 1, 2 };

$ cc -dn -r -o temp.o foo.c bar.c

ld: warning: symbol ‘array’ has differing sizes:

(file foo.o value=0x4; file bar.o value=0x8);

bar.o definition taken

A similar diagnostic is produced if the symbol's alignment requirements differ. In both of these
cases, the diagnostic can be suppressed by using the link-editor's -t option.

Another form of attribute difference is the symbol's type. In the following example, the symbol
bar() has been defined as both a data item and a function.

$ cat foo.c

bar()

{

return (0);

}

$ cc -o libfoo.so -G -K pic foo.c

$ cat main.c

int bar = 1;

main()

{

return (bar);

}

$ cc -o main main.c -L. -lfoo

ld: warning: symbol ‘bar’ has differing types:

(file main.o type=OBJT; file ./libfoo.so type=FUNC);

main.o definition taken

Note – Symbol types in this context are classifications that can be expressed in ELF. These
symbol types are not related to the data types as employed by the programming language,
except in the crudest fashion.

In cases like the previous example, the relocatable object definition is taken when the resolution
occurs between a relocatable object and a shared object. Or, the first definition is taken when the
resolution occurs between two shared objects. When such resolutions occur between symbols
of weak or global binding, a warning is also produced.

Inconsistencies between symbol types are not suppressed by the link-editor's -t option.

Fatal Resolutions
Symbol conflicts that cannot be resolved result in a fatal error condition and an appropriate
error message. This message indicates the symbol name together with the names of the files that
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provided the symbols. No output file is generated. Although the fatal condition is sufficient to
terminate the link-edit, all input file processing is first completed. In this manner, all fatal
resolution errors can be identified.

The most common fatal error condition exists when two relocatable objects both define
non-weak symbols of the same name.

$ cat foo.c

int bar = 1;

$ cat bar.c

bar()

{

return (0);

}

$ cc -dn -r -o temp.o foo.c bar.c

ld: fatal: symbol ‘bar’ is multiply-defined:

(file foo.o and file bar.o);

ld: fatal: File processing errors. No output written to int.o

foo.c and bar.c have conflicting definitions for the symbol bar. Because the link-editor cannot
determine which should dominate, the link-edit usually terminates with an error message. You
can use the link-editor's -z muldefs option to suppress this error condition. This option allows
the first symbol definition to be taken.

Undefined Symbols
After all of the input files have been read and all symbol resolution is complete, the link-editor
searches the internal symbol table for any symbol references that have not been bound to
symbol definitions. These symbol references are referred to as undefined symbols. Undefined
symbols can affect the link-edit process according to the type of symbol, together with the type
of output file being generated.

Generating an Executable Output File
When generating an executable output file, the link-editor's default behavior is to terminate
with an appropriate error message should any symbols remain undefined. A symbol remains
undefined when a symbol reference in a relocatable object is never matched to a symbol
definition.

$ cat main.c

extern int foo();

main()
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{

return (foo());

}

$ cc -o prog main.c

Undefined first referenced

symbol in file

foo main.o

ld: fatal: Symbol referencing errors. No output written to prog

Similarly, if a shared object is used to create a dynamic executable an leaves an unresolved
symbol definition, an undefined symbol error results.

$ cat foo.c

extern int bar;

foo()

{

return (bar);

}

$ cc -o libfoo.so -G -K pic foo.c

$ cc -o prog main.c -L. -lfoo

Undefined first referenced

symbol in file

bar ./libfoo.so

ld: fatal: Symbol referencing errors. No output written to prog

To allow undefined symbols, as in the previous example, use the link-editor's -z nodefs option
to suppress the default error condition.

Note – Take care when using the -z nodefs option. If an unavailable symbol reference is
required during the execution of a process, a fatal runtime relocation error occurs. This error
might be detected during the initial execution and testing of an application. However, more
complex execution paths can result in this error condition taking much longer to detect, which
can be time consuming and costly.

Symbols can also remain undefined when a symbol reference in a relocatable object is bound to
a symbol definition in an implicitly defined shared object. For example, continuing with the files
main.c and foo.c used in the previous example.

$ cat bar.c

int bar = 1;

$ cc -o libbar.so -R. -G -K pic bar.c -L. -lfoo

$ ldd libbar.so

libfoo.so => ./libfoo.so

Symbol Processing

Linker and Libraries Guide • September 200846



$ cc -o prog main.c -L. -lbar

Undefined first referenced

symbol in file

foo main.o (symbol belongs to implicit \

dependency ./libfoo.so)

ld: fatal: Symbol referencing errors. No output written to prog

prog is built with an explicit reference to libbar.so. libbar.so has a dependency on
libfoo.so. Therefore, an implicit reference to libfoo.so from prog is established.

Because main.c made a specific reference to the interface provided by libfoo.so, prog really
has a dependency on libfoo.so. However, only explicit shared object dependencies are
recorded in the output file being generated. Thus, prog fails to run if a new version of
libbar.so is developed that no longer has a dependency on libfoo.so.

For this reason, bindings of this type are deemed fatal. The implicit reference must be made
explicit by referencing the library directly during the link-edit of prog. The required reference is
hinted at in the fatal error message that is shown in the preceding example.

Generating a Shared Object Output File
When the link-editor is generating a shared object output file, undefined symbols are allowed to
remain at the end of the link-edit. This default behavior allows the shared object to import
symbols from a dynamic executable that defines the shared object as a dependency.

The link-editor's -z defs option can be used to force a fatal error if any undefined symbols
remain. This option is recommended when creating any shared objects. Shared objects that
reference symbols from an application can use the -z defs option, together with defining the
symbols by using an extern mapfile directive. See “Defining Additional Symbols with a
mapfile” on page 50.

A self-contained shared object, in which all references to external symbols are satisfied by
named dependencies, provides maximum flexibility. The shared object can be employed by
many users without those users having to determine and establish dependencies to satisfy the
shared object's requirements.

Weak Symbols
Weak symbol references that remain unresolved, do not result in a fatal error condition, no
matter what output file type is being generated.

If a static executable is being generated, the symbol is converted to an absolute symbol with an
assigned value of zero.

If a dynamic executable or shared object is being produced, the symbol is left as an undefined
weak reference with an assigned value of zero. During process execution, the runtime linker
searches for this symbol. If the runtime linker does not find a match, the reference is bound to
an address of zero instead of generating a fatal relocation error.
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Historically, these undefined weak referenced symbols have been employed as a mechanism to
test for the existence of functionality. For example, the following C code fragment might have
been used in the shared object libfoo.so.1.

#pragma weak foo

extern void foo(char *);

void bar(char * path)

{

void (* fptr)(char *);

if ((fptr = foo) != 0)

(* fptr)(path);

}

When building an application that references libfoo.so.1, the link-edit completes successfully
regardless of whether a definition for the symbol foo is found. If during execution of the
application the function address tests nonzero, the function is called. However, if the symbol
definition is not found, the function address tests zero and therefore is not called.

Compilation systems view this address comparison technique as having undefined semantics,
which can result in the test statement being removed under optimization. In addition, the
runtime symbol binding mechanism places other restrictions on the use of this technique.
These restrictions prevent a consistent model from being made available for all dynamic
objects.

Note – Undefined weak references in this manner are discouraged. Instead, you should use
dlsym(3C) with the RTLD_DEFAULT, or RTLD_PROBE handles as a means of testing for a symbol's
existence. See “Testing for Functionality” on page 103.

Tentative Symbol Order Within the Output File
Contributions from input files usually appear in the output file in the order of their
contribution. An exception occurs when processing tentative symbols and their associated
storage. These symbols are not fully defined until their resolution is complete. The resolution of
a defined symbol from a relocatable object, results in the order of appearance of the symbol
following the order of the definition.

If you need to control the ordering of a group of symbols, then any tentative definition should
be redefined to a zero-initialized data item. For example, the following tentative definitions
result in a reordering of the data items within the output file, as compared to the original order
described in the source file foo.c.
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$ cat foo.c

char A_array[0x10];

char B_array[0x20];

char C_array[0x30];

$ cc -o prog main.c foo.c

$ nm -vx prog | grep array

[32] |0x00020754|0x00000010|OBJT |GLOB |0x0 |15 |A_array

[34] |0x00020764|0x00000030|OBJT |GLOB |0x0 |15 |C_array

[42] |0x00020794|0x00000020|OBJT |GLOB |0x0 |15 |B_array

By defining these symbols as initialized data items, the relative ordering of these symbols within
the input file is carried over to the output file.

$ cat foo.c

char A_array[0x10] = { 0 };

char B_array[0x20] = { 0 };

char C_array[0x30] = { 0 };

$ cc -o prog main.c foo.c

$ nm -vx prog | grep array

[32] |0x000206bc|0x00000010|OBJT |GLOB |0x0 |12 |A_array

[42] |0x000206cc|0x00000020|OBJT |GLOB |0x0 |12 |B_array

[34] |0x000206ec|0x00000030|OBJT |GLOB |0x0 |12 |C_array

Defining Additional Symbols
Besides the symbols provided from input files, you can supply additional global symbol
references or global symbol definitions to a link-edit. In the simplest form, symbol references
can be generated using the link-editor's -u option. Greater flexibility is provided with the
link-editor's -M option and an associated mapfile. This mapfile enables you to define global
symbol references and a variety of global symbol definitions.

Defining Additional Symbols with the uoption
The -u option provides a mechanism for generating a global symbol reference from the
link-edit command line. This option can be used to perform a link-edit entirely from archives.
This option can also provide additional flexibility in selecting the objects to extract from
multiple archives. See section “Archive Processing” on page 31 for an overview of archive
extraction.

For example, perhaps you want to generate a dynamic executable from the relocatable object
main.o, which refers to the symbols foo and bar. You want to obtain the symbol definition foo

from the relocatable object foo.o contained in lib1.a, and the symbol definition bar from the
relocatable object bar.o, contained in lib2.a.
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However, the archive lib1.a also contains a relocatable object that defines the symbol bar. This
relocatable object is presumably of differing functionality to the relocatable object that is
provided in lib2.a. To specify the required archive extraction, you can use the following
link-edit.

$ cc -o prog -L. -u foo -l1 main.o -l2

The -u option generates a reference to the symbol foo. This reference causes extraction of the
relocatable object foo.o from the archive lib1.a. The first reference to the symbol bar occurs
in main.o, which is encountered after lib1.a has been processed. Therefore, the relocatable
object bar.o is obtained from the archive lib2.a.

Note – This simple example assumes that the relocatable object foo.o from lib1.a does not
directly or indirectly reference the symbol bar. If lib1.a does reference bar, then the
relocatable object bar.o is also extracted from lib1.a during its processing. See “Archive
Processing” on page 31 for a discussion of the link-editor's multi-pass processing of an archive.

Defining Additional Symbols with a mapfile
An extensive set of global symbol definitions can be provided by using the link-editor's -M
option and an associated mapfile. Symbol definition mapfile entries have the following syntax.

[ name ] {

scope:
symbol [ = [ type ] [ value ] [ size ] [ information ] ];

} [ dependency ];

name
A label for this set of symbol definitions, if present, identifies a version definition within the
image. See Chapter 5, “Application Binary Interfaces and Versioning.”

scope
Indicates the visibility of the symbols' binding within the output file being generated. All
symbols defined with a mapfile are treated as global in scope during the link-edit process.
These symbols are resolved against any other global symbols of the same name that are
obtained from any of the input files. The following definitions, and aliases, define a symbols'
visibility in the object being created.

default / global
Global symbols of this scope are visible to all external objects. References to such symbols
from within the object are bound at runtime, thus allowing interposition to take place.
This visibility scope provides a default, that can be demoted, or eliminated by other
symbol visibility techniques. This scope definition has the same affect as a symbol with
STV_DEFAULT visibility. See Table 7–20.
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protected / symbolic
Global symbols of this scope are visible to all external objects. References to these symbols
from within the object are bound at link-edit, thus preventing runtime interposition. This
visibility scope can be demoted, or eliminated by other symbol visibility techniques. This
scope definition has the same affect as a symbol with STV_PROTECTED visibility. See
Table 7–20.

If an object is created with a single symbolic scope, all relocations within the object are
bound to the object at link-edit. With this single scope, even reserved symbols are
reduced to symbolic scope. See “Generating the Output File” on page 62 for a list of
reserved symbol names.

hidden / local
Global symbols of this scope are reduced to symbols with a local binding. Symbols of this
scope are not visible to other external objects. This scope definition has the same affect as
a symbol with STV_HIDDEN visibility. See Table 7–20.

eliminate

Global symbols of this scope are hidden. Their symbol table entries are eliminated. Note
that local symbols can also be eliminated by using the link-editor -z redlocsym option.

Note – The STV_ symbol visibility attributes, originate from symbol declarations that are
embedded in source code that are processed by the compilers.

symbol
A symbol name. This name can result in a symbol definition, or a symbol reference,
depending on any qualifying attributes. In the simplest form, without any qualifying
attributes, a symbol reference is created. This reference is exactly the same as would be
generated using the -u option discussed in “Defining Additional Symbols with the u option”
on page 49. Typically, if the symbol name is followed by any qualifying attributes, then a
symbol definition is generated using the associated attributes.

When a local scope is defined, the symbol name can be defined as the special auto-reduction
directive “*”. Symbols that have no explicitly defined visibility are demoted to a local binding
within the dynamic object being generated. Explicit visibility definitions originate from
mapfile definitions, or visibility definitions that are encapsulated within relocatable objects.

Similarly, when an eliminate scope is defined, the symbol name can be defined as the
special auto-elimination directive “*”. Symbols that have no explicitly defined visibility are
eliminated from the dynamic object being generated.

type
Indicates the symbol type attribute. This attribute can be either COMMON, data, or function.
The COMMON attribute results in a tentative symbol definition. The data and function

attributes result in a section symbol definition or an absolute symbol definition. See “Symbol
Table Section” on page 246.
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A data attribute results in the creation of an OBJT symbol. A data attribute that is
accompanied with a size, but no value creates a section symbol by associating the symbol
with an ELF section. This section is filled with zeros. A function attribute results in the
creation of an FUNC symbol. A function attribute that is accompanied with a size, but no
value creates a section symbol by associating the symbol with an ELF section. This section is
assigned a void function return, void (*)(void).

A data or function attribute that is accompanied with a value results in the appropriate
symbol type together with an absolute, ABS, section index.

The creation of a section data symbol is useful for the creation of filters. External references
to a section data symbol of a filter from an executable result in the appropriate copy
relocation being generated. See “Copy Relocations” on page 137.

value
Indicates the value attribute. This attribute takes the form of Vnumber. This attribute results
in the creation of a symbol definition.

size
Indicates the size attribute. This attribute takes the form of Snumber. This attribute results in
the creation of a symbol definition.

information
This keyword provides additional information for the symbol.

AUXILIARY name
Indicates that this symbol is an auxiliary filter on the shared object name. See “Generating
Auxiliary Filters” on page 123.

DIRECT

Indicates that this symbol should be directly bound to. When used with a symbol
definition, this keyword results in any reference from within the object being built to be
directly bound to the definition. When used with a symbol reference, this keyword results
in a direct binding to the dependency that provides the definition. See “Direct Bindings”
on page 78. This keyword can also be used with the PARENT keyword to establish a direct
binding to any parent at runtime.

EXTERN

Indicates the symbol is defined externally to the object being created. This keyword is
typically defined to label callback routines. Undefined symbols that would be flagged with
the -z defs option are suppressed with this keyword.

This keyword is only meaningful when generating a symbol reference. Should a definition
for this symbol occur within the objects combined at link-edit, then the keyword is
silently ignored.

FILTER name
Indicates that this symbol is a filter on the shared object name. See “Generating Standard
Filters” on page 120. Filter symbols do not require any backing implementation to be
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provided from an input relocatable object. Therefore, use this directive together with
defining the symbol's type, to create an absolute symbol table entry.

NODIRECT

Indicates that this symbol should not be directly bound to. This state applies to references
from within the object being created and from external references. See “Direct Bindings”
on page 78. This keyword can also be used with the PARENT keyword to prevent a direct
binding to any parent at runtime.

PARENT

Indicates the symbol is defined in the parent of the object being created. A parent is an
object that references this object at runtime as an explicit dependency. A parent can also
reference this object at runtime using dlopen(3C). This keyword is typically defined to
label callback routines. This keyword can be used with the DIRECT or NODIRECT keywords
to establish individual direct, or no-direct references to the parent. Undefined symbols
that would be flagged with the -z defs option are suppressed with this keyword.

This keyword is only meaningful when generating a symbol reference. Should a definition
for this symbol occur within the objects combined at link-edit, then the keyword is
silently ignored.

dependency
Represents a version definition that is inherited by this definition. See Chapter 5,
“Application Binary Interfaces and Versioning.”

If either a version definition or the auto-reduction directive is specified, then versioning
information is recorded in the image created. If this image is an executable or shared object,
then any symbol reduction is also applied.

If the image being created is a relocatable object, then by default, no symbol reduction is
applied. In this case, any symbol reductions are recorded as part of the versioning information.
These reductions are applied when the relocatable object is finally used to generate an
executable or shared object. The link-editor's -B reduce option can be used to force symbol
reduction when generating a relocatable object.

A more detailed description of the versioning information is provided in Chapter 5,
“Application Binary Interfaces and Versioning.”

Note – To ensure interface definition stability, no wildcard expansion is provided for defining
symbol names.

The following sections presents several examples of using the mapfile syntax.
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Defining Symbol References
The following example shows how three symbol references can be defined. These references are
then used to extract members of an archive. Although this archive extraction can be achieved by
specifying multiple -u options to the link-edit, this example also shows how the eventual scope
of a symbol can be reduced to local.

$ cat foo.c

foo()

{

(void) printf("foo: called from lib.a\n");
}

$ cat bar.c

bar()

{

(void) printf("bar: called from lib.a\n");
}

$ cat main.c

extern void foo(), bar();

main()

{

foo();

bar();

}

$ ar -rc lib.a foo.o bar.o main.o

$ cat mapfile

{

local:

foo;

bar;

global:

main;

};

$ cc -o prog -M mapfile lib.a

$ prog

foo: called from lib.a

bar: called from lib.a

$ nm -x prog | egrep "main$|foo$|bar$"

[28] |0x00010604|0x00000024|FUNC |LOCL |0x0 |7 |foo

[30] |0x00010628|0x00000024|FUNC |LOCL |0x0 |7 |bar

[49] |0x0001064c|0x00000024|FUNC |GLOB |0x0 |7 |main

The significance of reducing symbol scope from global to local is covered in more detail in the
section “Reducing Symbol Scope” on page 57.
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Defining Absolute Symbols
The following example shows how two absolute symbol definitions can be defined. These
definitions are then used to resolve the references from the input file main.c.

$ cat main.c

extern int foo();

extern int bar;

main()

{

(void) printf("&foo = %x\n", &foo);

(void) printf("&bar = %x\n", &bar);

}

$ cat mapfile

{

global:

foo = FUNCTION V0x400;

bar = DATA V0x800;

};

$ cc -o prog -M mapfile main.c

$ prog

&foo = 400 &bar = 800

$ nm -x prog | egrep "foo$|bar$"

[37] |0x00000800|0x00000000|OBJT |GLOB |0x0 |ABS |bar

[42] |0x00000400|0x00000000|FUNC |GLOB |0x0 |ABS |foo

When obtained from an input file, symbol definitions for functions or data items are usually
associated with elements of data storage. A mapfile definition is insufficient to be able to
construct this data storage, so these symbols must remain as absolute values. A mapfile

definition that is associated with a size, but no value results in the creation of data storage. In
this case, the symbol definition is accompanied with a section index. A mapfile definition that
is accompanied with a value results in the creation of an absolute symbol. If a symbol is defined
in a shared object, an absolute definition should be avoided. See “Augmenting a Symbol
Definition” on page 56.

Defining Tentative Symbols
A mapfile can also be used to define a COMMON, or tentative, symbol. Unlike other types of
symbol definition, tentative symbols do not occupy storage within a file, but define storage that
must be allocated at runtime. Therefore, symbol definitions of this kind can contribute to the
storage allocation of the output file being generated.

A feature of tentative symbols that differs from other symbol types is that their value attribute
indicates their alignment requirement. A mapfile definition can therefore be used to realign
tentative definitions that are obtained from the input files of a link-edit.
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The following example shows the definition of two tentative symbols. The symbol foo defines a
new storage region whereas the symbol bar is actually used to change the alignment of the same
tentative definition within the file main.c.

$ cat main.c

extern int foo;

int bar[0x10];

main()

{

(void) printf("&foo = %x\n", &foo);

(void) printf("&bar = %x\n", &bar);

}

$ cat mapfile

{

global:

foo = COMMON V0x4 S0x200;

bar = COMMON V0x100 S0x40;

};

$ cc -o prog -M mapfile main.c

ld: warning: symbol ‘bar’ has differing alignments:

(file mapfile value=0x100; file main.o value=0x4);

largest value applied

$ prog

&foo = 20940

&bar = 20900

$ nm -x prog | egrep "foo$|bar$"

[37] |0x00020900|0x00000040|OBJT |GLOB |0x0 |16 |bar

[42] |0x00020940|0x00000200|OBJT |GLOB |0x0 |16 |foo

Note – This symbol resolution diagnostic can be suppressed by using the link-editor's -t option.

Augmenting a Symbol Definition
The creation of an absolute data symbol within a shared object should be avoided. An external
reference from a dynamic executable to a data item within a shared object typically requires the
creation of a copy relocation. See “Copy Relocations” on page 137. To provide for this
relocation, the data item should be associated with data storage. This association can be
produced by defining the symbol within a relocatable object file. This association can also be
produced by defining the symbol within a mapfile together with a size declaration and no
value declaration. See “Defining Additional Symbols with a mapfile” on page 50.

A data symbol can be filtered. See “Shared Objects as Filters” on page 119. To provide this
filtering, an object file definition can be augmented with a mapfile definition. The following
example creates a filter containing a function and data definition. Although the function
definition can be created explicitly from the mapfile, the data definition augments a definition
supplied by an input relocatable object.
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$ cat bar.cint bar = 0;

$ cat mapfile

{

global:

foo = FUNCTION FILTER filtee.so.1;

bar = FILTER filtee.so.1;

local:

*;

};

$ cc -o filter.so.1 -G -Kpic -h filter.so.1 -M mapfile -R. bar.c

$ nm -x filter.so.1 | egrep "foo|bar"

[39] |0x000102b0|0x00000004|OBJT |GLOB |0 |12 |bar

[45] |0x00000000|0x00000000|FUNC |GLOB |0 |ABS |foo

$ elfdump -y filter.so.1 | egrep "foo|bar"

[1] F [0] filtee.so.1 bar

[7] F [0] filtee.so.1 foo

At runtime, a reference from an external object to either of these symbols is resolved to the
definition within the filtee.

Reducing Symbol Scope
Symbol definitions that are defined to have local scope within a mapfile can be used to reduce
the symbol's eventual binding. This mechanism removes the symbol's visibility to future
link-edits which use the generated file as part of their input. In fact, this mechanism can provide
for the precise definition of a file's interface, and so restrict the functionality made available to
others.

For example, say you want to generate a simple shared object from the files foo.c and bar.c.
The file foo.c contains the global symbol foo, which provides the service that you want to make
available to others. The file bar.c contains the symbols bar and str, which provide the
underlying implementation of the shared object. A shared object created with these files,
typically results in the creation of three symbols with global scope.

$ cat foo.c

extern const char * bar();

const char * foo()

{

return (bar());

}

$ cat bar.c

const char * str = "returned from bar.c";

const char * bar()

{
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return (str);

}

$ cc -o lib.so.1 -G foo.c bar.c

$ nm -x lib.so.1 | egrep "foo$|bar$|str$"

[29] |0x000104d0|0x00000004|OBJT |GLOB |0x0 |12 |str

[32] |0x00000418|0x00000028|FUNC |GLOB |0x0 |6 |bar

[33] |0x000003f0|0x00000028|FUNC |GLOB |0x0 |6 |foo

You can now use the functionality offered by lib.so.1 as part of the link-edit of another
application. References to the symbol foo are bound to the implementation provided by the
shared object.

Because of their global binding, direct reference to the symbols bar and str is also possible.
This visibility can have dangerous consequences, as you might later change the implementation
that underlies the function foo. In so doing, you could unintentionally cause an existing
application that had bound to bar or str to fail or misbehave.

Another consequence of the global binding of the symbols bar and str is that these symbols can
be interposed upon by symbols of the same name. The interposition of symbols within shared
objects is covered in section “Simple Resolutions” on page 42. This interposition can be
intentional and be used as a means of circumventing the intended functionality offered by the
shared object. On the other hand, this interposition can be unintentional, the result of the same
common symbol name used for both the application and the shared object.

When developing the shared object, you can protect against this scenario by reducing the scope
of the symbols bar and str to a local binding. In the following example, the symbols bar and
str are no longer available as part of the shared object's interface. Thus, these symbols cannot
be referenced, or interposed upon, by an external object. You have effectively defined an
interface for the shared object. This interface can be managed while hiding the details of the
underlying implementation.

$ cat mapfile

{

local:

bar;

str;

};

$ cc -o lib.so.1 -M mapfile -G foo.c bar.c

$ nm -x lib.so.1 | egrep "foo$|bar$|str$"

[27] |0x000003dc|0x00000028|FUNC |LOCL |0x0 |6 |bar

[28] |0x00010494|0x00000004|OBJT |LOCL |0x0 |12 |str

[33] |0x000003b4|0x00000028|FUNC |GLOB |0x0 |6 |foo

This symbol scope reduction has an additional performance advantage. The symbolic
relocations against the symbols bar and str that would have been necessary at runtime are now
reduced to relative relocations. See “When Relocations are Performed” on page 136 for details of
symbolic relocation overhead.
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As the number of symbols that are processed during a link-edit increases, defining local scope
reduction within a mapfile becomes harder to maintain. An alternative and more flexible
mechanism enables you to define the shared object's interface in terms of the global symbols
that should be maintained. Global symbol definitions allow the link-editor to reduce all other
symbols to local binding. This mechanism is achieved using the special auto-reduction directive
“*”. For example, the previous mapfile definition can be rewritten to define foo as the only
global symbol required in the output file generated.

$ cat mapfile

lib.so.1.1

{

global:

foo;

local:

*;

};

$ cc -o lib.so.1 -M mapfile -G foo.c bar.c

$ nm -x lib.so.1 | egrep "foo$|bar$|str$"

[30] |0x00000370|0x00000028|FUNC |LOCL |0x0 |6 |bar

[31] |0x00010428|0x00000004|OBJT |LOCL |0x0 |12 |str

[35] |0x00000348|0x00000028|FUNC |GLOB |0x0 |6 |foo

This example also defines a version name, lib.so.1.1, as part of the mapfile directive. This
version name establishes an internal version definition that defines the file's symbolic interface.
The creation of a version definition is recommended. The definition forms the foundation of an
internal versioning mechanism that can be used throughout the evolution of the file. See
Chapter 5, “Application Binary Interfaces and Versioning.”

Note – If a version name is not supplied, the output file name is used to label the version
definition. The versioning information that is created within the output file can be suppressed
using the link-editor's -z noversion option.

Whenever a version name is specified, all global symbols must be assigned to a version
definition. If any global symbols remain unassigned to a version definition, the link-editor
generates a fatal error condition.

$ cat mapfile

lib.so.1.1 {

global:

foo;

};

$ cc -o lib.so.1 -M mapfile -G foo.c bar.c

Undefined first referenced

symbol in file

str bar.o (symbol has no version assigned)
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bar bar.o (symbol has no version assigned)

ld: fatal: Symbol referencing errors. No output written to lib.so.1

The -B local option can be used to assert the auto-reduction directive “*” from the command
line. The previous example an be compiled successfully as follows.

$ cc -o lib.so.1 -M mapfile -B local -G foo.c bar.c

When generating an executable or shared object, any symbol reduction results in the recording
of version definitions within the output image. When generating a relocatable object, the
version definitions are created but the symbol reductions are not processed. The result is that
the symbol entries for any symbol reductions still remain global. For example, using the
previous mapfile with the auto-reduction directive and associated relocatable objects, an
intermediate relocatable object is created with no symbol reduction.

$ cat mapfile

lib.so.1.1 {

global:

foo;

local:

*;

};

$ ld -o lib.o -M mapfile -r foo.o bar.o

$ nm -x lib.o | egrep "foo$|bar$|str$"

[17] |0x00000000|0x00000004|OBJT |GLOB |0x0 |3 |str

[19] |0x00000028|0x00000028|FUNC |GLOB |0x0 |1 |bar

[20] |0x00000000|0x00000028|FUNC |GLOB |0x0 |1 |foo

The version definitions created within this image show that symbol reductions are required.
When the relocatable object is used eventually to generate an executable or shared object, the
symbol reductions occur. In other words, the link-editor reads and interprets symbol reduction
information that is contained in the relocatable objects in the same manner as versioning data is
processed from a mapfile.

Thus, the intermediate relocatable object produced in the previous example can now be used to
generate a shared object.

$ ld -o lib.so.1 -G lib.o

$ nm -x lib.so.1 | egrep "foo$|bar$|str$"

[22] |0x000104a4|0x00000004|OBJT |LOCL |0x0 |14 |str

[24] |0x000003dc|0x00000028|FUNC |LOCL |0x0 |8 |bar

[36] |0x000003b4|0x00000028|FUNC |GLOB |0x0 |8 |foo

Symbol reduction at the point at which an executable or shared object is created is typically the
most common requirement. However, symbol reductions can be forced to occur when creating
a relocatable object by using the link-editor's -B reduce option.
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$ ld -o lib.o -M mapfile -B reduce -r foo.o bar.o

$ nm -x lib.o | egrep "foo$|bar$|str$"

[15] |0x00000000|0x00000004|OBJT |LOCL |0x0 |3 |str

[16] |0x00000028|0x00000028|FUNC |LOCL |0x0 |1 |bar

[20] |0x00000000|0x00000028|FUNC |GLOB |0x0 |1 |foo

Symbol Elimination
An extension to symbol reduction is the elimination of a symbol entry from an object's symbol
table. Local symbols are only maintained in an object's .symtab symbol table. This entire table
can be removed from the object by using the link-editor's -s option, or strip(1). On occasion,
you might want to maintain the .symtab symbol table but remove selected local symbol
definitions.

Symbol elimination can be carried out using the mapfile keyword ELIMINATE. As with the
local directive, symbols can be individually defined. Or, the symbol name can be defined as the
special auto-elimination directive “*”. The following example shows the elimination of the
symbol bar for the previous symbol reduction example.

$ cat mapfile

lib.so.1.1

{

global:

foo;

local:

str;

eliminate:

*;

};

$ cc -o lib.so.1 -M mapfile -G foo.c bar.c

$ nm -x lib.so.1 | egrep "foo$|bar$|str$"

[31] |0x00010428|0x00000004|OBJT |LOCL |0x0 |12 |str

[35] |0x00000348|0x00000028|FUNC |GLOB |0x0 |6 |foo

The -B eliminate option can be used to assert the auto-elimination directive “*” from the
command line.

External Bindings
When a symbol reference from the object being created is satisfied by a definition within a
shared object, the symbol remains undefined. The relocation information that is associated with
the symbol provides for its lookup at runtime. The shared object that provided the definition
typically becomes a dependency.

The runtime linker employs a default search model to locate this definition at runtime.
Typically, each object is searched, starting with the dynamic executable, and progressing
through each dependency in the same order in which the objects were loaded.
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Objects can also be created to use direct bindings. With this technique, the relationship between
the symbol reference and the object that provides the symbol definition is maintained within
the object being created. The runtime linker uses this information to directly bind the reference
to the object that defines the symbol, thus bypassing the default symbol search model. See
“Direct Bindings” on page 78.

String Table Compression
String tables are compressed by the link-editor by removing duplicate entries, together with tail
substrings. This compression can significantly reduce the size of any string tables. For example,
a compressed .dynstr table results in a smaller text segment and hence reduced runtime paging
activity. Because of these benefits, string table compression is enabled by default.

Objects that contribute a very large number of symbols can increase the link-edit time due to
the string table compression. To avoid this cost during development use the link-editors
-z nocompstrtab option. Any string table compression performed during a link-edit can be
displayed using the link-editors debugging tokens -D strtab,detail.

Generating the Output File
After input file processing and symbol resolution has completed with no fatal errors, the
link-editor generates the output file. The link-editor first generates the additional sections
necessary to complete the output file. These sections include the symbol tables, which contain
local symbol definitions together with resolved global symbol and weak symbol information,
from all the input files.

Also included are any output relocation and dynamic information sections required by the
runtime linker. After all the output section information has been established, the total output
file size is calculated. The output file image is then created accordingly.

When creating a dynamic executable or shared object, two symbol tables are usually generated.
The .dynsym table and its associated string table .dynstr contain register, global, weak, and
section symbols. These sections become part of the text segment that is mapped as part of the
process image at runtime. See mmap(2). This mapping enables the runtime linker to read these
sections to perform any necessary relocations.

The .symtab table, and its associated string table .strtab contain all the symbols collected
from the input file processing. These sections are not mapped as part of the process image.
These sections can even be stripped from the image by using the link-editor's -s option, or after
the link-edit by using strip(1).

During the generation of the symbol tables, reserved symbols are created. These symbols have
special meaning to the linking process. These symbols should not be defined in your code.
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_etext

The first location after the text segment.

_edata

The first location after initialized data.

_end

The first location after all data.

_DYNAMIC

The address of the .dynamic dynamic information section.

_END_

The same as _end. The symbol has local scope and, together with _START_, provides a means
of establishing an object's address range.

_GLOBAL_OFFSET_TABLE_

The position-independent reference to a link-editor supplied table of addresses, the .got
section. This table is constructed from position-independent data references that occur in
objects that have been compiled with the -K pic option. See “Position-Independent Code”
on page 129.

_PROCEDURE_LINKAGE_TABLE_

The position-independent reference to a link-editor supplied table of addresses, the .plt
section. This table is constructed from position-independent function references that occur
in objects that have been compiled with the -K pic option. See “Position-Independent
Code” on page 129.

_START_

The first location within the text segment. The symbol has local scope and, together with
_END_, provides a means of establishing an object's address range.

When generating an executable, the link-editor looks for additional symbols to define the
executable's entry point. If a symbol was specified using the link-editor's -e option, that symbol
is used. Otherwise the link-editor looks for the reserved symbol names _start, and then main.

Identifying Hardware and Software Capabilities
The hardware and software capabilities of a relocatable object are typically recorded at compile
time. The link-editor combines the capabilities of any input relocatable objects to create a final
capabilities section for the output file. See “Hardware and Software Capabilities Section” on
page 226.

In addition, capabilities can be defined when the link-editor creates an output file. These
capabilities are identified using a mapfile and the link-editor's -M option. Capabilities that are
defined by using a mapfile can augment, or override, the capabilities that are supplied from
input relocatable objects.
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The following sections describe how capabilities can be defined using a mapfile.

Identifying Hardware Capabilities
The hardware capabilities of an object identify the hardware requirements of a platform
necessary for the object to execute correctly. An example of this requirement might be the
identification of code that requires the MMX or SSE features that are available on some x86
architectures.

Hardware capability requirements can be identified using the following mapfile syntax.

hwcap_1 = TOKEN | Vval [ OVERRIDE ];

The hwcap_1 declaration is qualified with one or more tokens, which are symbolic
representations of hardware capabilities. In addition, or alternatively, a numeric value
representing one of more capabilities can be supplied by prefixing the value with a V. For
SPARC platforms, hardware capabilities are defined as AV_ values in sys/auxv_SPARC.h. For
x86 platforms, hardware capabilities are defined as AV_ values in sys/auxv_386.h.

The following x86 example shows the declaration of MMX and SSE as hardware capabilities
required by the object foo.so.1.

$ egrep "MMX|SSE" /usr/include/sys/auxv_386.h

#define AV_386_MMX 0x0040

#define AV_386_SSE 0x0800

$ cat mapfile

hwcap_1 = SSE MMX;

$ cc -o foo.so.1 -G -K pic -Mmapfile foo.c -lc

$ elfdump -H foo.so.1

Hardware/Software Capabilities Section: .SUNW_cap

index tag value

[0] CA_SUNW_HW_1 0x840 [ SSE MMX ]

Relocatable objects can contain hardware capabilities values. The link-editor combines any
hardware capabilities values from multiple input relocatable objects. The resulting
CA_SUNW_HW_1 value is a bitwise-inclusive OR of the associated input values. By default, these
values are combined with the hardware capabilities specified by a mapfile.

The hardware capability requirements of the output file can be controlled explicitly from a
mapfile by using the OVERRIDE keyword. An OVERRIDE keyword, together with a hardware
capability value of 0, effectively removes any hardware capabilities requirement from the object
being built.

$ elfdump -H foo.o

Hardware/Software Capabilities Section: .SUNW_cap
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index tag value

[0] CA_SUNW_HW_1 0x840 [ SSE MMX ]

$ cat mapfile

hwcap_1 = V0x0 OVERRIDE;

$ cc -o bar.o -r -Mmapfile foo.o

$ elfdump -H bar.o

$

Any hardware capability requirements defined by an object are validated by the runtime linker
against the hardware capabilities that are available to the process. If any of the hardware
capability requirements can not be satisfied, the object is not loaded at runtime. For example, if
the SSE feature is not available to a process, ldd(1) indicates the following error.

$ ldd prog

foo.so.1 => ./foo.so.1 - hardware capability unsupported: \

0x800 [ SSE ]

libc.so.1 => /lib/libc.so.1

Dynamic objects that exploit different hardware capabilities can provide a flexible runtime
environment using filters. See “Hardware Capability Specific Shared Objects” on page 353.

Identifying Software Capabilities
The software capabilities of an object identify characteristics of the software that might be
important for debugging or monitoring processes. Presently, the only software capabilities that
are recognized relate to frame pointer usage by the object. Objects can declare that their frame
pointer use is known. This state is then qualified by declaring the frame pointer as being used or
not.

Two flags defined in sys/elf.h represent the frame pointer state.

#define SF1_SUNW_FPKNWN 0x001

#define SF1_SUNW_FPUSED 0x002

These software capability requirements can be identified using the following mapfile syntax.

sfcap_1 = TOKEN | Vval [ OVERRIDE ];

The sfcap_1 declaration can be qualified with the tokens FPKNWN and FPUSED. Or, alternatively
with a numeric value that represents these states.

Relocatable objects can contain software capabilities values. The link-editor combines the
software capabilities values from multiple input relocatable objects. The computation of a
CA_SUNW_SF_1 value from two input values is as follows.
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TABLE 2–1 CA_SUNW_SF_1 Flag Combination State Table

Input file 1 Input file 2

SF1_SUNW_FPKNWN

SF1_SUNW_FPUSED

SF1_SUNW_FPKNWN <unknown>

SF1_SUNW_FPKNWN

SF1_SUNW_FPUSED

SF1_SUNW_FPKNWN

SF1_SUNW_FPUSED

SF1_SUNW_FPKNWN SF1_SUNW_FPKNWN

SF1_SUNW_FPUSED

SF1_SUNW_FPKNWN SF1_SUNW_FPKNWN SF1_SUNW_FPKNWN SF1_SUNW_FPKNWN

<unknown> SF1_SUNW_FPKNWN

SF1_SUNW_FPUSED

SF1_SUNW_FPKNWN <unknown>

This computation is applied to each relocatable object value and mapfile value. The software
capabilities of an object are unknown if no .SUNW_cap section exists, or if the section contains
no CA_SUNW_SF_1 value, or if neither the SF1_SUNW_FPKNW or SF1_SUNW_FPUSED flags are set.

By default, any software capabilities specified by a mapfile are processed using the same state
model.

The software capability requirements of the output file can be controlled explicitly from a
mapfile by using the OVERRIDE keyword. An OVERRIDE keyword, together with a software
capability value of 0, effectively removes any software capabilities requirement from the object
being built.

$ elfdump -H foo.o

Hardware/Software Capabilities Section: .SUNW_cap

index tag value

[0] CA_SUNW_SF_1 0x3 [ SF1_SUNW_FPKNWN SF1_SUNW_FPUSED ]

$ cat mapfile

sfcap_1 = V0x0 OVERRIDE;

$ cc -o bar.o -r -Mmapfile foo.o

$ elfdump -H bar.o

$

Relocation Processing
After you have created the output file, all data sections from the input files are copied to the new
image. Any relocations specified by the input files are applied to the output image. Any
additional relocation information that must be generated is also written to the new image.

Relocation processing is normally uneventful, although error conditions might arise that are
accompanied by specific error messages. Two conditions are worth more discussion. The first
condition involves text relocations that result from position-dependent code. This condition is
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covered in more detail in “Position-Independent Code” on page 129. The second condition can
arise from displacement relocations, which is described more fully in the next section.

Displacement Relocations
Error conditions might occur if displacement relocations are applied to a data item, which can
be used in a copy relocation. The details of copy relocations are covered in “Copy Relocations”
on page 137.

A displacement relocation remains valid when both the relocated offset and the relocation
target remain separated by the same displacement. A copy relocation is where a global data item
within a shared object is copied to the .bss of an executable. This copy preserves the
executable's read-only text segment. If the copied data has a displacement relocation applied to
the data, or an external relocation is a displacement into the copied data, the displacement
relocation becomes invalidated.

Two areas of validation attempt to catch displacement relocation problems.

■ The first occurs when generating a shared object. Any potential copy relocatable data items
that can be problematic if the copied data is involved in a displacement relocation are
flagged. During construction of a shared object, the link-editor has no knowledge of what
external references might be made to a data item. Thus, all that can be flagged are potential
problems.

■ The second occurs when generating an executable. The creation of a copy relocation whose
data is known to be involved in a displacement relocation is flagged.

However, displacement relocations applied to a shared object might be completed during
the shared objects creation at link-edit time. These displacement relocations might not have
been flagged. The link-edit of an executable that references an unflagged shared object has
no knowledge of a displacement being in effect in any copy-relocated data.

To help diagnose these problem areas, the link-editor indicates the displacement relocation use
of a dynamic object with one or more dynamic DT_FLAGS_1 flags, as shown in Table 7–34. In
addition, the link-editor's -z verbose option can be used to display suspicious relocations.

For example, say you create a shared object with a global data item, bar[], to which a
displacement relocation is applied. This item could be copy-relocated if referenced from a
dynamic executable. The link-editor warns of this condition.

$ cc -G -o libfoo.so.1 -z verbose -K pic foo.o

ld: warning: relocation warning: R_SPARC_DISP32: file foo.o: symbol foo: \

displacement relocation to be applied to the symbol bar: at 0x194: \

displacement relocation will be visible in output image
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If you now create an application that references the data item bar[], a copy relocation is
created. This copy results in the displacement relocation being invalidated. Because the
link-editor can explicitly discover this situation, an error message is generated regardless of the
use of the -z verbose option.

$ cc -o prog prog.o -L. -lfoo

ld: warning: relocation error: R_SPARC_DISP32: file foo.so: symbol foo: \

displacement relocation applied to the symbol bar at: 0x194: \

the symbol bar is a copy relocated symbol

Note – ldd(1), when used with either the -d or -r options, uses the displacement dynamic flags
to generate similar relocation warnings.

These error conditions can be avoided by ensuring that the symbol definition being relocated
(offset) and the symbol target of the relocation are both local. Use static definitions or the
link-editor's scoping technology. See “Reducing Symbol Scope” on page 57. Relocation
problems of this type can be avoided by accessing data within shared objects by using functional
interfaces.

Debugging Aids
A debugging library is provided with the Solaris OS link editors. This library enables you to
trace the link-editing process in more detail. This library can help you understand and debug
the link-edit of your applications and libraries. The type of information that is displayed by
using this library is expected to remain constant. However, the exact format of the information
might change slightly from release to release.

Some of the debugging output might be unfamiliar if you do not have an intimate knowledge of
the ELF format. However, many aspects might be of general interest to you.

Debugging is enabled by using the -D option. All output that is produced is directed to the
standard error. This option must be augmented with one or more tokens to indicate the type of
debugging that is required. The tokens available can be displayed by typing -D help at the
command line.

$ ld -Dhelp

............

debug: files display input file processing (files and libraries)

............

Most compiler drivers interpret the -D option during their preprocessing phase. Therefore, the
LD_OPTIONS environment variable is a suitable mechanism for passing this option to the
link-editor.
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The following example shows how input files can be traced. This syntax can be useful to
determine what libraries are used as part of a link-edit. Objects that are extracted from an
archive are also displayed with this syntax

$ LD_OPTIONS=-Dfiles cc -o prog main.o -L. -lfoo

............

debug: file=main.o [ ET_REL ]

debug: file=./libfoo.a [ archive ]

debug: file=./libfoo.a(foo.o) [ ET_REL ]

debug: file=./libfoo.a [ archive ] (again)

............

Here, the member foo.o is extracted from the archive library libfoo.a to satisfy the link-edit of
prog. Notice that the archive is searched twice to verify that the extraction of foo.o did not
warrant the extraction of additional relocatable objects. Multiple “(again)” diagnostics indicates
that the archive is a candidate for ordering using lorder(1) and tsort(1).

By using the symbols token, you can determine which symbol caused an archive member to be
extracted, and which object made the initial symbol reference.

$ LD_OPTIONS=-Dsymbols cc -o prog main.o -L. -lfoo

............

debug: symbol table processing; input file=main.o [ ET_REL ]

............

debug: symbol[7]=foo (global); adding

debug:

debug: symbol table processing; input file=./libfoo.a [ archive ]

debug: archive[0]=bar

debug: archive[1]=foo (foo.o) resolves undefined or tentative symbol

debug:

debug: symbol table processing; input file=./libfoo(foo.o) [ ET_REL ]

.............

The symbol foo is referenced by main.o. This symbol is added to the link-editor's internal
symbol table. This symbol reference causes the extraction of the relocatable object foo.o from
the archive libfoo.a.

Note – This output has been simplified for this document.

By using the detail token together with the symbols token, the details of symbol resolution
during input file processing can be observed.

$ LD_OPTIONS=-Dsymbols,detail cc -o prog main.o -L. -lfoo

............

debug: symbol table processing; input file=main.o [ ET_REL ]

............
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debug: symbol[7]=foo (global); adding

debug: entered 0x000000 0x000000 NOTY GLOB UNDEF REF_REL_NEED

debug:

debug: symbol table processing; input file=./libfoo.a [ archive ]

debug: archive[0]=bar

debug: archive[1]=foo (foo.o) resolves undefined or tentative symbol

debug:

debug: symbol table processing; input file=./libfoo.a(foo.o) [ ET_REL ]

debug: symbol[1]=foo.c

.............

debug: symbol[7]=bar (global); adding

debug: entered 0x000000 0x000004 OBJT GLOB 3 REF_REL_NEED

debug: symbol[8]=foo (global); resolving [7][0]

debug: old 0x000000 0x000000 NOTY GLOB UNDEF main.o

debug: new 0x000000 0x000024 FUNC GLOB 2 ./libfoo.a(foo.o)

debug: resolved 0x000000 0x000024 FUNC GLOB 2 REF_REL_NEED

............

The original undefined symbol foo from main.o has been overridden with the symbol
definition from the extracted archive member foo.o. The detailed symbol information reflects
the attributes of each symbol.

In the previous example, you can see that using some of the debugging tokens can produce a
wealth of output. To monitor the activity around a subset of the input files, place the -D option
directly in the link-edit command-line. This option can be toggled on and toggled off. In the
following example, the display of symbol processing is switched on only during the processing
of the library libbar.

$ ld .... -o prog main.o -L. -Dsymbols -lbar -D!symbols ....

Note – To obtain the link-edit command line, you might have to expand the compilation line
from any driver being used. See “Using a Compiler Driver” on page 29.
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Runtime Linker

As part of the initialization and execution of a dynamic executable, an interpreter is called to
complete the binding of the application to its dependencies. In the Solaris OS, this interpreter is
referred to as the runtime linker.

During the link-editing of a dynamic executable, a special .interp section, together with an
associated program header, are created. This section contains a path name specifying the
program's interpreter. The default name supplied by the link-editor is the name of the runtime
linker: /usr/lib/ld.so.1 for a 32–bit executable and /usr/lib/64/ld.so.1 for a 64–bit
executable.

Note – ld.so.1 is a special case of a shared object. Here, a version number of 1 is used. However,
later Solaris OS releases might provide higher version numbers.

During the process of executing a dynamic object, the kernel loads the file and reads the
program header information. See “Program Header” on page 261. From this information, the
kernel locates the name of the required interpreter. The kernel loads, and transfers control to
this interpreter, passing sufficient information to enable the interpreter to continue executing
the application.

In addition to initializing an application, the runtime linker provides services that enable the
application to extend its address space. This process involves loading additional objects and
binding to symbols provided by these objects.

The runtime linker performs the following actions.
■ Analyzes the executable's dynamic information section (.dynamic) and determines what

dependencies are required.
■ Locates and loads these dependencies, analyzing their dynamic information sections to

determine if any additional dependencies are required.
■ Performs any necessary relocations to bind these objects in preparation for process

execution.

3C H A P T E R 3
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■ Calls any initialization functions provided by the dependencies.
■ Passes control to the application.
■ Can be called upon during the application's execution, to perform any delayed function

binding.
■ Can be called upon by the application to acquire additional objects with dlopen(3C), and

bind to symbols within these objects with dlsym(3C).

Shared Object Dependencies
When the runtime linker creates the memory segments for a program, the dependencies tell
what shared objects are needed to supply the program's services. By repeatedly connecting
referenced shared objects and their dependencies, the runtime linker generates a complete
process image.

Note – Even when a shared object is referenced multiple times in the dependency list, the
runtime linker connects the object only once to the process.

Locating Shared Object Dependencies
When linking a dynamic executable, one or more shared objects are explicitly referenced. These
objects are recorded as dependencies within the dynamic executable.

The runtime linker uses this dependency information to locate, and load, the associated objects.
These dependencies are processed in the same order as the dependencies were referenced
during the link-edit of the executable.

Once all the dynamic executable's dependencies are loaded, each dependency is inspected, in
the order the dependency is loaded, to locate any additional dependencies. This process
continues until all dependencies are located and loaded. This technique results in a breadth-first
ordering of all dependencies.

Directories Searched by the Runtime Linker
The runtime linker looks in two default locations for dependencies. When processing 32–bit
objects, the default locations are /lib and /usr/lib. When processing 64–bit objects, the
default locations are /lib/64 and /usr/lib/64. Any dependency specified as a simple file name
is prefixed with these default directory names. The resulting path name is used to locate the
actual file.

The dependencies of a dynamic executable or shared object can be displayed using ldd(1). For
example, the file /usr/bin/cat has the following dependencies:
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$ ldd /usr/bin/cat

libc.so.1 => /lib/libc.so.1

libm.so.2 => /lib/libm.so.2

The file /usr/bin/cat has a dependency, or needs, the files libc.so.1 and libm.so.2.

The dependencies recorded in an object can be inspected using dump(1). Use this command to
display the file's .dynamic section, and look for entries that have a NEEDED tag. In the following
example, the dependency libm.so.2, displayed in the previous ldd(1) example, is not recorded
in the file /usr/bin/cat. ldd(1) shows the total dependencies of the specified file, and
libm.so.2 is actually a dependency of /lib/libc.so.1.

$ dump -Lvp /usr/bin/cat

/usr/bin/cat:

[INDEX] Tag Value

[1] NEEDED libc.so.1

.........

In the previous dump(1) example, the dependencies are expressed as simple file names. In other
words, there is no ‘/' in the name. The use of a simple file name requires the runtime linker to
generate the path name from a set of rules. File names that contain an embedded ‘/', are used as
provided.

The simple file name recording is the standard, most flexible mechanism of recording
dependencies. The -h option of the link-editor records a simple name within the dependency.
See “Naming Conventions” on page 114 and “Recording a Shared Object Name” on page 114.

Frequently, dependencies are distributed in directories other than /lib and /usr/lib, or
/lib/64 and /usr/lib/64. If a dynamic executable or shared object needs to locate
dependencies in another directory, the runtime linker must explicitly be told to search this
directory.

You can specify additional search path, on a per-object basis, by recording a runpath during the
link-edit of an object. See “Directories Searched by the Runtime Linker” on page 37 for details
on recording this information.

A runpath recording can be displayed using dump(1). Reference the .dynamic entry that has the
RUNPATH tag. In the following example, prog has a dependency on libfoo.so.1. The runtime
linker must search directories /home/me/lib and /home/you/lib before it looks in the default
location.

$ dump -Lvp prog

prog:

[INDEX] Tag Value

[1] NEEDED libfoo.so.1

Shared Object Dependencies

Chapter 3 • Runtime Linker 73



[2] NEEDED libc.so.1

[3] RUNPATH /home/me/lib:/home/you/lib

.........

Another way to add to the runtime linker's search path is to set the environment variable
LD_LIBRARY_PATH. This environment variable, which is analyzed once at process startup, can be
set to a colon-separated list of directories. These directories are searched by the runtime linker
before any runpath specification or default directory.

These environment variables are well suited to debugging purposes, such as forcing an
application to bind to a local dependency. In the following example, the file prog from the
previous example is bound to libfoo.so.1, found in the present working directory.

$ LD_LIBRARY_PATH=. prog

Although useful as a temporary mechanism of influencing the runtime linker's search path, the
use of LD_LIBRARY_PATH is strongly discouraged in production software. Any dynamic
executables that can reference this environment variable will have their search paths
augmented. This augmentation can result in an overall degradation in performance. Also, as
pointed out in “Using an Environment Variable” on page 36 and “Directories Searched by the
Runtime Linker” on page 37, LD_LIBRARY_PATH affects the link-editor.

Environmental search paths can result in a 64–bit executable searching a path that contains a
32–bit library that matches the name being looked for. Or, the other way around. The runtime
linker rejects the mismatched 32–bit library and continues its search looking for a valid 64–bit
match. If no match is found, an error message is generated. This rejection can be observed in
detail by setting the LD_DEBUG environment variable to include the files token. See
“Debugging Library” on page 105.

$ LD_LIBRARY_PATH=/lib/64 LD_DEBUG=files /usr/bin/ls

...

00283: file=libc.so.1; needed by /usr/bin/ls

00283:

00283: file=/lib/64/libc.so.1 rejected: ELF class mismatch: 32–bit/64–bit

00283:

00283: file=/lib/libc.so.1 [ ELF ]; generating link map

00283: dynamic: 0xef631180 base: 0xef580000 size: 0xb8000

00283: entry: 0xef5a1240 phdr: 0xef580034 phnum: 3

00283: lmid: 0x0

00283:

00283: file=/lib/libc.so.1; analyzing [ RTLD_GLOBAL RTLD_LAZY ]

...

If a dependency cannot be located, ldd(1) indicates that the object cannot be found. Any
attempt to execute the application results in an appropriate error message from the runtime
linker.
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$ ldd prog

libfoo.so.1 => (file not found)

libc.so.1 => /lib/libc.so.1

libm.so.2 => /lib/libm.so.2

$ prog

ld.so.1: prog: fatal: libfoo.so.1: open failed: No such file or directory

Configuring the Default Search Paths
The default search paths used by the runtime linker are /lib and /usr/lib for 32–bit
application. For 64–bit applications, the default search paths are /lib/64 and /usr/lib/64.
These search paths can be administered using a runtime configuration file created by the
crle(1) utility. This file is often a useful aid for establishing search paths for applications that
have not been built with the correct runpaths.

A configuration file can be constructed in the default location /var/ld/ld.config, for 32–bit
applications, or /var/ld/64/ld.config, for 64–bit applications. This file affects all applications
of the respective type on a system. Configuration files can also be created in other locations, and
the runtime linker's LD_CONFIG environment variable used to select these files. This latter
method is useful for testing a configuration file before installing the file in the default location.

Dynamic String Tokens
The runtime linker allows for the expansion of various dynamic string tokens. These tokens are
applicable for filter, runpath and dependency definitions.

■ $HWCAP – Indicates a directory in which objects offering differing hardware capabilities can
be located. See “Hardware Capability Specific Shared Objects” on page 353.

■ $ISALIST – Expands to the native instruction sets executable on this platform. See
“Instruction Set Specific Shared Objects” on page 355.

■ $ORIGIN – Provides the directory location of the current object. See “Locating Associated
Dependencies” on page 357.

■ $OSNAME – Expands to the name of the operating system. See “System Specific Shared
Objects” on page 357.

■ $OSREL – Expands to the operating system release level. See “System Specific Shared
Objects” on page 357.

■ $PLATFORM – Expands to the processor type of the current machine. See “System Specific
Shared Objects” on page 357.
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Relocation Processing
After the runtime linker has loaded all the dependencies required by an application, the linker
processes each object and performs all necessary relocations.

During the link-editing of an object, any relocation information supplied with the input
relocatable objects is applied to the output file. However, when creating a dynamic executable or
shared object, many of the relocations cannot be completed at link-edit time. These relocations
require logical addresses that are known only when the objects are loaded into memory. In these
cases, the link-editor generates new relocation records as part of the output file image. The
runtime linker must then process these new relocation records.

For a more detailed description of the many relocation types, see “Relocation Types
(Processor-Specific)” on page 234. Two basic types of relocation exist.

■ Non-symbolic relocations
■ Symbolic relocations

The relocation records for an object can be displayed by using dump(1). In the following
example, the file libbar.so.1 contains two relocation records that indicate that the global offset
table, or .got section, must be updated.

$ dump -rvp libbar.so.1

libbar.so.1:

.rela.got:

Offset Symndx Type Addend

0x10438 0 R_SPARC_RELATIVE 0

0x1043c foo R_SPARC_GLOB_DAT 0

The first relocation is a simple relative relocation that can be seen from its relocation type and
the symbol index (Symndx) field being zero. This relocation needs to use the base address at
which the object was loaded into memory to update the associated .got offset.

The second relocation requires the address of the symbol foo. To complete this relocation, the
runtime linker must locate this symbol from either the dynamic executable or one of its
dependencies.

Relocation Symbol Lookup
The runtime linker is responsible for searching for symbols that are required by objects at
runtime. This symbol search is based upon the requesting object's symbol search scope, together
with the symbol visibility offered by each object within the process. These attributes can be
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applied as defaults at the time the object is loaded. These attributes can also be supplied as
specific modes to dlopen(3C). In some cases, these attributes can be recorded within the object
at the time the object is built.

Typically, users become familiar with the default search model that is applied to a dynamic
executable and its dependencies, and to objects obtained through dlopen(3C). The former is
outlined in the next section “Default Symbol Lookup” on page 77, and the latter, which is also
able to exploit the various symbol lookup attributes, is discussed in “Symbol Lookup” on
page 96.

An alternative model for symbol lookup is provided when a dynamic object employes direct
bindings. This model directs the runtime linker to search for a symbol directly in the object that
provided the symbol at link-edit time. See “Direct Bindings” on page 78.

Default Symbol Lookup
A dynamic executable and all the dependencies loaded with the executable are assigned world
search scope, and global symbol visibility. See “Symbol Lookup” on page 96. A symbol lookup
for a dynamic executable or for any of the dependencies loaded with the executable, results in a
search of each object. The runtime linker starts with the dynamic executable, and progresses
through each dependency in the same order in which the objects were loaded.

As discussed in previous sections, ldd(1) lists the dependencies of a dynamic executable in the
order in which the dependencies are loaded. For example, the shared object libbar.so.1
requires the address of symbol foo to complete its relocation. The dynamic executable prog
specifies libbar.so.1 as one of its dependencies.

$ ldd prog

libfoo.so.1 => /home/me/lib/libfoo.so.1

libbar.so.1 => /home/me/lib/libbar.so.1

The runtime linker first looks for foo in the dynamic executable prog, then in the shared object
/home/me/lib/libfoo.so.1, and finally in the shared object /home/me/lib/libbar.so.1.

Note – Symbol lookup can be an expensive operation, especially when the size of symbol names
increases and the number of dependencies increases. This aspect of performance is discussed in
more detail in “Performance Considerations” on page 126. See “Direct Bindings” on page 78 for
an alternative lookup model.

The default relocation processing model also provides for a transition into a lazy loading
environment. If a symbol can not be found in the presently loaded objects, any pending lazy
loaded objects are processed in an attempt to locate the symbol. This loading compensates for
objects that have not fully defined their dependencies. However, this compensation can
undermine the advantages of a lazy loading.
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Runtime Interposition
By default, the runtime linker searches for a symbol first in the dynamic executable and then in
each dependency. With this model, the first occurrence of the required symbol satisfies the
search. Therefore, if more than one instance of the same symbol exists, the first instance
interposes on all others.

An overview of how symbol resolution is affected by interposition is provided in “Simple
Resolutions” on page 42. A mechanism for changing symbol visibility, and hence reducing the
chance of accidental interposition is provided in “Reducing Symbol Scope” on page 57.

Interposition can be enforced, on a per-object basis, if an object is explicitly identified as an
interposer. Any object loaded using the environment variable LD_PRELOAD or created with the
link-editor's -z interpose option, is identified as an interposer. When the runtime linker
searches for a symbol, any object identified as an interposer is searched after the application, but
before any other dependencies.

The use of all of the interfaces offered by an interposer can only be guaranteed if the interposer
is loaded before any process relocation has occurred. Interposers provided using the
environment variable LD_PRELOAD, or established as non-lazy loaded dependencies of the
application, are loaded before relocation processing starts. Interposers that are brought into a
process after relocation has started are demoted to normal dependencies. Interposers can be
demoted if the interposer is lazy loaded, or loaded as a consequence of using dlopen(3C). The
former category can be detected using ldd(1).

$ ldd -Lr prog

libc.so.1 => /lib/libc.so.1

foo.so.2 => ./foo.so.2

libmapmalloc.so.1 => /usr/lib/libmapmalloc.so.1

loading after relocation has started: interposition request \

(DF_1_INTERPOSE) ignored: /usr/lib/libmapmalloc.so.1

Note – If the link-editor encounters an explicitly defined interposer while processing
dependencies for lazy loading, the interposer is recorded as a non-lazy loadable dependency.

Direct Bindings
An object that uses direct bindings maintains the relationship between a symbol reference and
the dependency that provided the definition. The runtime linker uses this information to search
directly for the symbol in the associated object, rather than carry out the default symbol search
model. Direct binding information can only be established to dependencies specified with the
link-edit. Therefore, use of the -z defs option is recommended.

The direct binding of a symbol reference to a symbol definition can be established with one of
the following mechanisms.
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■ With the -B direct option. This option establishes direct bindings between the object being
built and all of the objects dependencies. This option also establishes direct bindings
between any symbol reference and symbol definition within the object being built.
The use of -B direct also enables lazy loading. This enabling is equivalent to adding the
option -z lazyload to the front of the link-edit command line. See “Lazy Loading of
Dynamic Dependencies” on page 83.

■ With the -z direct option. This option establishes direct bindings from the object being
built to any dependencies that follow the option on the command line. This option can be
used together with the -z nodirect option, to toggle the use of direct bindings between
dependencies. This option does not establish direct bindings between any symbol reference
and symbol definition within the object being built.

■ With the DIRECT mapfile keyword. This keyword provides for directly binding individual
symbols. See “Defining Additional Symbols with a mapfile” on page 50.

Direct binding can significantly reduce the symbol lookup overhead incurred by a dynamic
process that has many symbolic relocations and many dependencies. This model also enables
multiple symbols of the same name to be located from different objects that have been bound to
directly.

Note – Direct bindings can be disabled at runtime by setting the environment variable
LD_NODIRECT to a non-null value.

The default symbol search model allows all references to a symbol to bind to one definition.
Direct binding circumvents implicit interposition symbols, as direct bindings bypass the default
search model. However, any object explicitly identified as an interposer is searched before the
object that supplies the symbol definition. Explicit interposers include objects loaded using the
environment variable LD_PRELOAD, or objects created with the link-editor's -z interpose
option. See “Runtime Interposition” on page 78.

Some interfaces exist to provide alternative implementations of a default technology. These
interfaces expect their implementation to be the only instance of that technology within a
process. An example is the malloc(3C) family. There are various malloc() family
implementations, and each family expects to be the only implementation used within a process.
The direct binding to an interface within such a family should be avoided, otherwise more than
one instance of the technology can be referenced by the same process. For example, one
dependency within a process can directly bind against libc.so.1, while another dependency
directly binds against libmapmalloc.so.1. The potential for inconsistent use of two different
implementations of malloc() and free() is error prone.

Objects that provide interfaces that expect to be single-instance within a process, should
prevent any direct binding to their interfaces. An interface can be labelled to prevent any caller
from directly binding to the interface with one of the following mechanisms.
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■ With the -B nodirect option. This option prohibits the direct binding to all interfaces
offered by the object.

■ With the NODIRECT mapfile keyword. This keyword provides for prohibiting the direct
binding to individual symbols. See “Defining Additional Symbols with a mapfile” on
page 50.

Non-direct labelling prevents any symbol reference from directly binding to an
implementation. The symbol search to satisfy the reference uses the default symbol search
model. Non-direct labelling has been employed to build the various malloc() family
implementations that are provided with the Solaris OS.

Note – The NODIRECT mapfile keyword can be combined with the command line options
-B direct or -z direct. Symbols that are not explicitly defined NODIRECT follow the command
line directive. Similarly, the DIRECT mapfile keyword can be combined with the command line
option -B nodirect. Symbols that are not explicitly defined DIRECT follow the command line
directive.

When Relocations Are Performed
Relocations can be separated into two types dependent upon when the relocation is performed.
This distinction arises due to the type of reference being made to the relocated offset.
■ An immediate reference
■ A lazy reference

An immediate reference refers to a relocation that must be determined immediately when an
object is loaded. These references are typically to data items used by the object code, pointers to
functions, and even calls to functions made from position-dependent shared objects. These
relocations cannot provide the runtime linker with knowledge of when the relocated item is
referenced. Therefore, all immediate relocations must be carried out when an object is loaded,
and before the application gains, or regains, control.

A lazy reference refers to a relocation that can be determined as an object executes. These
references are typically calls to global functions made from position-independent shared
objects, or calls to external functions made from a dynamic executable. During the compilation
and link-editing of any dynamic module that provide these references, the associated function
calls become calls to a procedure linkage table entry. These entries make up the .plt section.
Each procedure linkage table entry becomes a lazy reference with an associated relocation.

As part of the first call to a procedure linkage table entry, control is passed to the runtime linker.
The runtime linker looks up the required symbol and rewrites the entry information in the
associated object. Future calls to this procedure linkage table entry go directly to the function.
This mechanism enables relocations of this type to be deferred until the first instance of a
function is called. This process is sometimes referred to as lazy binding.
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The runtime linker's default mode is to perform lazy binding whenever procedure linkage table
relocations are provided. This default can be overridden by setting the environment variable
LD_BIND_NOW to any non-null value. This environment variable setting causes the runtime
linker to perform both immediate reference and lazy reference relocations when an object is
loaded. These relocations are performed before the application gains, or regains, control. For
example, all relocations within the file prog together within its dependencies are processed
under the following environment variable. These relocations are processed before control is
transferred to the application.

$ LD_BIND_NOW=1 prog

Objects can also be accessed with dlopen(3C) with the mode defined as RTLD_NOW. Objects can
also be built using the link-editor's -z now option to indicate that the object requires complete
relocation processing at the time the object is loaded. This relocation requirement is also
propagated to any dependencies of the marked object at runtime.

Note – The preceding examples of immediate references and lazy references are typical.
However, the creation of procedure linkage table entries is ultimately controlled by the
relocation information provided by the relocatable object files used as input to a link-edit.
Relocation records such as R_SPARC_WPLT30 and R_386_PLT32 instruct the link-editor to create
a procedure linkage table entry. These relocations are common for position-independent code.

However, a dynamic executable is typically created from position dependent code, which might
not indicate that a procedure linkage table entry is required. Because a dynamic executable has a
fixed location, the link-editor can create a procedure linkage table entry when a reference is
bound to an external function definition. This procedure linkage table entry creation occurs
regardless of the original relocation records.

Relocation Errors
The most common relocation error occurs when a symbol cannot be found. This condition
results in an appropriate runtime linker error message together with the termination of the
application. In the following example, the symbol bar, which is referenced in the file
libfoo.so.1, cannot be located.

$ ldd prog

libfoo.so.1 => ./libfoo.so.1

libc.so.1 => /lib/libc.so.1

libbar.so.1 => ./libbar.so.1

libm.so.2 => /lib/libm.so.2

$ prog

ld.so.1: prog: fatal: relocation error: file ./libfoo.so.1: \

symbol bar: referenced symbol not found

$
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During the link-edit of a dynamic executable, any potential relocation errors of this sort are
flagged as fatal undefined symbols. See “Generating an Executable Output File” on page 45 for
examples. However, a runtime relocation error can occur if a dependency located at runtime is
incompatible with the original dependency referenced as part of the link-edit. In the previous
example, prog was built against a version of the shared object libbar.so.1 that contained a
symbol definition for bar.

The use of the -z nodefs option during a link-edit suppresses the validation of an objects
runtime relocation requirements. This suppression can also lead to runtime relocation errors.

If a relocation error occurs because a symbol used as an immediate reference cannot be found,
the error condition occurs immediately during process initialization. With the default mode of
lazy binding, if a symbol used as a lazy reference cannot be found, the error condition occurs
after the application has gained control. This latter case can take minutes or months, or might
never occur, depending on the execution paths exercised throughout the code.

To guard against errors of this kind, the relocation requirements of any dynamic executable or
shared object can be validated using ldd(1).

When the -d option is specified with ldd(1), every dependency is printed and all immediate
reference relocations are processed. If a reference cannot be resolved, a diagnostic message is
produced. From the previous example, the -d option would result in the following error
diagnostic.

$ ldd -d prog

libfoo.so.1 => ./libfoo.so.1

libc.so.1 => /lib/libc.so.1

libbar.so.1 => ./libbar.so.1

libm.so.2 => /lib/libm.so.2

symbol not found: bar (./libfoo.so.1)

When the -r option is specified with ldd(1), all immediate reference and lazy reference
relocations are processed. If either type of relocation cannot be resolved, a diagnostic message is
produced.

Loading Additional Objects
The runtime linker provides an additional level of flexibility by enabling you to introduce new
objects during process initialization by using the environment variable LD_PRELOAD. This
environment variable can be initialized to a shared object or relocatable object file name, or a
string of file names separated by white space. These objects are loaded after the dynamic
executable and before any dependencies. These objects are assigned world search scope, and
global symbol visibility.

In the following example, the dynamic executable prog is loaded, followed by the shared object
newstuff.so.1. The dependencies defined within prog and then loaded.
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$ LD_PRELOAD=./newstuff.so.1 prog

The order in which these objects are processed can be displayed using ldd(1).

$ LD_PRELOAD=./newstuff.so.1 ldd prog

./newstuff.so.1 => ./newstuff.so

libc.so.1 => /lib/libc.so.1

In the following example, the preloading is a little more complex and time consuming.

$ LD_PRELOAD="./foo.o ./bar.o" prog

The runtime linker first link-edits the relocatable objects foo.o and bar.o to generate a shared
object that is maintained in memory. This memory image is then inserted between the dynamic
executable and its dependencies in the same manner as the shared object newstuff.so.1 was
preloaded in the previous example. Again, the order in which these objects are processed can be
displayed with ldd(1).

$ LD_PRELOAD="./foo.o ./bar.o" ldd prog

./foo.o => ./foo.o

./bar.o => ./bar.o

libc.so.1 => /lib/libc.so.1

These mechanisms of inserting an object after a dynamic executable take the concept of
interposition to another level. You can use these mechanisms to experiment with a new
implementation of a function that resides in a standard shared object. If you preload an object
containing this function, the object interposes on the original. Thus, the original functionality
can be completely hidden with the new preloaded version.

Another use of preloading is to augment a function that resides in a standard shared object. The
interposition of the new symbol on the original symbol enables the new function to carry out
additional processing. The new function can also call through to the original function. This
mechanism typically obtains the original symbol's address using dlsym(3C) with the special
handle RTLD_NEXT.

Lazy Loading of Dynamic Dependencies
When a dynamic object is loaded into memory, the object is examined for any additional
dependencies. By default, any dependencies that exist are immediately loaded. This cycle
continues until the full dependency tree is exhausted. Finally, all inter-object data references
that are specified by relocations, are resolved. These operations are performed regardless of
whether the code in these dependencies is referenced by the application during its execution.

Under a lazy loading model, any dependencies that are labeled for lazy loading are loaded only
when explicitly referenced. By taking advantage of the lazy binding of a function call, the
loading of a dependency is delayed until the function is first referenced. As a result, objects that
are never referenced are never loaded.
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A relocation reference can be immediate or lazy. Because immediate references must be
resolved when an object is initialized, any dependency that satisfies this reference must be
immediately loaded. Therefore, identifying such a dependency as lazy loadable has little effect.
See “When Relocations Are Performed” on page 80. Immediate references between dynamic
objects are generally discouraged.

Lazy loading is used by the link-editors reference to a debugging library, liblddbg. As
debugging is only called upon infrequently, loading this library every time that the link-editor is
invoked is unnecessary and expensive. By indicating that this library can be lazily loaded, the
expense of processing the library is moved to those invocations that ask for debugging output.

The alternate method of achieving a lazy loading model is to use dlopen() and dlsym() to load
and bind to a dependency when needed. This model is ideal if the number of dlsym() references
is small. This model also works well if the dependency name or location is not known at
link-edit time. For more complex interactions with known dependencies, coding to normal
symbol references and designating the dependency to be lazily loaded is simpler.

An object is designated as lazily or normally loaded through the link-editor options
-z lazyload and -z nolazyload respectfully. These options are position-dependent on the
link-edit command line. Any dependency that follows the option takes on the loading attribute
specified by the option. By default, the -z nolazyload option is in effect.

The following simple program has a dependency on libdebug.so.1. The dynamic section
(.dynamic), shows libdebug.so.1 is marked for lazy loading. The symbol information section
(.SUNW_syminfo), shows the symbol reference that triggers libdebug.so.1 loading.

$ cc -o prog prog.c -L. -zlazyload -ldebug -znolazyload -lelf -R’$ORIGIN’

$ elfdump -d prog

Dynamic Section: .dynamic

index tag value

[0] POSFLAG_1 0x1 [ LAZY ]

[1] NEEDED 0x123 libdebug.so.1

[2] NEEDED 0x131 libelf.so.1

[3] NEEDED 0x13d libc.so.1

[4] RUNPATH 0x147 $ORIGIN

...

$ elfdump -y prog

Syminfo section: .SUNW_syminfo

index flgs bound to symbol

....

[52] DL [1] libdebug.so.1 debug

The POSFLAG_1 with the value of LAZY designates that the following NEEDED entry,
libdebug.so.1, should be lazily loaded. As libelf.so.1 has no preceding LAZY flag, this
library is loaded at the initial startup of the program.
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Note – libc.so.1 has special system requirements, that require the file not be lazy loaded. If
-z lazyload is in effect when libc.so.1 is processed, the flag is effectively ignored.

The use of lazy loading can require a precise declaration of dependencies and runpaths through
out the objects used by an application. For example, suppose two objects, libA.so and libB.so,
both make reference to symbols in libX.so. libA.so declares libX.so as a dependency, but
libB.so does not. Typically, when libA.so and libB.so are used together, libB.so can
reference libX.so because libA.so made this dependency available. But, if libA.so declares
libX.so to be lazy loaded, it is possible that libX.so might not be loaded when libB.so makes
reference to this dependency. A similar failure can occur if libB.so declares libX.so as a
dependency but fails to provide a runpath necessary to locate the dependency.

Regardless of lazy loading, dynamic objects should declare all their dependencies and how to
locate the dependencies. With lazy loading, this dependency information becomes even more
important.

Note – Lazy loading can be disabled at runtime by setting the environment variable
LD_NOLAZYLOAD to a non-null value.

Providing an Alternative to dlopen()

Lazy loading can provide an alternative to dlopen(3C) and dlsym(3C) use. See “Runtime
Linking Programming Interface” on page 93. For example, the following code from
libfoo.so.1 verifies an object is loaded, and then calls interfaces provided by that object.

void foo()

{

void * handle;

if ((handle = dlopen("libbar.so.1", RTLD_LAZY)) != NULL) {

int (* fptr)();

if ((fptr = (int (*)())dlsym(handle, "bar1")) != NULL)

(*fptr)(arg1);

if ((fptr = (int (*)())dlsym(handle, "bar2")) != NULL)

(*fptr)(arg2);

....

}

This code can be simplified if the object that supplies the required interfaces satisfies the
following conditions.
■ The object can be established as a dependency at link-edit time.
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■ The object is always available.

By exploiting lazy loading, the same deferred loading of libbar.so.1 can be achieved. In this
case, the reference to the function bar1() results in lazy loading the associated dependency. In
addition, the use of standard function calls provides for compiler, or lint(1) validation.

void foo()

{

bar1(arg1);

bar2(arg2);

....

}

$ cc -G -o libfoo.so.1 foo.c -L. -zlazyload -zdefs -lbar -R’$ORIGIN’

However, this model fails if the object that provides the required interfaces is not always
available. In this case, the ability to test for the existence of the dependency, without having to
know the dependencies name, is desirable. A means of testing for the availability of a
dependency that satisfies a function reference is required.

dlsym(3C) with the RTLD_PROBE handle can be used to verify the existence, and loading of a
dependency. For example, a reference to bar1() can verify that the lazy dependency that was
established at link-edit time is available. This test can be used to control the reference to
functions provided by the dependency in the same manner as dlopen(3C) had been used.

void foo()

{

if (dlsym(RTLD_PROBE, "bar1")) {

bar1(arg1);

bar2(arg2);

....

}

This technique provides for safe deferred loading of recorded dependencies, together with
standard function call use.

Note – The special handle RTLD_DEFAULT provides a mechanism that is similar to using
RTLD_PROBE. However, the use of RTLD_DEFAULT can result in pending lazy loaded objects being
processed in an attempt to locate a symbol that does not exist. This loading compensates for
objects that have not fully defined their dependencies. However, this compensation can
undermine the advantages of a lazy loading.

The use of the -z defs option to build any objects that employ lazy loading, is recommended.
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Initialization and Termination Routines
Dynamic objects can supply code that provides for runtime initialization and termination
processing. The initialization code of a dynamic object is executed once each time the dynamic
object is loaded in a process. The termination code of a dynamic object is executed once each
time the dynamic object is unloaded from a process or at process termination.

Before transferring control to an application, the runtime linker processes any initialization
sections found in the application and any loaded dependencies. If new dynamic objects are
loaded during process execution, their initialization sections are processed as part of loading the
object. The initialization sections .preinitarray, .initarray, and .init are created by the
link-editor when a dynamic object is built.

The runtime linker executes functions whose addresses are contained in the .preinitarray
and .initarray sections. These functions are executed in the same order in which their
addresses appear in the array. The runtime linker executes an .init section as an individual
function. If an object contains both .init and .initarray sections, the .init section is
processed before the functions defined by the .initarray section for that object.

A dynamic executable can provide pre-initialization functions in a .preinitarray section.
These functions are executed after the runtime linker has built the process image and
performed relocations but before any other initialization functions. Pre-initialization functions
are not permitted in shared objects.

Note – Any .init section within the dynamic executable is called from the application by the
process startup mechanism supplied by the compiler driver. The .init section within the
dynamic executable is called last, after all dependency initialization sections are executed.

Dynamic objects can also provide termination sections. The termination sections .finiarray
and .fini are created by the link-editor when a dynamic object is built.

Any termination sections are passed to atexit(3C). These termination routines are called when
the process calls exit(2). Termination sections are also called when objects are removed from
the running process with dlclose(3C).

The runtime linker executes functions whose addresses are contained in the .finiarray
section. These functions are executed in the reverse order in which their addresses appear in the
array. The runtime linker executes a .fini section as an individual function. If an object
contains both .fini and .finiarray sections, the functions defined by the .finiarray section
are processed before the .fini section for that object.
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Note – Any .fini section within the dynamic executable is called from the application by the
process termination mechanism supplied by the compiler driver. The .fini section of the
dynamic executable is called first, before all dependency termination sections are executed.

For more information on the creation of initialization and termination sections by the
link-editor see “Initialization and Termination Sections” on page 38.

Initialization and Termination Order
To determine the order of executing initialization and termination code within a process at
runtime is a complex procedure that involves dependency analysis. This procedure has evolved
substantially from the original inception of initialization and termination sections. This
procedure attempts to fulfill the expectations of modern languages and current programming
techniques. However, scenarios can exist, where user expectations are hard to meet. Flexible,
predictable runtime behavior can be achieved by understanding these scenarios together with
limiting the content of initialization code and termination code.

The goal of an initialization section is to execute a small piece of code before any other code
within the same object is referenced. The goal of a termination section is to execute a small piece
of code after an object has finished executing. Self contained initialization sections and
termination sections can easily satisfy these requirements.

However, initialization sections are typically more complex and make reference to external
interfaces that are provided by other objects. Therefore, a dependency is established where the
initialization section of one object must be executed before references are made from other
objects. Applications can establish an extensive dependency hierarchy. In addition,
dependencies can creating cycles within their hierarchies. The situation can be further
complicated by initialization sections that load additional objects, or change the relocation
mode of objects that are already loaded. These issues have resulted in various sorting and
execution techniques that attempt to satisfy the original goal of these sections.

Prior to the Solaris 2.6 release, dependency initialization routines were called in reverse load
order, which is the reverse order of the dependencies displayed with ldd(1). Similarly,
dependency termination routines were called in load order. However, as dependency
hierarchies became more complex, this simple ordering approach became inadequate.

With the Solaris 2.6 release, the runtime linker constructs a topologically sorted list of objects
that have been loaded. This list is built from the dependency relationship expressed by each
object, together with any symbol bindings that occur outside of the expressed dependencies.
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Caution – Prior to the Solaris 8 10/00 release, the environment variable LD_BREADTH could be set
to a non-null value. This setting forced the runtime linker to execute initialization and
termination sections in pre-Solaris 2.6 release order. This functionality has since been disabled,
as the initialization dependencies of many applications have become complex and mandate
topological sorting. Any LD_BREADTH setting is now silently ignored.

Initialization sections are executed in the reverse topological order of the dependencies. If cyclic
dependencies are found, the objects that form the cycle cannot be topologically sorted. The
initialization sections of any cyclic dependencies are executed in their reverse load order.
Similarly, termination sections are called in the topological order of the dependencies. The
termination sections of any cyclic dependencies are executed in their load order.

A static analysis of the initialization order of an object's dependencies can be obtained by using
ldd(1) with the -i option. For example, the following dynamic executable and its dependencies
exhibit a cyclic dependency.

$ dump -Lv B.so.1 | grep NEEDED

[1] NEEDED C.so.1

$ dump -Lv C.so.1 | grep NEEDED

[1] NEEDED B.so.1

$ dump -Lv main | grep NEEDED

[1] NEEDED A.so.1

[2] NEEDED B.so.1

[3] NEEDED libc.so.1

$ ldd -i main

A.so.1 => ./A.so.1

B.so.1 => ./B.so.1

libc.so.1 => /lib/libc.so.1

C.so.1 => ./C.so.1

libm.so.2 => /lib/libm.so.2

cyclic dependencies detected, group[1]:

./libC.so.1

./libB.so.1

init object=/lib/libc.so.1

init object=./A.so.1

init object=./C.so.1 - cyclic group [1], referenced by:

./B.so.1

init object=./B.so.1 - cyclic group [1], referenced by:

./C.so.1

The previous analysis resulted solely from the topological sorting of the explicit dependency
relationships. However, objects are frequently created that do not define their required
dependencies. For this reason, symbol bindings are also incorporated as part of dependency
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analysis. The incorporation of symbol bindings with explicit dependencies can help produce a
more accurate dependency relationship. A more accurate static analysis of initialization order
can be obtained by using ldd(1) with the -i and -d options.

The most common model of loading objects uses lazy binding. With this model, only
immediate reference symbol bindings are processed before initialization processing. Symbol
bindings from lazy references might still be pending. These bindings can extend the dependency
relationships so far established. A static analysis of the initialization order that incorporates all
symbol binding can be obtained by using ldd(1) with the -i and -r options.

In practice, most applications use lazy binding. Therefore, the dependency analysis achieved
before computing the initialization order follows the static analysis using ldd -id. However,
because this dependency analysis can be incomplete, and because cyclic dependencies can exist,
the runtime linker provides for dynamic initialization.

Dynamic initialization attempts to execute the initialization section of an object before any
functions in the same object are called. During lazy symbol binding, the runtime linker
determines whether the initialization section of the object being bound to has been called. If
not, the runtime linker executes the initialization section before returning from the symbol
binding procedure.

Dynamic initialization can not be revealed with ldd(1). However, the exact sequence of
initialization calls can be observed at runtime by setting the LD_DEBUG environment variable to
include the token init. See “Debugging Library” on page 105. Extensive runtime initialization
information and termination information can be captured by adding the debugging token
detail. This information includes dependency listings, topological processing, and the
identification of cyclic dependencies.

Dynamic initialization is only available when processing lazy references. This dynamic
initialization is circumvented by the following.

■ Use of the environment variable LD_BIND_NOW.
■ Objects that have been built with the -z now option.
■ Objects that are loaded by dlopen(3C) with the mode RTLD_NOW.

The initialization techniques that have been described so far might still be insufficient to cope
with some dynamic activities. Initialization sections can load additional objects, either explicitly
using dlopen(3C), or implicitly through lazy loading and the use of filters. Initialization
sections can also promote the relocations of existing objects. Objects that have been loaded to
employ lazy binding have these bindings resolved if the same object is referenced using
dlopen(3C) with the mode RTLD_NOW. This relocation promotion effectively suppresses the
dynamic initialization capability that is available when resolving a function call dynamically.

Whenever new objects are loaded, or existing objects have their relocations promoted, a
topological sort of these objects is initiated. Effectively, the original initialization execution is
suspended while the new initialization requirements are established and the associated
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initialization sections executed. This model attempts to insure that the newly referenced objects
are suitably initialized for the original initialization section to use. However, this parallization
can be the cause of unwanted recursion.

While processing objects that employ lazy binding, the runtime linker can detect certain levels
of recursion. This recursion can be displayed by setting LD_DEBUG=init. For example, the
execution of the initialization section of foo.so.1 might result in calling another object. If this
object then references an interface in foo.so.1 then a cycle is created. The runtime linker can
detect this recursion as part of binding the lazy function reference to foo.so.1.

$ LD_DEBUG=init prog

00905: .......

00905: warning: calling foo.so.1 whose init has not completed

00905: .......

Recursion that occurs through references that have already been relocated can not be detected
by the runtime linker.

Recursion can be expensive and problematic. Reduce the number of external references and
dynamic loading activities that can be triggered by an initialization section so as to eliminate
recursion.

Initialization processing is repeated for any objects that are added to the running process with
dlopen(3C). Termination processing is also carried out for any objects that are unloaded from
the process as a result of a call to dlclose(3C).

The preceding sections describe the various techniques that are employed to execute
initialization and termination sections in a manner that attempts to meet user expectations.
However, coding style and link-editing practices should also be employed to simplify the
initialization and termination relationships between dependencies. This simplification helps
make initialization processing and termination processing that is predictable, while less prone
to any side affects of unexpected dependency ordering.

Keep the content of initialization and termination sections to a minimum. Avoid global
constructors by initializing objects at runtime. Reduce the dependency of initialization and
termination code on other dependencies. Define the dependency requirements of all dynamic
objects. See “Generating a Shared Object Output File” on page 47. Do not express dependencies
that are not required. See “Shared Object Processing” on page 32. Avoid cyclic dependencies.
Do not depend on the order of an initialization or termination sequence. The ordering of
objects can be affected by both shared object and application development. See “Dependency
Ordering” on page 118.
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Security
Secure processes have some restrictions applied to the evaluation of their dependencies and
runpaths to prevent malicious dependency substitution or symbol interposition.

The runtime linker categorizes a process as secure if the issetugid(2) system call returns true
for the process.

For 32–bit objects, the default trusted directories that are known to the runtime linker are
/lib/secure and /usr/lib/secure. For 64–bit objects, the default trusted directories that are
known to the runtime linker are /lib/secure/64 and /usr/lib/secure/64. The utility
crle(1) can be used to specify additional trusted directories that are applicable for secure
applications. Administrators who use this technique should ensure that the target directories
are suitably protected from malicious intrusion.

If an LD_LIBRARY_PATH family environment variable is in effect for a secure process, only the
trusted directories specified by this variable are used to augment the runtime linker's search
rules. See “Directories Searched by the Runtime Linker” on page 72.

In a secure process, any runpath specifications provided by the application or any of its
dependencies are used. However, the runpath must be a full path name, that is, the path name
must start with a ‘/'.

In a secure process, the expansion of the $ORIGIN string is allowed only if the string expands to a
trusted directory. See “Security” on page 361.

In a secure process, LD_CONFIG is ignored. A secure process uses the default configuration file, if
the configuration file exists. See crle(1).

In a secure process, LD_SIGNAL is ignored.

Additional objects can be loaded with a secure process using the LD_PRELOAD or LD_AUDIT
environment variables. These objects must be specified as full path names or simple file names.
Full path names are restricted to known trusted directories. Simple file names, in which no ‘/'
appears in the name, are located subject to the search path restrictions previously described.
Simple file names resolve only to known trusted directories.

In a secure process, any dependencies that consist of simple file names are processed using the
path name restrictions previously described. Dependencies expressed as full path names or
relative path names are used as is. Therefore, the developer of a secure process should ensure
that the target directory referenced as one of these dependencies is suitably protected from
malicious intrusion.

When creating a secure process, do not use relative path names to express dependencies or to
construct dlopen(3C) path names. This restriction applies to the application and to all
dependencies.

Security
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Runtime Linking Programming Interface
Dependencies specified during the link-edit of an application are processed by the runtime
linker during process initialization. In addition to this mechanism, the application can extend
its address space during its execution by binding to additional objects. The application
effectively uses the same services of the runtime linker that are used to process the applications
standard dependencies.

Delayed object binding has several advantages.

■ By processing an object when the object is required rather than during the initialization of
an application, startup time can be greatly reduced. If the services provided by an object are
not needed during a particular run of the application, the object is not required. This
scenario can occur for objects that provide help or debugging information.

■ The application can choose between several different objects, depending on the exact
services required, such as for a networking protocol.

■ Any objects added to the process address space during execution can be freed after use.

An application can use the following typical scenario to access an additional shared object.

■ A shared object is located and added to the address space of a running application using
dlopen(3C). Any dependencies of this shared object are located and added at this time.

■ The added shared object and its dependencies are relocated. Any initialization sections
within these objects are called.

■ The application locates symbols within the added objects using dlsym(3C). The application
can then reference the data or call the functions defined by these new symbols.

■ After the application has finished with the objects, the address space can be freed using
dlclose(3C). Any termination sections that exist within the objects that are being freed are
called at this time.

■ Any error conditions that occur as a result of using the runtime linker interface routines can
be displayed using dlerror(3C).

The services of the runtime linker are defined in the header file dlfcn.h and are made available
to an application by the shared object libc.so.1. In the following example, the file main.c can
make reference to any of the dlopen(3C) family of routines, and the application prog can bind
to these routines at runtime.

$ cc -o prog main.c
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Note – In previous releases of the Solaris OS, the dynamic linking interfaces were made available
by the shared object libdl.so.1. libdl.so.1 remains available to support any existing
dependencies. However, the dynamic linking interfaces offered by libdl.so.1 are now
available from libc.so.1. Linking with -ldl is no longer necessary.

Loading Additional Objects
Additional objects can be added to a running process's address space by using dlopen(3C). This
function takes a path name and a binding mode as arguments, and returns a handle to the
application. This handle can be used to locate symbols for use by the application using
dlsym(3C).

If the path name is specified as a simple file name, one with no ‘/' in the name, then the runtime
linker uses a set of rules to generate an appropriate path name. Path names that contain a ‘/' are
used as provided.

These search path rules are exactly the same as are used to locate any initial dependencies. See
“Directories Searched by the Runtime Linker” on page 72. For example, the file main.c contains
the following code fragment.

#include <stdio.h>

#include <dlfcn.h>

main(int argc, char ** argv)

{

void * handle;

.....

if ((handle = dlopen("foo.so.1", RTLD_LAZY)) == NULL) {

(void) printf("dlopen: %s\n", dlerror());

exit (1);

}

.....

To locate the shared object foo.so.1, the runtime linker uses any LD_LIBRARY_PATH definition
that is present at process initialization. Next, the runtime linker uses any runpath specified
during the link-edit of prog. Finally, the runtime linker uses the default locations /lib and
/usr/lib for 32–bit objects, or /lib/64 and /usr/lib/64 for 64–bit objects.

If the path name is specified as:

if ((handle = dlopen("./foo.so.1", RTLD_LAZY)) == NULL) {

then the runtime linker searches for the file only in the current working directory of the process.
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Note – Any shared object that is specified using dlopen(3C) should be referenced by its versioned
file name. For more information on versioning, see “Coordination of Versioned Filenames” on
page 160.

If the required object cannot be located, dlopen(3C) returns a NULL handle. In this case
dlerror(3C) can be used to display the true reason for the failure. For example.

$ cc -o prog main.c

$ prog

dlopen: ld.so.1: prog: fatal: foo.so.1: open failed: No such \

file or directory

If the object being added by dlopen(3C) has dependencies on other objects, they too are
brought into the process's address space. This process continues until all the dependencies of
the specified object are loaded. This dependency tree is referred to as a group.

If the object specified by dlopen(3C), or any of its dependencies, are already part of the process
image, then the objects are not processed any further. A valid handle is returned to the
application. This mechanism prevents the same object from being loaded more than once, and
enables an application to obtain a handle to itself. For example, if the previous main.c example
contained the following dlopen() call:

if ((handle = dlopen((const char *)0, RTLD_LAZY)) == NULL) {

then the handle returned from dlopen(3C) can be used to locate symbols within the application
itself, within any of the dependencies loaded as part of the process's initialization, or within any
objects added to the process's address space, using a dlopen(3C) that specified the RTLD_GLOBAL
flag.

Relocation Processing
As described in Chapter 3, “Runtime Linker,” after locating and loading any objects, the
runtime linker must process each object and perform any necessary relocations. Any objects
that are brought into the process's address space with dlopen(3C) must also be relocated in the
same manner.

For simple applications this process is straightforward. However, for users who have more
complex applications with many dlopen(3C) calls involving many objects, possibly with
common dependencies, this process can be quite important.

Relocations can be categorized according to when they occur. The default behavior of the
runtime linker is to process all immediate reference relocations at initialization and all lazy
references during process execution, a mechanism commonly referred to as lazy binding.
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This same mechanism is applied to any objects added with dlopen(3C) when the mode is
defined as RTLD_LAZY. An alternative is to require all relocations of an object to be performed
immediately when the object is added. You can use a mode of RTLD_NOW, or record this
requirement in the object when it is built using the link-editor's -z now option. This relocation
requirement is propagated to any dependencies of the object being opened.

Relocations can also be categorized into non-symbolic and symbolic. The remainder of this
section covers issues regarding symbolic relocations, regardless of when these relocations
occur, with a focus on some of the subtleties of symbol lookup.

Symbol Lookup
If an object acquired by dlopen(3C) refers to a global symbol, the runtime linker must locate
this symbol from the pool of objects that make up the process. In the absence of direct binding, a
default symbol search model is applied to objects obtained by dlopen(). However, the mode of
a dlopen() together with the attributes of the objects that make up the process, provide for
alternative symbol search models.

Objects that required direct binding, although maintaining all the attributes described later,
search for symbols directly in the associated dependency. See “Direct Bindings” on page 78.

Two attributes of an object affect symbol lookup. The first is the requesting object's symbol
search scope, and the second is the symbol visibility offered by each object within the process. An
object's search scope can be:

world

The object can look in any other global object within the process.

group

The object can look only in an object of the same group. The dependency tree created from
an object obtained with dlopen(3C), or from an object built using the link-editor's -B group
option, forms a unique group.

The visibility of a symbol from an object can be:

global

The object's symbols can be referenced from any object that has world search scope.

local

The object's symbols can be referenced only from other objects that make up the same group.

By default, objects obtained with dlopen(3C) are assigned world symbol search scope, and local
symbol visibility. The section, “Default Symbol Lookup Model” on page 97, uses this default
model to illustrate typical object group interactions. The sections “Defining a Global Object” on
page 100, “Isolating a Group” on page 101, and “Object Hierarchies” on page 101 show examples
of using dlopen(3C) modes and file attributes to extend the default symbol lookup model.
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Default Symbol Lookup Model

For each object added by dlopen(3C) the runtime linker first looks for the symbol in the
dynamic executable. The runtime linker then looks in each of the objects provided during the
initialization of the process. If the symbol is still not found, the runtime linker continues the
search. The runtime linker next looks in the object acquired through the dlopen(3C) and in any
of its dependencies.

The default symbol lookup model provides for transitioning into a lazy loading environment. If
a symbol can not be found in the presently loaded objects, any pending lazy loaded objects are
processed in an attempt to locate the symbol. This loading compensates for objects that have
not fully defined their dependencies. However, this compensation can undermine the
advantages of a lazy loading.

In the following example, the dynamic executable prog and the shared object B.so.1 have the
following dependencies.

$ ldd prog

A.so.1 => ./A.so.1

$ ldd B.so.1

C.so.1 => ./C.so.1

If prog acquires the shared object B.so.1 by dlopen(3C), then any symbol required to relocate
the shared objects B.so.1 and C.so.1 will first be looked for in prog, followed by A.so.1,
followed by B.so.1, and finally in C.so.1. In this simple case, think of the shared objects
acquired through the dlopen(3C) as if they had been added to the end of the original link-edit of
the application. For example, the objects referenced in the previous listing can be expressed
diagrammatically as shown in the following figure.

Any symbol lookup required by the objects acquired from the dlopen(3C), that is shown as
shaded blocks, proceeds from the dynamic executable prog through to the final shared object
C.so.1.

This symbol lookup is established by the attributes assigned to the objects as they were loaded.
Recall that the dynamic executable and all the dependencies loaded with it are assigned global
symbol visibility, and that the new objects are assigned world symbol search scope. Therefore,

prog A.so.1 B.so.1 C.so.1

FIGURE 3–1 A Single dlopen()Request
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the new objects are able to look for symbols in the original objects. The new objects also form a
unique group in which each object has local symbol visibility. Therefore, each object within the
group can look for symbols within the other group members.

These new objects do not affect the normal symbol lookup required by either the application or
its initial object dependencies. For example, if A.so.1 requires a function relocation after the
previous dlopen(3C) has occurred, the runtime linker's normal search for the relocation
symbol is to look in prog and then A.so.1. The runtime linker does not follow through and
look in B.so.1 or C.so.1.

This symbol lookup is again a result of the attributes assigned to the objects as they were loaded.
The world symbol search scope is assigned to the dynamic executable and all the dependencies
loaded with it. This scope does not allow them to look for symbols in the new objects that only
offer local symbol visibility.

These symbol search and symbol visibility attributes maintain associations between objects.
These associations are based on their introduction into the process address space, and on any
dependency relationship between the objects. Assigning the objects associated with a given
dlopen(3C) to a unique group ensures that only objects associated with the same dlopen(3C)
are allowed to look up symbols within themselves and their related dependencies.

This concept of defining associations between objects becomes more clear in applications that
carry out more than one dlopen(3C). For example, suppose the shared object D.so.1 has the
following dependency.

$ ldd D.so.1

E.so.1 => ./E.so.1

and the prog application used dlopen(3C) to load this shared object in addition to the shared
object B.so.1. The following figure illustrates the symbol lookup releationship between the
objects.
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Suppose that both B.so.1 and D.so.1 contain a definition for the symbol foo, and both C.so.1

and E.so.1 contain a relocation that requires this symbol. Because of the association of objects
to a unique group, C.so.1 is bound to the definition in B.so.1, and E.so.1 is bound to the
definition in D.so.1. This mechanism is intended to provide the most intuitive binding of
objects that are obtained from multiple calls to dlopen(3C).

When objects are used in the scenarios that have so far been described, the order in which each
dlopen(3C) occurs has no effect on the resulting symbol binding. However, when objects have
common dependencies, the resultant bindings can be affected by the order in which the
dlopen(3C) calls are made.

In the following example, the shared objects O.so.1 and P.so.1 have the same common
dependency.

$ ldd O.so.1

Z.so.1 => ./Z.so.1

$ ldd P.so.1

Z.so.1 => ./Z.so.1

In this example, the prog application will dlopen(3C) each of these shared objects. Because the
shared object Z.so.1 is a common dependency of both O.so.1 and P.so.1, Z.so.1 is assigned
to both of the groups that are associated with the two dlopen(3C) calls. This relationship is
shown in the following figure.

prog A.so.1

B.so.1 C.so.1

D.so.1 E.so.1

FIGURE 3–2 Multiple dlopen()Requests
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Z.so.1 is available for both O.so.1 and P.so.1 to look up symbols. More importantly, as far as
dlopen(3C) ordering is concerned, Z.so.1 is also be able to look up symbols in both O.so.1

and P.so.1.

Therefore, if both O.so.1 and P.so.1 contain a definition for the symbol foo, which is required
for a Z.so.1 relocation, the actual binding that occurs is unpredictable because it is affected by
the order of the dlopen(3C) calls. If the functionality of symbol foo differs between the two
shared objects in which it is defined, the overall outcome of executing code within Z.so.1 might
vary depending on the application's dlopen(3C) ordering.

Defining a Global Object

The default assignment of local symbol visibility to the objects obtained by a dlopen(3C) can be
promoted to global by augmenting the mode argument with the RTLD_GLOBAL flag. Under this
mode, any objects obtained through a dlopen(3C) can be used by any other objects with world
symbol search scope to locate symbols.

In addition, any object obtained by dlopen(3C) with the RTLD_GLOBAL flag is available for
symbol lookup using dlopen() with a path name whose value is 0.

Note – If a member of a group has local symbol visibility, and is referenced by another group
requiring global symbol visibility, the object's visibility becomes a concatenation of both local
and global. This promotion of attributes remains even if the global group reference is later
removed.

prog A.so.1 Z.so.1

O.so.1

P.so.1

FIGURE 3–3 Multiple dlopen()Requests With A Common Dependency
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Isolating a Group

The default assignment of world symbol search scope to the objects obtained by a dlopen(3C)
can be reduced to group by augmenting the mode argument with the RTLD_GROUP flag. Under
this mode, any objects obtained through a dlopen(3C) will only be allowed to look for symbols
within their own group.

Using the link-editor's -B group option, you can assign the group symbol search scope to
objects when they are built.

Note – If a member of a group, has group search capability, and is referenced by another group
requiring world search capability, the object's search capability becomes a concatenation of
both group and world. This promotion of attributes remains even if the world group reference
is later removed.

Object Hierarchies

If an initial object is obtained from a dlopen(3C), and uses dlopen() to open a secondary
object, both objects are assigned to a unique group. This situation can prevent either object
from locating symbols from the other.

In some implementations the initial object has to export symbols for the relocation of the
secondary object. This requirement can be satisfied by one of two mechanisms.

■ Making the initial object an explicit dependency of the second object
■ Use the RTLD_PARENT mode flag to dlopen(3C) the secondary object

If the initial object is an explicit dependency of the secondary object, the initial object is
assigned to the secondary objects' group. The initial object is therefore able to provide symbols
for the secondary objects' relocation.

If many objects can use dlopen(3C) to open the secondary object, and each of these initial
objects must export the same symbols to satisfy the secondary objects' relocation, then the
secondary object cannot be assigned an explicit dependency. In this case, the dlopen(3C) mode
of the secondary object can be augmented with the RTLD_PARENT flag. This flag causes the
propagation of the secondary objects' group to the initial object in the same manner as an
explicit dependency would do.

There is one small difference between these two techniques. If you specify an explicit
dependency, the dependency itself becomes part of the secondary objects' dlopen(3C)
dependency tree, and thus becomes available for symbol lookup with dlsym(3C). If you obtain
the secondary object with RTLD_PARENT, the initial object does not become available for symbol
lookup with dlsym(3C).
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When a secondary object is obtained by dlopen(3C) from an initial object with global symbol
visibility, the RTLD_PARENT mode is both redundant and harmless. This case commonly occurs
when dlopen(3C) is called from an application or from one of the dependencies of the
application.

Obtaining New Symbols
A process can obtain the address of a specific symbol using dlsym(3C). This function takes a
handle and a symbol name, and returns the address of the symbol to the caller. The handle
directs the search for the symbol in the following manner.
■ A handle can be returned from a dlopen(3C) of a named object. The handle enables symbols

to be obtained from the named object and the objects that define its dependency tree. A
handle returned using the mode RTLD_FIRST, enables symbols to be obtained only from the
named object.

■ A handle can be returned from a dlopen(3C) of a path name whose value is 0. The handle
enables symbols to be obtained from the initiating object of the associated link-map and the
objects that define its dependency tree. Typically, the initiating object is the dynamic
executable. This handle also enables symbols to be obtained from any object obtained by a
dlopen(3C) with the RTLD_GLOBAL mode, on the associated link-map. A handle returned
using the mode RTLD_FIRST, enables symbols to be obtained only from the initiating object
of the associated link-map.

■ The special handle RTLD_DEFAULT, and RTLD_PROBE enable symbols to be obtained from the
initiating object of the associated link-map and objects that define its dependency tree. This
handle also enables symbols to be obtained from any object obtained by a dlopen(3C) that
belongs to the same group as the caller. Use of RTLD_DEFAULT, or RTLD_PROBE follows the
same model as used to resolve a symbolic relocation from the calling object.

■ The special handle RTLD_NEXT enables symbols to be obtained from the next associated
object on the callers link-map list.

In the following example, which is probably the most common, an application adds additional
objects to its address space. The application then uses dlsym(3C) to locate function or data
symbols. The application then uses these symbols to call upon services that are provided in
these new objects. The file main.c contains the following code:

#include <stdio.h>

#include <dlfcn.h>

main()

{

void * handle;

int * dptr, (* fptr)();

if ((handle = dlopen("foo.so.1", RTLD_LAZY)) == NULL) {
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(void) printf("dlopen: %s\n", dlerror());

exit (1);

}

if (((fptr = (int (*)())dlsym(handle, "foo")) == NULL) ||

((dptr = (int *)dlsym(handle, "bar")) == NULL)) {

(void) printf("dlsym: %s\n", dlerror());

exit (1);

}

return ((*fptr)(*dptr));

}

The symbols foo and bar are searched for in the file foo.so.1, followed by any dependencies
that are associated with this file. The function foo is then called with the single argument bar as
part of the return() statement.

The application prog, built using the previous file main.c, contains the following dependencies.

$ ldd prog

libc.so.1 => /lib/libc.so.1

If the file name specified in the dlopen(3C) had the value 0, the symbols foo and bar are
searched for in prog, followed by /lib/libc.so.1.

The handle indicates the root at which to start a symbol search. From this root, the search
mechanism follows the same model as described in “Relocation Symbol Lookup” on page 76.

If the required symbol cannot be located, dlsym(3C) returns a NULL value. In this case,
dlerror(3C) can be used to indicate the true reason for the failure. In the following example,
the application prog is unable to locate the symbol bar.

$ prog

dlsym: ld.so.1: main: fatal: bar: can’t find symbol

Testing for Functionality
The special handles RTLD_DEFAULT, and RTLD_PROBE enable an application to test for the
existence of another symbol. The symbol search follows the same model as used to relocate the
calling object. See “Default Symbol Lookup Model” on page 97. For example, if the application
prog contained the following code fragment:

if ((fptr = (int (*)())dlsym(RTLD_DEFAULT, "foo")) != NULL)

(*fptr)();

then foo is searched for in prog, followed by /lib/libc.so.1. If this code fragment was
contained in the file B.so.1 from the example that is shown in Figure 3–1, then the search for
foo continues into B.so.1 and then C.so.1.
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This mechanism provides a robust and flexible alternative to the use of undefined weak
references, as discussed in “Weak Symbols” on page 47.

Using Interposition
The special handle RTLD_NEXT enables an application to locate the next symbol in a symbol
scope. For example, if the application prog contained the following code fragment:

if ((fptr = (int (*)())dlsym(RTLD_NEXT, "foo")) == NULL) {

(void) printf("dlsym: %s\n", dlerror());

exit (1);

}

return ((*fptr)());

then foo is searched for in the shared objects associated with prog, which in this case is
/lib/libc.so.1. If this code fragment was contained in the file B.so.1 from the example that
is shown in Figure 3–1, then foo is searched for in C.so.1 only.

Use of RTLD_NEXT provides a means to exploit symbol interposition. For example, a function
within an object can be interposed upon by a preceding object, which can then augment the
processing of the original function. For example, the following code fragment is placed in the
shared object malloc.so.1.

#include <sys/types.h>

#include <dlfcn.h>

#include <stdio.h>

void *

malloc(size_t size)

{

static void * (* fptr)() = 0;

char buffer[50];

if (fptr == 0) {

fptr = (void * (*)())dlsym(RTLD_NEXT, "malloc");
if (fptr == NULL) {

(void) printf("dlopen: %s\n", dlerror());

return (0);

}

}

(void) sprintf(buffer, "malloc: %#x bytes\n", size);

(void) write(1, buffer, strlen(buffer));

return ((*fptr)(size));

}
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malloc.so.1 can be interposed before the system library /lib/libc.so.1 where malloc(3C)
usually resides. Any calls to malloc() are now interposed upon before the original function is
called to complete the allocation.

$ cc -o malloc.so.1 -G -K pic malloc.c

$ cc -o prog file1.o file2.o ..... -R. malloc.so.1

$ prog

malloc: 0x32 bytes

malloc: 0x14 bytes

..........

Alternatively, the same interposition can be achieved using the following commands.

$ cc -o malloc.so.1 -G -K pic malloc.c

$ cc -o prog main.c

$ LD_PRELOAD=./malloc.so.1 prog

malloc: 0x32 bytes

malloc: 0x14 bytes

..........

Note – Users of any interposition technique must be careful to handle any possibility of
recursion. The previous example formats the diagnostic message using sprintf(3C), instead of
using printf(3C) directly, to avoid any recursion caused by printf(3C)'s possible use of
malloc(3C).

The use of RTLD_NEXT within a dynamic executable or preloaded object, provides a predictable
interposition technique. Be careful when using this technique in a generic object dependency,
as the actual load order of objects is not always predictable.

Debugging Aids
A debugging library and a debugging mdb(1) module are provided with the Solaris OS link
editors. The debugging library enables you to trace the runtime linking process in more detail.
The mdb(1) module enables interactive process debugging.

Debugging Library
The debugging library helps you to understand and debug the execution of applications and
their dependencies. The type of information that is displayed by using this library is expected to
remain constant. However, the exact format of the information might change slightly from
release to release.

Some of the debugging output might be unfamiliar to users who do not have an intimate
knowledge of the runtime linker. However, many aspects might be of general interest to you.
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Debugging is enabled by using the environment variable LD_DEBUG. All debugging output is
prefixed with the process identifier and by default is directed to the standard error. This
environment variable must be augmented with one or more tokens to indicate the type of
debugging that is required.

The tokens that are available with LD_DEBUG can be displayed by using LD_DEBUG=help. Any
dynamic executable can be used to solicit this information, as the process terminates following
the display of the information.

$ LD_DEBUG=help prog

......

11693: files display input file processing (files and libraries)

......

The environment variable LD_DEBUG_OUTPUT can be used to specify an output file for use instead
of the standard error. The process identifier is added as a suffix to the output file.

The debugging of secure applications is not allowed.

One of the most useful debugging options is to display the symbol bindings that occur at
runtime. The following example uses a very trivial dynamic executable that has a dependency
on two local shared objects.

$ cat bar.c

int bar = 10;

$ cc -o bar.so.1 -K pic -G bar.c

$ cat foo.c

foo(int data)

{

return (data);

}

$ cc -o foo.so.1 -K pic -G foo.c

$ cat main.c

extern int foo();

extern int bar;

main()

{

return (foo(bar));

}

$ cc -o prog main.c -R/tmp:. foo.so.1 bar.so.1

The runtime symbol bindings can be displayed by setting LD_DEBUG=bindings.

$ LD_DEBUG=bindings prog

11753: .......

11753: binding file=prog to file=./bar.so.1: symbol bar
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11753: .......

11753: transferring control: prog

11753: .......

11753: binding file=prog to file=./foo.so.1: symbol foo

11753: .......

The symbol bar, which is required by an immediate relocation, is bound before the application
gains control. Whereas the symbol foo, which is required by a lazy relocation, is bound after the
application gains control on the first call to the function. This relocation demonstrates the
default mode of lazy binding. If the environment variable LD_BIND_NOW is set, all symbol
bindings occur before the application gains control.

By setting LD_DEBUG=bindings,detail, additional information regarding the real and relative
addresses of the actual binding locations is provided.

When the runtime linker performs a function relocation, data that is associated with the
functions .plt is rewritten. Subsequent calls through the .plt go directly to the function. The
environment variable LD_BIND_NOT can be set to any value to prevent this data update. By using
this variable together with the debugging request for detailed bindings, you can get a complete
runtime account of all function binding. The output from this combination can be excessive, in
which case the performance of the application is degraded.

You can use LD_DEBUG to display the various search paths used. For example, the search path
mechanism used to locate any dependencies can be displayed by setting LD_DEBUG=libs.

$ LD_DEBUG=libs prog

11775:

11775: find object=foo.so.1; searching

11775: search path=/tmp:. (RUNPATH/RPATH from file prog)

11775: trying path=/tmp/foo.so.1

11775: trying path=./foo.so.1

11775:

11775: find object=bar.so.1; searching

11775: search path=/tmp:. (RUNPATH/RPATH from file prog)

11775: trying path=/tmp/bar.so.1

11775: trying path=./bar.so.1

11775: .......

The runpath recorded in the application prog affects the search for the two dependencies
foo.so.1 and bar.so.1.

In a similar manner, the search paths of each symbol lookup can be displayed by setting
LD_DEBUG=symbols. A combination of symbols and bindings produces a complete picture of
the symbol relocation process.

$ LD_DEBUG=bindings,symbols prog

11782: .......

11782: symbol=bar; lookup in file=./foo.so.1 [ ELF ]
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11782: symbol=bar; lookup in file=./bar.so.1 [ ELF ]

11782: binding file=prog to file=./bar.so.1: symbol bar

11782: .......

11782: transferring control: prog

11782: .......

11782: symbol=foo; lookup in file=prog [ ELF ]

11782: symbol=foo; lookup in file=./foo.so.1 [ ELF ]

11782: binding file=prog to file=./foo.so.1: symbol foo

11782: .......

In the previous example, the symbol bar is not searched for in the application prog. This
omission of a data reference lookup is due to an optimization used when processing copy
relocations. See “Copy Relocations” on page 137 for more details of this relocation type.

Debugger Module
The debugger module provides a set of dcmds and walkers that can be loaded under mdb(1).
This module can be used to inspect various internal data structures of the runtime linker. Much
of the debugging information requires familiarity with the internals of the runtime linker.
These internals can change from release to release. However, some elements of these data
structures reveal the basic components of a dynamically linked process and can aid general
debugging.

The following examples show some simple scenarios of using mdb(1) with the debugger module.

$ cat main.c

#include <dlfnc.h>

int main()

{

void * handle;

void (* fptr)();

if ((handle = dlopen("foo.so.1", RTLD_LAZY)) == NULL)

return (1);

if ((fptr = (void (*)())dlsym(handle, "foo")) == NULL)

return (1);

(*fptr)();

return (0);

}

$ cc -o main main.c -R.

If mdb(1) has not automatically loaded the debugger module, ld.so, explicitly do so. The
capabilities of the debugger module can then be inspected.
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$ mdb main

> ::load ld.so

> ::dmods -l ld.so

ld.so

-----------------------------------------------------------------

dcmd Bind - Display a Binding descriptor

dcmd Callers - Display Rt_map CALLERS binding descriptors

dcmd Depends - Display Rt_map DEPENDS binding descriptors

dcmd ElfDyn - Display Elf_Dyn entry

dcmd ElfEhdr - Display Elf_Ehdr entry

dcmd ElfPhdr - Display Elf_Phdr entry

dcmd Groups - Display Rt_map GROUPS group handles

dcmd GrpDesc - Display a Group Descriptor

dcmd GrpHdl - Display a Group Handle

dcmd Handles - Display Rt_map HANDLES group descriptors

....

> ::bp main

> :r

Each dynamic object within a process is expressed as a link-map, Rt_map, which is maintained
on a link-map list. All link-maps for the process can be displayed with Rt_maps.

> ::Rt_maps

Link-map lists (dynlm_list): 0xffbfe0d0

----------------------------------------------

Lm_list: 0xff3f6f60 (LM_ID_BASE)

----------------------------------------------

lmco rtmap ADDR() NAME()

----------------------------------------------

[0xc] 0xff3f0fdc 0x00010000 main

[0xc] 0xff3f1394 0xff280000 /lib/libc.so.1

----------------------------------------------

Lm_list: 0xff3f6f88 (LM_ID_LDSO)

----------------------------------------------

[0xc] 0xff3f0c78 0xff3b0000 /lib/ld.so.1

An individual link-map can be displayed with Rt_map.

> 0xff3f9040::Rt_map

Rt_map located at: 0xff3f9040

NAME: main

PATHNAME: /export/home/user/main

ADDR: 0x00010000 DYN: 0x000207bc

NEXT: 0xff3f9460 PREV: 0x00000000

FCT: 0xff3f6f18 TLSMODID: 0

INIT: 0x00010710 FINI: 0x0001071c

GROUPS: 0x00000000 HANDLES: 0x00000000
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DEPENDS: 0xff3f96e8 CALLERS: 0x00000000

.....

The object's .dynamic section can be displayed with the ElfDyn dcmd. The following example
shows the first 4 entries.

> 0x000207bc,4::ElfDyn

Elf_Dyn located at: 0x207bc

0x207bc NEEDED 0x0000010f

Elf_Dyn located at: 0x207c4

0x207c4 NEEDED 0x00000124

Elf_Dyn located at: 0x207cc

0x207cc INIT 0x00010710

Elf_Dyn located at: 0x207d4

0x207d4 FINI 0x0001071c

mdb(1) is also very useful for setting deferred break points. In this example, a break point on the
function foo() might be useful. However, until the dlopen(3C) of foo.so.1 occurs, this symbol
isn't known to the debugger. A deferred break point instructs the debugger to set a real
breakpoint when the dynamic object is loaded.

> ::bp foo.so.1‘foo

> :c

> mdb: You’ve got symbols!

> mdb: stop at foo.so.1‘foo
mdb: target stopped at:

foo.so.1‘foo: save %sp, -0x68, %sp

At this point, new objects have been loaded.

> *ld.so‘lml_main::Rt_maps

lmco rtmap ADDR() NAME()

----------------------------------------------

[0xc] 0xff3f0fdc 0x00010000 main

[0xc] 0xff3f1394 0xff280000 /lib/libc.so.1

[0xc] 0xff3f9ca4 0xff380000 ./foo.so.1

[0xc] 0xff37006c 0xff260000 ./bar.so.1

The link-map for foo.so.1 shows the handle returned by dlopen(3C). You can expand this
structure using Handles.

> 0xff3f9ca4::Handles -v

HANDLES for ./foo.so.1

----------------------------------------------

HANDLE: 0xff3f9f60 Alist[used 1: total 1]

----------------------------------------------

Group Handle located at: 0xff3f9f28

----------------------------------------------
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owner: ./foo.so.1

flags: 0x00000000 [ 0 ]

refcnt: 1 depends: 0xff3f9fa0 Alist[used 2: total 4]

----------------------------------------------

Group Descriptor located at: 0xff3f9fac

depend: 0xff3f9ca4 ./foo.so.1

flags: 0x00000003 [ AVAIL-TO-DLSYM,ADD-DEPENDENCIES ]

----------------------------------------------

Group Descriptor located at: 0xff3f9fd8

depend: 0xff37006c ./bar.so.1

flags: 0x00000003 [ AVAIL-TO-DLSYM,ADD-DEPENDENCIES ]

The dependencies of a handle are a list of link-maps that represent the objects of the handle that
can satisfy a dlsym(3C) request. In this case, the dependencies are foo.so.1 and bar.so.1.

Note – The previous examples provide a basic guide to the debugger module capabilities, but the
exact commands, usage, and output can change from release to release. Refer to the usage and
help information for the exact capabilities that are available on your system.
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Shared Objects

Shared objects are one form of output created by the link-editor and are generated by specifying
the -G option. In the following example, the shared object libfoo.so.1 is generated from the
input file foo.c.

$ cc -o libfoo.so.1 -G -K pic foo.c

A shared object is an indivisible unit that is generated from one or more relocatable objects.
Shared objects can be bound with dynamic executables to form a runable process. As their
name implies, shared objects can be shared by more than one application. Because of this
potentially far-reaching effect, this chapter describes this form of link-editor output in greater
depth than has been covered in previous chapters.

For a shared object to be bound to a dynamic executable or another shared object, it must first
be available to the link-edit of the required output file. During this link-edit, any input shared
objects are interpreted as if they had been added to the logical address space of the output file
being produced. All the functionality of the shared object is made available to the output file.

Any input shared objects become dependencies of this output file. A small amount of
bookkeeping information is maintained within the output file to describe these dependencies.
The runtime linker interprets this information and completes the processing of these shared
objects as part of creating a runable process.

The following sections expand upon the use of shared objects within the compilation and
runtime environments. These environments are introduced in “Runtime Linking” on page 23.

4C H A P T E R 4
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Naming Conventions
Neither the link-editor nor the runtime linker interprets any file by virtue of its file name. All
files are inspected to determine their ELF type (see “ELF Header” on page 198). This
information enables the link-editor to deduce the processing requirements of the file. However,
shared objects usually follow one of two naming conventions, depending on whether they are
being used as part of the compilation environment or the runtime environment.

When used as part of the compilation environment, shared objects are read and processed by
the link-editor. Although these shared objects can be specified by explicit file names as part of
the command passed to the link-editor, the -l option is usually used to take advantage of the
link-editor's library search capabilities. See “Shared Object Processing” on page 32.

A shared object that is applicable to this link-editor processing, should be designated with the
prefix lib and the suffix .so. For example, /lib/libc.so is the shared object representation of
the standard C library made available to the compilation environment. By convention, 64–bit
shared objects are placed in a subdirectory of the lib directory called 64. For example, the
64–bit counterpart of /lib/libc.so.1, is /lib/64/libc.so.1.

When used as part of the runtime environment, shared objects are read and processed by the
runtime linker. To allow for change in the exported interface of the shared object over a series of
software releases, provide the shared object as a versioned file name.

A versioned file name commonly takes the form of a .so suffix followed by a version number.
For example, /lib/libc.so.1 is the shared object representation of version one of the standard
C library made available to the runtime environment.

If a shared object is never intended for use within a compilation environment, its name might
drop the conventional lib prefix. Examples of shared objects that fall into this category are
those used solely with dlopen(3C). A suffix of .so is still recommended to indicate the actual file
type. In additions, a version number is strongly recommended to provide for the correct
binding of the shared object across a series of software releases. Chapter 5, “Application Binary
Interfaces and Versioning,” describes versioning in more detail.

Note – The shared object name used in a dlopen(3C) is usually represented as a simple file name,
that has no ‘/' in the name. The runtime linker can then use a set of rules to locate the actual file.
See “Loading Additional Objects” on page 82 for more details.

Recording a Shared Object Name
The recording of a dependency in a dynamic executable or shared object will, by default, be the
file name of the associated shared object as it is referenced by the link-editor. For example, the
following dynamic executables, that are built against the same shared object libfoo.so, result
in different interpretations of the same dependency.
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$ cc -o ../tmp/libfoo.so -G foo.o

$ cc -o prog main.o -L../tmp -lfoo

$ dump -Lv prog | grep NEEDED

[1] NEEDED libfoo.so

$ cc -o prog main.o ../tmp/libfoo.so

$ dump -Lv prog | grep NEEDED

[1] NEEDED ../tmp/libfoo.so

$ cc -o prog main.o /usr/tmp/libfoo.so

$ dump -Lv prog | grep NEEDED

[1] NEEDED /usr/tmp/libfoo.so

As these examples show, this mechanism of recording dependencies can result in
inconsistencies due to different compilation techniques. Also, the location of a shared object as
referenced during the link-edit might differ from the eventual location of the shared object on
an installed system. To provide a more consistent means of specifying dependencies, shared
objects can record within themselves the file name by which they should be referenced at
runtime.

During the link-edit of a shared object, its runtime name can be recorded within the shared
object itself by using the -h option. In the following example, the shared object's runtime name
libfoo.so.1, is recorded within the file itself. This identification is known as an soname.

$ cc -o ../tmp/libfoo.so -G -K pic -h libfoo.so.1 foo.c

The following example shows how the soname recording can be displayed using dump(1) and
referring to the entry that has the SONAME tag.

$ dump -Lvp ../tmp/libfoo.so

../tmp/libfoo.so:

[INDEX] Tag Value

[1] SONAME libfoo.so.1

.........

When the link-editor processes a shared object that contains an soname, this is the name that is
recorded as a dependency within the output file being generated.

If this new version of libfoo.so is used during the creation of the dynamic executable prog
from the previous example, all three methods of creating the executable result in the same
dependency recording.

$ cc -o prog main.o -L../tmp -lfoo

$ dump -Lv prog | grep NEEDED

[1] NEEDED libfoo.so.1

$ cc -o prog main.o ../tmp/libfoo.so
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$ dump -Lv prog | grep NEEDED

[1] NEEDED libfoo.so.1

$ cc -o prog main.o /usr/tmp/libfoo.so

$ dump -Lv prog | grep NEEDED

[1] NEEDED libfoo.so.1

In the previous examples, the -h option is used to specify a simple file name, that has no ‘/' in the
name. This convention enables the runtime linker to use a set of rules to locate the actual file.
See “Locating Shared Object Dependencies” on page 72 for more details.

Inclusion of Shared Objects in Archives
The mechanism of recording an soname within a shared object is essential if the shared object is
ever processed from an archive library.

An archive can be built from one or more shared objects and then used to generate a dynamic
executable or shared object. Shared objects can be extracted from the archive to satisfy the
requirements of the link-edit. Unlike the processing of relocatable objects, which are
concatenated to the output file being created, any shared objects extracted from the archive are
recorded as dependencies. See “Archive Processing” on page 31 for more details on the criteria
for archive extraction.

The name of an archive member is constructed by the link-editor and is a concatenation of the
archive name and the object within the archive. For example.

$ cc -o libfoo.so.1 -G -K pic foo.c

$ ar -r libfoo.a libfoo.so.1

$ cc -o main main.o libfoo.a

$ dump -Lv main | grep NEEDED

[1] NEEDED libfoo.a(libfoo.so.1)

Because a file with this concatenated name is unlikely to exist at runtime, providing an soname
within the shared object is the only means of generating a meaningful runtime file name for the
dependency.

Note – The runtime linker does not extract objects from archives. Therefore, in the previous
example, the required shared object dependencies must be extracted from the archive and made
available to the runtime environment.

Recorded Name Conflicts
When shared objects are used to create a dynamic executable or another shared object, the
link-editor performs several consistency checks. These checks ensure that any dependency
names recorded in the output file are unique.
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Conflicts in dependency names can occur if two shared objects used as input files to a link-edit
both contain the same soname. For example.

$ cc -o libfoo.so -G -K pic -h libsame.so.1 foo.c

$ cc -o libbar.so -G -K pic -h libsame.so.1 bar.c

$ cc -o prog main.o -L. -lfoo -lbar

ld: fatal: recording name conflict: file ‘./libfoo.so’ and \

file ‘./libbar.so’ provide identical dependency names: libsame.so.1

ld: fatal: File processing errors. No output written to prog

A similar error condition occurs if the file name of a shared object that does not have a recorded
soname matches the soname of another shared object used during the same link-edit.

If the runtime name of a shared object being generated matches one of its dependencies, the
link-editor also reports a name conflict

$ cc -o libbar.so -G -K pic -h libsame.so.1 bar.c -L. -lfoo

ld: fatal: recording name conflict: file ‘./libfoo.so’ and \

-h option provide identical dependency names: libsame.so.1

ld: fatal: File processing errors. No output written to libbar.so

Shared Objects With Dependencies
Shared objects can have their own dependencies. The search rules used by the runtime linker to
locate shared object dependencies are covered in “Directories Searched by the Runtime Linker”
on page 72. If a shared object does not reside in one of the default search directories, then the
runtime linker must explicitly be told where to look. For 32–bit objects, the default search
directories are /lib and /usr/lib. For 64–bit objects, the default search directories are /lib/64
and /usr/lib/64. The preferred mechanism of indicating the requirement of a non-default
search path, is to record a runpath in the object that has the dependencies. A runpath can be
recorded by using the link-editor's -R option.

In the following example, the shared object libfoo.so has a dependency on libbar.so, which
is expected to reside in the directory /home/me/lib at runtime or, failing that, in the default
location.

$ cc -o libbar.so -G -K pic bar.c

$ cc -o libfoo.so -G -K pic foo.c -R/home/me/lib -L. -lbar

$ dump -Lv libfoo.so

libfoo.so:

**** DYNAMIC SECTION INFORMATION ****

.dynamic:

[INDEX] Tag Value
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[1] NEEDED libbar.so

[2] RUNPATH /home/me/lib

.........

The shared object is responsible for specifying all runpaths required to locate its dependencies.
All runpaths specified in the dynamic executable is only used to locate the dependencies of the
dynamic executable. These runpaths are not used to locate any dependencies of the shared
objects.

The environment variable LD_LIBRARY_PATH has a more global scope. Any path names specified
using this variable are used by the runtime linker to search for any shared object dependencies.
Although useful as a temporary mechanism that influences the runtime linker's search path, the
use of this environment variable is strongly discouraged in production software. See
“Directories Searched by the Runtime Linker” on page 72 for a more extensive discussion.

Dependency Ordering
When dynamic executables and shared objects have dependencies on the same common shared
objects, the order in which the objects are processed can become less predictable.

For example, assume a shared object developer generates libfoo.so.1 with the following
dependencies.

$ ldd libfoo.so.1

libA.so.1 => ./libA.so.1

libB.so.1 => ./libB.so.1

libC.so.1 => ./libC.so.1

If you create a dynamic executable prog, using this shared object, and define an explicit
dependency on libC.so.1, the resulting shared object order will be as follows.

$ cc -o prog main.c -R. -L. -lC -lfoo

$ ldd prog

libC.so.1 => ./libC.so.1

libfoo.so.1 => ./libfoo.so.1

libA.so.1 => ./libA.so.1

libB.so.1 => ./libB.so.1

Any requirement on the order of processing the shared object libfoo.so.1 dependencies
would be compromised by the construction of the dynamic executable prog.

Developers who place special emphasis on symbol interposition and .init section processing
should be aware of this potential change in shared object processing order.
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Shared Objects as Filters
Shared objects can be defined to act as filters. This technique involves associating the interfaces
that the filter provides with an alternative shared object. At runtime, the alternative shared
object supplies one or more of the interfaces provided by the filter. This alternative shared
object is referred to as a filtee. A filtee is built in the same manner as any shared object is built.

Filtering provides a mechanism of abstracting the compilation environment from the runtime
environment. At link-edit time, a symbol reference that binds to a filter interface is resolved to
the filters symbol definition. At runtime, a symbol reference that binds to a filter interface can be
redirected to an alternative shared object.

Individual interfaces that are defined within a shared object can be defined as filters by using the
mapfile keywords FILTER or AUXILIARY. Alternatively, a shared object can define all of the
interfaces the shared object offers as filters by using the link-editor's -F or -f flag. These
techniques are typically used individually. See “Generating Standard Filters” on page 120 and
“Generating Auxiliary Filters” on page 123. These techniques can also be combined within the
same shared object. See “Filtering Combinations” on page 125.

Two forms of filtering exist.

Standard filtering
This filtering requires only a symbol table entry for the interface being filtered. At runtime,
the implementation of a filter symbol definition must be provided from a filtee.

Interfaces are defined to act as standard filters by using the link-editor's mapfile keyword
FILTER, or by using the link-editor's -F flag. This mapfile keyword or flag, is qualified with
the name of one or more filtees that must supply the symbol definition at runtime.

A filtee that cannot be processed at runtime is skipped. A standard filter symbol that cannot
be located within the filtee, also causes the filtee to be skipped. In both of these cases, the
symbol definition provided by the filter is not used to satisfy this symbol lookup.

Auxiliary filtering
This filtering provides a similar mechanism to standard filtering, except the filter provides a
fall back implementation corresponding to the auxiliary filter interfaces. At runtime, the
implementation of the symbol definition can be provided from a filtee.

Interfaces are defined to act as auxiliary filters by using the link-editor's mapfile keyword
AUXILIARY, or by using the link-editor's -f flag. This mapfile keyword or flag, is qualified
with the name of one or more filtees that can supply the symbol definition at runtime.

A filtee that cannot be processed at runtime is skipped. An auxiliary filter symbol that cannot
be located within the filtee, also causes the filtee to be skipped. In both of these cases, the
symbol definition provided by the filter is used to satisfy this symbol lookup.
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Generating Standard Filters
To generate a standard filter, you first define a filtee on which the filtering is applied. The
following example builds a filtee filtee.so.1, suppling the symbols foo and bar.

$ cat filtee.c

char * bar = "defined in filtee";

char * foo()

{

return("defined in filtee");
}

$ cc -o filtee.so.1 -G -K pic filtee.c

Standard filtering can be provided in one of two ways. To declare all of the interfaces offered by
a shared object to be filters, use the link-editor's -F flag. To declare individual interfaces of a
shared object to be filters, use a link-editor mapfile and the FILTER keyword.

In the following example, the shared object filter.so.1 is defined to be a filter. filter.so.1
offers the symbols foo and bar, and is a filter on the filtee filtee.so.1. In this example, the
environment variable LD_OPTIONS is used to circumvent the compiler driver from interpreting
the -F option.

$ cat filter.c

char * bar = 0;

char * foo()

{

return (0);

}

$ LD_OPTIONS=’-F filtee.so.1’ \

cc -o filter.so.1 -G -K pic -h filter.so.1 -R. filter.c

$ elfdump -d filter.so.1 | egrep "SONAME|FILTER"

[2] SONAME 0xee filter.so.1

[3] FILTER 0xfb filtee.so.1

The link-editor can reference the standard filter filter.so.1 as a dependency when creating a
dynamic executable or shared object. The link-editor uses information from the symbol table of
the filter to satisfy any symbol resolution. However, at runtime, any reference to the symbols of
the filter result in the additional loading of the filtee filtee.so.1. The runtime linker uses the
filtee to resolve any symbols defined by filter.so.1. If the filtee is not found, or a filter symbol
is not found in the filtee, the filter is skipped for this symbol lookup.

For example, the following dynamic executable prog, references the symbols foo and bar,
which are resolved during link-edit from the filter filter.so.1. The execution of prog results
in foo and bar being obtained from the filtee filtee.so.1, not from the filter filter.so.1.
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$ cat main.c

extern char * bar, * foo();

main()

{

(void) printf("foo is %s: bar is %s\n", foo(), bar);

}

$ cc -o prog main.c -R. filter.so.1

$ prog

foo is defined in filtee: bar is defined in filtee

In the following example, the shared object filter.so.2 defines one of its interfaces, foo, to be
a filter on the filtee filtee.so.1.

Note – As no source code is supplied for foo(), the mapfile keyword, FUNCTION, is used to
ensure a symbol table entry for foo is created.

$ cat filter.c

char * bar = "defined in filter";
$ cat mapfile

{

global:

foo = FUNCTION FILTER filtee.so.1;

};

$ cc -o filter.so.2 -G -K pic -h filter.so.2 -M mapfile -R. filter.c

$ elfdump -d filter.so.2 | egrep "SONAME|FILTER"

[2] SONAME 0xd8 filter.so.2

[3] SUNW_FILTER 0xfb filtee.so.1

$ elfdump -y filter.so.2 | egrep "foo|bar"

[1] F [3] filtee.so.1 foo

[10] D <self> bar

At runtime, any reference to the symbol foo of the filter, results in the additional loading of the
filtee filtee.so.1. The runtime linker uses the filtee to resolve only the symbol foo defined by
filter.so.2. Reference to the symbol bar always uses the symbol from filter.so.2, as no
filtee processing is defined for this symbol.

For example, the following dynamic executable prog, references the symbols foo and bar,
which are resolved during link-edit from the filter filter.so.2. The execution of prog results
in foo being obtained from the filtee filtee.so.1, and bar being obtained from the filter
filter.so.2.

$ cc -o prog main.c -R. filter.so.2

$ prog

foo is defined in filtee: bar is defined in filter
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In these examples, the filtee filtee.so.1 is uniquely associated to the filter. The filtee is not
available to satisfy symbol lookup from any other objects that might be loaded as a consequence
of executing prog.

Standard filters provide a convenient mechanism for defining a subset interface of an existing
shared object. Standard filters provide for the creation of an interface group spanning a number
of existing shared objects. Standard filters also provide a means of redirecting an interface to its
implementation. Several standard filters are used in the Solaris OS.

The /usr/lib/libsys.so.1 filter provides a subset of the standard C library
/usr/lib/libc.so.1. This subset represents the ABI-conforming functions and data items
that reside in the C library that must be imported by a conforming application.

The /lib/libxnet.so.1 filter uses multiple filtees. This library provides socket and XTI
interfaces from /lib/libsocket.so.1, /lib/libnsl.so.1, and /lib/libc.so.1.

libc.so.1 defines interface filters to the runtime linker. These interfaces provide an
abstraction between the symbols referenced in a compilation environment from libc.so.1,
and the actual implementation binding produced within the runtime environment to
ld.so.1(1).

libnsl.so.1 defines the standard filter gethostname(3C) against libc.so.1. Historically, both
libnsl.so.1 and libc.so.1 have provided the same implementation for this symbol. By
establishing libnsl.so.1 as a filter, only one implementation of gethostname() need exist. As
libnsl.so.1 continues to export gethostname(), the interface of this library continues to
remain compatible with previous releases.

Because the code in a standard filter is never referenced at runtime, adding content to any
functions defined as filters is redundant. Any filter code might require relocation, which would
result in an unnecessary overhead when processing the filter at runtime. Functions are best
defined as empty routines, or directly from a mapfile. See “Defining Additional Symbols with a
mapfile” on page 50.

When generating data symbols within a filter, always associate the data with a section. This
association can be produced by defining the symbol within a relocatable object file. This
association can also be produced by defining the symbol within a mapfile together with a size
declaration and no value declaration. See “Defining Additional Symbols with a mapfile” on
page 50. The resulting data definition ensures that references from a dynamic executable are
established correctly.

Some of the more complex symbol resolutions carried out by the link-editor require knowledge
of a symbol's attributes, including the symbol's size. Therefore, you should generate the symbols
in the filter so that their attributes match the attributes of the symbols in the filtee. Maintaining
attribute consistency ensures that the link-editing process analyzes the filter in a manner that is
compatible with the symbol definitions used at runtime. See “Symbol Resolution” on page 40.
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Note – The link-editor uses the ELF class of the first relocatable file that is processed to govern
the class of object that is created. Use the link-editor's -64 option to create a 64–bit filter solely
from a mapfile.

Generating Auxiliary Filters
To generate an auxiliary filter, you first define a filtee on which the filtering is applied. The
following example builds a filtee filtee.so.1, supplying the symbol foo.

$ cat filtee.c

char * foo()

{

return("defined in filtee");
}

$ cc -o filtee.so.1 -G -K pic filtee.c

Auxiliary filtering can be provided in one of two ways. To declare all of the interfaces offered by
a shared object to be auxiliary filters, use the link-editor's -f flag. To declare individual
interfaces of a shared object to be auxiliary filters, use a link-editor mapfile and the AUXILIARY
keyword.

In the following example, the shared object filter.so.1 is defined to be an auxiliary filter.
filter.so.1 offers the symbols foo and bar, and is an auxiliary filter on the filtee filtee.so.1.
In this example, the environment variable LD_OPTIONS is used to circumvent the compiler
driver from interpreting the -f option.

$ cat filter.c

char * bar = "defined in filter";

char * foo()

{

return ("defined in filter");
}

$ LD_OPTIONS=’-f filtee.so.1’ \

cc -o filter.so.1 -G -K pic -h filter.so.1 -R. filter.c

$ elfdump -d filter.so.1 | egrep "SONAME|AUXILIARY"

[2] SONAME 0xee filter.so.1

[3] AUXILIARY 0xfb filtee.so.1

The link-editor can reference the auxiliary filter filter.so.1 as a dependency when creating a
dynamic executable or shared object. The link-editor uses information from the symbol table of
the filter to satisfy any symbol resolution. However, at runtime, any reference to the symbols of
the filter result in a search for the filtee filtee.so.1. If this filtee is found, the runtime linker
uses the filtee to resolve any symbols defined by filter.so.1. If the filtee is not found, or a
symbol from the filter is not found in the filtee, then the original symbol within the filter is used.
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For example, the following dynamic executable prog, references the symbols foo and bar,
which are resolved during link-edit from the filter filter.so.1. The execution of prog results
in foo being obtained from the filtee filtee.so.1, not from the filter filter.so.1. However,
bar is obtained from the filter filter.so.1, as this symbol has no alternative definition in the
filtee filtee.so.1.

$ cat main.c

extern char * bar, * foo();

main()

{

(void) printf("foo is %s: bar is %s\n", foo(), bar);

}

$ cc -o prog main.c -R. filter.so.1

$ prog

foo is defined in filtee: bar is defined in filter

In the following example, the shared object filter.so.2 defines one of its interfaces, foo, to be
an auxiliary filter on the filtee filtee.so.1.

$ cat filter.c

char * bar = "defined in filter";

char * foo()

{

return ("defined in filter");
}

$ cat mapfile

{

global:

foo = AUXILIARY filtee.so.1;

};

$ cc -o filter.so.2 -G -K pic -h filter.so.2 -M mapfile -R. filter.c

$ elfdump -d filter.so.2 | egrep "SONAME|AUXILIARY"

[2] SONAME 0xd8 filter.so.2

[3] SUNW_AUXILIARY 0xfb filtee.so.1

$ elfdump -y filter.so.2 | egrep "foo|bar"

[1] A [3] filtee.so.1 foo

[10] D <self> bar

At runtime, any reference to the symbol foo of the filter, results in a search for the filtee
filtee.so.1. If the filtee is found, the filtee is loaded. The filtee is then used to resolve the
symbol foo defined by filter.so.2. If the filtee is not found, symbol foo defined by
filter.so.2 is used. Reference to the symbol bar always uses the symbol from filter.so.2, as
no filtee processing is defined for this symbol.
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For example, the following dynamic executable prog, references the symbols foo and bar,
which are resolved during link-edit from the filter filter.so.2. If the filtee filtee.so.1 exists,
the execution of prog results in foo being obtained from the filtee filtee.so.1, and bar being
obtained from the filter filter.so.2.

$ cc -o prog main.c -R. filter.so.2

$ prog

foo is defined in filtee: bar is defined in filter

If the filtee filtee.so.1 does not exist, the execution of prog results in foo and bar being
obtained from the filter filter.so.2.

$ prog

foo is defined in filter: bar is defined in filter

In these examples, the filtee filtee.so.1 is uniquely associated to the filter. The filtee is not
available to satisfy symbol lookup from any other objects that might be loaded as a consequence
of executing prog.

Auxiliary filters provide a mechanism for defining an alternative interface of an existing shared
object. This mechanism is used in the Solaris OS to provide optimized functionality within
hardware capability, and platform specific shared objects. See “Hardware Capability Specific
Shared Objects” on page 353, “Instruction Set Specific Shared Objects” on page 355, and “System
Specific Shared Objects” on page 357 for examples.

Note – The environment variable LD_NOAUXFLTR can be set to disable the runtime linkers
auxiliary filter processing. Because auxiliary filters are frequently employed to provide platform
specific optimizations, this option can be useful in evaluating filtee use and their performance
impact.

Filtering Combinations
Individual interfaces that define standard filters, together with individual interfaces that define
auxiliary filters, can be defined within the same shared object. This combination of filter
definitions is achieved by using the mapfile keywords FILTER and AUXILIARY to assign the
required filtees.

A shared object that defines all of its interfaces to be filters by using the -F, or -f option, is either
a standard or auxiliary filter.

A shared object can define individual interfaces to act as filters, together with defining all the
interfaces of the object to act as a filters. In this case, the individual filtering defined for an
interface is processed first. When a filtee for an individual interface filter can not be established,
the filtee defined for all the interfaces of the filter provides a fall back if appropriate.
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For example, consider the filter filter.so.1. This filter defines that all interfaces act as
auxiliary filters against the filtee filtee.so.1 using the link-editor's -f flag. filter.so.1 also
defines the individual interface foo to be a standard filter against the filtee foo.so.1 using the
mapfile keyword FILTER. filter.so.1 also defines the individual interface bar to be an
auxiliary filter against the filtee bar.so.1 using the mapfile keyword AUXILIARY.

An external reference to foo results in processing the filtee foo.so.1. If foo can not be found
from foo.so.1, then no further processing of the filter is carried out. In this case, no fall back
processing is performed because foo is defined to be a standard filter.

An external reference to bar results in processing the filtee bar.so.1. If bar can not be found
from bar.so.1, then processing falls back to the filtee filtee.so.1. In this case, fall back
processing is performed because bar is defined to be an auxiliary filter. If bar can not be found
from filtee.so.1, then the definition of bar within the filter filter.so.1 is finally used to
resolve the external reference.

Filtee Processing
The runtime linker's processing of a filter defers loading a filtee until a filter symbol is
referenced. This implementation is analogous to the filter performing a dlopen(3C), using
mode RTLD_LOCAL, on each of its filtees as the filtee is required. This implementation accounts
for differences in dependency reporting that can be produced by tools such as ldd(1).

The link-editor's -z loadfltr option can be used when creating a filter to cause the immediate
processing of its filtees at runtime. In addition, the immediate processing of all filtees within a
process, can be triggered by setting the LD_LOADFLTR environment variable to any value.

Performance Considerations
A shared object can be used by multiple applications within the same system. The performance
of a shared object affects the applications that use the shared object, and the system as a whole.

Although the code within a shared object directly affects the performance of a running process,
the performance issues discussed here relate to the runtime processing of the shared object. The
following sections investigate this processing in more detail by looking at aspects such as text
size and purity, together with relocation overhead.

Analyzing Files
Various tools are available to analyze the contents of an ELF file. To display the size of a file use
the size(1) command.
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$ size -x libfoo.so.1

59c + 10c + 20 = 0x6c8

$ size -xf libfoo.so.1

..... + 1c(.init) + ac(.text) + c(.fini) + 4(.rodata) + \

..... + 18(.data) + 20(.bss) .....

The first example indicates the size of the shared objects text, data, and bss, a categorization
used in previous releases of the SunOS operating system.

The ELF format provides a finer granularity for expressing data within a file by organizing the
data into sections. The second example displays the size of each of the file's loadable sections.

Sections are allocated to units known as segments, some segments describe how portions of a file
are mapped into memory. See mmap(2). These loadable segments can be displayed by using the
dump(1) command and examining the LOAD entries.

$ dump -ov libfoo.so.1

libfoo.so.1:

***** PROGRAM EXECUTION HEADER *****

Type Offset Vaddr Paddr

Filesz Memsz Flags Align

LOAD 0x94 0x94 0x0

0x59c 0x59c r-x 0x10000

LOAD 0x630 0x10630 0x0

0x10c 0x12c rwx 0x10000

There are two loadable segments in the shared object libfoo.so.1, commonly referred to as
the text and data segments. The text segment is mapped to allow reading and execution of its
contents (r-x), whereas the data segment is mapped to also allow its contents to be modified
(rwx). The memory size (Memsz) of the data segment differs from the file size (Filesz). This
difference accounts for the .bss section, which is part of the data segment, and is dynamically
created when the segment is loaded.

Programmers usually think of a file in terms of the symbols that define the functions and data
elements within their code. These symbols can be displayed using nm(1). For example.

$ nm -x libfoo.so.1

[Index] Value Size Type Bind Other Shndx Name

.........

[39] |0x00000538|0x00000000|FUNC |GLOB |0x0 |7 |_init

[40] |0x00000588|0x00000034|FUNC |GLOB |0x0 |8 |foo

[41] |0x00000600|0x00000000|FUNC |GLOB |0x0 |9 |_fini

[42] |0x00010688|0x00000010|OBJT |GLOB |0x0 |13 |data
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[43] |0x0001073c|0x00000020|OBJT |GLOB |0x0 |16 |bss

.........

The section that contains a symbol can be determined by referencing the section index (Shndx)
field from the symbol table and by using dump(1) to display the sections within the file. For
example.

$ dump -hv libfoo.so.1

libfoo.so.1:

**** SECTION HEADER TABLE ****

[No] Type Flags Addr Offset Size Name

.........

[7] PBIT -AI 0x538 0x538 0x1c .init

[8] PBIT -AI 0x554 0x554 0xac .text

[9] PBIT -AI 0x600 0x600 0xc .fini

.........

[13] PBIT WA- 0x10688 0x688 0x18 .data

[16] NOBI WA- 0x1073c 0x73c 0x20 .bss

.........

The output from both the previous nm(1) and dump(1) examples shows the association of the
functions _init, foo, and _fini to the sections .init, .text and .fini. These sections,
because of their read-only nature, are part of the text segment.

Similarly, the data arrays data, and bss are associated with the sections .data and .bss

respectively. These sections, because of their writable nature, are part of the data segment.

Note – The previous dump(1) display has been simplified for this example.

Underlying System
When an application is built using a shared object, the entire loadable contents of the object are
mapped into the virtual address space of that process at runtime. Each process that uses a
shared object starts by referencing a single copy of the shared object in memory.

Relocations within the shared object are processed to bind symbolic references to their
appropriate definitions. This results in the calculation of true virtual addresses that could not be
derived at the time the shared object was generated by the link-editor. These relocations usually
result in updates to entries within the process's data segments.

Performance Considerations

Linker and Libraries Guide • September 2008128



The memory management scheme underlying the dynamic linking of shared objects shares
memory among processes at the granularity of a page. Memory pages can be shared as long as
they are not modified at runtime. If a process writes to a page of a shared object when writing a
data item, or relocating a reference to a shared object, it generates a private copy of that page.
This private copy will have no effect on other users of the shared object. However, this page has
lost any benefit of sharing between other processes. Text pages that become modified in this
manner are referred to as impure.

The segments of a shared object that are mapped into memory fall into two basic categories; the
text segment, which is read-only, and the data segment, which is read-write. See “Analyzing
Files” on page 126 on how to obtain this information from an ELF file. An overriding goal when
developing a shared object is to maximize the text segment and minimize the data segment.
This optimizes the amount of code sharing while reducing the amount of processing needed to
initialize and use a shared object. The following sections present mechanisms that can help
achieve this goal.

Lazy Loading of Dynamic Dependencies
You can defer the loading of a shared object dependency until the dependencies first reference,
by establishing the object as lazy loadable. See “Lazy Loading of Dynamic Dependencies” on
page 83.

For small applications, a typical thread of execution can reference all the applications
dependencies. The application loads all of its dependencies whether the dependencies are
defined lazy loadable or not. However, under lazy loading, dependency processing can be
deferred from process startup and spread throughout the process's execution.

For applications with many dependencies, lazy loading often results in some dependencies not
being loaded at all. Dependencies that are not referenced for a particular thread of execution,
are not loaded.

Position-Independent Code
The code within a dynamic executable is typically position-dependent, and is tied to a fixed
address in memory. Shared objects, on the other hand, can be loaded at different addresses in
different processes. Position-independent code is not tied to a specific address. This
independence allows the code to execute efficiently at a different address in each process that
uses the code. Position-independent code is recommended for the creation of shared objects.

The compiler can generate position-independent code under the -K pic option.

If a shared object is built from position-dependent code, the text segment can require
modification at runtime. This modification allows relocatable references to be assigned to the
location that the object has been loaded. The relocation of the text segment requires the
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segment to be remapped as writable. This modification requires a swap space reservation, and
results in a private copy of the text segment for the process. The text segment is no longer
sharable between multiple processes. Position-dependent code typically requires more runtime
relocations than the corresponding position-independent code. Overall, the overhead of
processing text relocations can cause serious performance degradation.

When a shared object is built from position-independent code, relocatable references are
generated as indirections through data in the shared object's data segment. The code within the
text segment requires no modification. All relocation updates are applied to corresponding
entries within the data segment. See “Global Offset Table (Processor-Specific)” on page 286 and
“Procedure Linkage Table (Processor-Specific)” on page 287 for more details on the specific
indirection techniques.

The runtime linker attempts to handle text relocations should these relocations exist. However,
some relocations can not be satisfied at runtime.

The x64 position-dependent code sequence typically generates code which can only be loaded
into the lower 32–bits of memory. The upper 32–bits of any address must all be zeros. Since
shared objects are typically loaded at the top of memory, the upper 32–bits of an address are
required. Position-dependent code within an x64 shared object is therefore insufficient to cope
with relocation requirements. Use of such code within a shared object can result in runtime
relocation errors.

$ prog

ld.so.1: prog: fatal: relocation error: R_AMD64_32: file \

libfoo.so.1: symbol (unknown): value 0xfffffd7fff0cd457 does not fit

Position-independent code can be loaded in any region in memory, and hence satisfies the
requirements of shared objects for x64.

This situation differs from the default ABS64 mode that is used for 64–bit SPARCV9 code. This
position-dependent code is typically compatible with the full 64–bit address range. Thus,
position-dependent code sequences can exist within SPARCV9 shared objects. Use of either the
ABS32 mode, or ABS44 mode for 64–bit SPARCV9 code, can still result in relocations that can
not be resolved at runtime. However, each of these modes require the runtime linker to relocate
the text segment.

Regardless of the runtime linkers capabilities, or differences in relocation requirements, shared
objects should be built using position-independent code.

You can identify a shared object that requires relocations against its text segment. The following
example uses dump(1) to determine whether a TEXTREL entry dynamic entry exists.

$ cc -o libfoo.so.1 -G -R. foo.c

$ dump -Lv libfoo.so.1 | grep TEXTREL

[9] TEXTREL 0
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Note – The value of the TEXTREL entry is irrelevant. The presence of this entry in a shared object
indicates that text relocations exist.

To prevent the creation of a shared object that contains text relocations use the link-editor's
-z text flag. This flag causes the link-editor to generate diagnostics indicating the source of any
position-dependent code used as input. The following example shows how position-dependent
code results in a failure to generate a shared object.

$ cc -o libfoo.so.1 -z text -G -R. foo.c

Text relocation remains referenced

against symbol offset in file

foo 0x0 foo.o

bar 0x8 foo.o

ld: fatal: relocations remain against allocatable but \

non-writable sections

Two relocations are generated against the text segment because of the
non-position-independent code generated from the file foo.o. Where possible, these
diagnostics indicate any symbolic references that are required to carry out the relocations. In
this case, the relocations are against the symbols foo and bar.

Text relocations within a shared object can also occur when hand written assembler code is
included and does not include the appropriate position-independent prototypes.

Note – You might want to experiment with some simple source files to determine coding
sequences that enable position-independence. Use the compilers ability to generate
intermediate assembler output.

SPARC: -K pic and -K PIC Options
For SPARC binaries, a subtle difference between the -K pic option and an alternative -K PIC
option affects references to global offset table entries. See “Global Offset Table
(Processor-Specific)” on page 286.

The global offset table is an array of pointers, the size of whose entries are constant for 32–bit
(4–bytes) and 64–bit (8–bytes). The following code sequence makes reference to an entry under
-K pic.

ld [%l7 + j], %o0 ! load &j into %o0

Where %l7 is the precomputed value of the symbol _GLOBAL_OFFSET_TABLE_ of the object
making the reference.
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This code sequence provides a 13–bit displacement constant for the global offset table entry.
This displacement therefore provides for 2048 unique entries for 32–bit objects, and 1024
unique entries for 64–bit objects. If the creation of an object requires more than the available
number of entries, the link-editor produces a fatal error.

$ cc -K pic -G -o lobfoo.so.1 a.o b.o ... z.o

ld: fatal: too many symbols require ‘small’ PIC references:

have 2050, maximum 2048 -- recompile some modules -K PIC.

To overcome this error condition, compile some of the input relocatable objects with the
-K PIC option. This option provides a 32–bit constant for the global offset table entry.

sethi %hi(j), %g1

or %g1, %lo(j), %g1 ! get 32–bit constant GOT offset

ld [%l7 + %g1], %o0 ! load &j into %o0

You can investigate the global offset table requirements of an object using elfdump(1) with the
-G option. You can also examine the processing of these entries during a link-edit using the
link-editors debugging tokens -D got,detail.

Ideally, frequently accessed data items benefit from using the -K pic model. You can reference
a single entry using both models. However, determining which relocatable objects should be
compiled with either option can be time consuming, and the performance improvement
realized small. A recompilation of all relocatable objects with the -K PIC option is typically
easier.

Remove Unused Material
The inclusion of functions and data that are not used by the object being built, is wasteful. This
material bloats the object, which can result in unnecessary relocation overhead and associated
paging activity. References to unused dependencies are also wasteful. These references result in
the unnecessary loading and processing of other shared objects.

Unused sections are displayed during a link-edit when using the link-editors debugging token
-D unused. Sections identified as unused should be removed from the link-edit. Unused
sections can be eliminated using the link-editors -z ignore option.

The link-editor identifies a section from a relocatable object as unused under the following
conditions.
■ The section is allocatable
■ No other sections bind to (relocate) to this section
■ The section provides no global symbols

You can improve the link-editor's ability to eliminate sections by defining the shared object's
external interfaces. By defining an interface, global symbols that are not defined as part of the
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interface are reduced to locals. Reduced symbols that are unreferenced from other objects, are
now clearly identified as candidates for elimination.

Individual functions and data variables can be eliminated by the link-editor if these items are
assigned to their own sections. This section refinement is achieved using compiler options such
as -xF. Earlier compilers only provided for the assignment of functions to their own sections.
Newer compilers have extended the -xF syntax to assign data variables to their own sections.
Earlier compilers required C++ exception handling to be disabled when using -xF. This
restriction has been dropped with later compilers.

If all allocatable sections from a relocatable object can be eliminated, the entire file is discarded
from the link-edit.

In addition to input file elimination, the link-editor also identifies unused dependencies. A
dependency is deemed unused if the dependency is not bound to by the object being produced.
An object can be built with the -z ignore option to eliminate the recording of unused
dependencies.

The -z ignore option applies only to the files that follow the option on the link-edit command
line. The -z ignore option is cancelled with -z record.

Maximizing Shareability
As mentioned in “Underlying System” on page 128, only a shared object's text segment is shared
by all processes that use the object. The object's data segment typically is not shared. Each
process using a shared object, generates a private memory copy of its entire data segment as
data items within the segment are written to. Reduce the data segment, either by moving data
elements that are never written to the text segment, or by removing the data items completely.

The following sections describe several mechanisms that can be used to reduce the size of the
data segment.

Move Read-Only Data to Text
Data elements that are read-only should be moved into the text segment using const
declarations. For example, the following character string resides in the .data section, which is
part of the writable data segment.

char * rdstr = "this is a read-only string";

In contrast, the following character string resides in the .rodata section, which is the read-only
data section contained within the text segment.

const char * rdstr = "this is a read-only string";
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Reducing the data segment by moving read-only elements into the text segment is admirable.
However, moving data elements that require relocations can be counterproductive. For
example, examine the following array of strings.

char * rdstrs[] = { "this is a read-only string",
"this is another read-only string" };

A better definition might seem to be to use the following definition.

const char * const rdstrs[] = { ..... };

This definition ensures that the strings and the array of pointers to these strings are placed in a
.rodata section. Unfortunately, although the user perceives the array of addresses as read-only,
these addresses must be relocated at runtime. This definition therefore results in the creation of
text relocations. Representing the array as:

const char * rdstrs[] = { ..... };

ensures the array pointers are maintained in the writable data segment where they can be
relocated. The array strings are maintained in the read-only text segment.

Note – Some compilers, when generating position-independent code, can detect read-only
assignments that result in runtime relocations. These compilers arrange for placing such items
in writable segments. For example, .picdata.

Collapse Multiply-Defined Data
Data can be reduced by collapsing multiply-defined data. A program with multiple occurrences
of the same error messages can be better off by defining one global datum, and have all other
instances reference this. For example.

const char * Errmsg = "prog: error encountered: %d";

foo()

{

......

(void) fprintf(stderr, Errmsg, error);

......

The main candidates for this sort of data reduction are strings. String usage in a shared object
can be investigated using strings(1). The following example generates a sorted list of the data
strings within the file libfoo.so.1. Each entry in the list is prefixed with the number of
occurrences of the string.

$ strings -10 libfoo.so.1 | sort | uniq -c | sort -rn
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Use Automatic Variables
Permanent storage for data items can be removed entirely if the associated functionality can be
designed to use automatic (stack) variables. Any removal of permanent storage usually results
in a corresponding reduction in the number of runtime relocations required.

Allocate Buffers Dynamically
Large data buffers should usually be allocated dynamically rather than being defined using
permanent storage. Often this results in an overall saving in memory, as only those buffers
needed by the present invocation of an application are allocated. Dynamic allocation also
provides greater flexibility by enabling the buffer's size to change without affecting
compatibility.

Minimizing Paging Activity
Any process that accesses a new page causes a page fault, which is an expensive operation.
Because shared objects can be used by many processes, any reduction in the number of page
faults that are generated by accessing a shared object can benefit the process and the system as a
whole.

Organizing frequently used routines and their data to an adjacent set of pages frequently
improves performance because it improves the locality of reference. When a process calls one of
these functions, the function might already be in memory because of its proximity to the other
frequently used functions. Similarly, grouping interrelated functions improves locality of
references. For example, if every call to the function foo() results in a call to the function bar(),
place these functions on the same page. Tools like cflow(1), tcov(1), prof(1) and gprof(1) are
useful in determining code coverage and profiling.

Isolate related functionality to its own shared object. The standard C library has historically
been built containing many unrelated functions. Only rarely, for example, will any single
executable use everything in this library. Because of widespread use, determining what set of
functions are really the most frequently used is also somewhat difficult. In contrast, when
designing a shared object from scratch, maintain only related functions within the shared
object. This improves locality of reference and has the side effect of reducing the object's overall
size.

Relocations
In “Relocation Processing” on page 76, the mechanisms by which the runtime linker relocates
dynamic executables and shared objects to create a runable process was covered. “Relocation
Symbol Lookup” on page 76 and “When Relocations Are Performed” on page 80 categorized
this relocation processing into two areas to simplify and help illustrate the mechanisms
involved. These same two categorizations are also ideally suited for considering the
performance impact of relocations.
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Symbol Lookup
When the runtime linker needs to look up a symbol, by default it does so by searching in each
object. The runtime linker starts with the dynamic executable, and progresses through each
shared object in the same order that the objects are loaded. In many instances, the shared object
that requires a symbolic relocation turns out to be the provider of the symbol definition.

In this situation, if the symbol used for this relocation is not required as part of the shared
object's interface, then this symbol is a strong candidate for conversion to a static or automatic
variable. A symbol reduction can also be applied to removed symbols from a shared objects
interface. See “Reducing Symbol Scope” on page 57 for more details. By making these
conversions, the link-editor incurs the expense of processing any symbolic relocation against
these symbols during the shared object's creation.

The only global data items that should be visible from a shared object are those that contribute
to its user interface. Historically this has been a hard goal to accomplish, because global data are
often defined to allow reference from two or more functions located in different source files. By
applying symbol reduction, unnecessary global symbols can be removed. See “Reducing
Symbol Scope” on page 57. Any reduction in the number of global symbols exported from a
shared object results in lower relocation costs and an overall performance improvement.

The use of direct bindings can also significantly reduce the symbol lookup overhead within a
dynamic process that has many symbolic relocations and many dependencies. See “Direct
Bindings” on page 78.

When Relocations are Performed
All immediate reference relocations must be carried out during process initialization before the
application gains control. However, any lazy reference relocations can be deferred until the first
instance of a function being called. Immediate relocations typically result from data references.
Therefore, reducing the number of data references also reduces the runtime initialization of a
process.

Initialization relocation costs can also be deferred by converting data references into function
references. For example, you can return data items by a functional interface. This conversion
usually results in a perceived performance improvement because the initialization relocation
costs are effectively spread throughout the process's execution. Some of the functional
interfaces might never be called by a particular invocation of a process, thus removing their
relocation overhead altogether.

The advantage of using a functional interface can be seen in the section, “Copy Relocations” on
page 137. This section examines a special, and somewhat expensive, relocation mechanism
employed between dynamic executables and shared objects. It also provides an example of how
this relocation overhead can be avoided.
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Combined Relocation Sections
The relocation sections within relocatable objects are typically maintained in a one-to-one
relationship with the sections to which the relocations must be applied. However, when an
executable or shared object is built with the -z combreloc option, all but the procedure linkage
table relocations are placed into a single common section named .SUNW_reloc.

Combining relocation records in this manner enables all RELATIVE relocations to be grouped
together. All symbolic relocations are sorted by symbol name. The grouping of RELATIVE
relocations permits optimized runtime processing using the DT_RELACOUNT/DT_RELCOUNT
.dynamic entries. Sorted symbolic entries help reduce runtime symbol lookup.

Copy Relocations
Shared objects are usually built with position-independent code. References to external data
items from code of this type employs indirect addressing through a set of tables. See
“Position-Independent Code” on page 129 for more details. These tables are updated at runtime
with the real address of the data items. These updated tables enable access to the data without
the code itself being modified.

Dynamic executables, however, are generally not created from position-independent code. Any
references to external data they make can seemingly only be achieved at runtime by modifying
the code that makes the reference. Modifying a read-only text segment is to be avoided. The
copy relocation technique can solve this reference.

Suppose the link-editor is used to create a dynamic executable, and a reference to a data item is
found to reside in one of the dependent shared objects. Space is allocated in the dynamic
executable's .bss, equivalent in size to the data item found in the shared object. This space is
also assigned the same symbolic name as defined in the shared object. Along with this data
allocation, the link-editor generates a special copy relocation record that instructs the runtime
linker to copy the data from the shared object to the allocated space within the dynamic
executable.

Because the symbol assigned to this space is global, it is used to satisfy any references from any
shared objects. The dynamic executable inherits the data item. Any other objects within the
process that make reference to this item are bound to this copy. The original data from which
the copy is made effectively becomes unused.

The following example of this mechanism uses an array of system error messages that is
maintained within the standard C library. In previous SunOS operating system releases, the
interface to this information was provided by two global variables, sys_errlist[], and
sys_nerr. The first variable provided the array of error message strings, while the second
conveyed the size of the array itself. These variables were commonly used within an application
in the following manner.

$ cat foo.c

extern int sys_nerr;
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extern char * sys_errlist[];

char *

error(int errnumb)

{

if ((errnumb < 0) || (errnumb >= sys_nerr))

return (0);

return (sys_errlist[errnumb]);

}

The application uses the function error to provide a focal point to obtain the system error
message associated with the number errnumb.

Examining a dynamic executable built using this code shows the implementation of the copy
relocation in more detail.

$ cc -o prog main.c foo.c

$ nm -x prog | grep sys_

[36] |0x00020910|0x00000260|OBJT |WEAK |0x0 |16 |sys_errlist

[37] |0x0002090c|0x00000004|OBJT |WEAK |0x0 |16 |sys_nerr

$ dump -hv prog | grep bss

[16] NOBI WA- 0x20908 0x908 0x268 .bss

$ dump -rv prog

**** RELOCATION INFORMATION ****

.rela.bss:

Offset Symndx Type Addend

0x2090c sys_nerr R_SPARC_COPY 0

0x20910 sys_errlist R_SPARC_COPY 0

..........

The link-editor has allocated space in the dynamic executable's .bss to receive the data
represented by sys_errlist and sys_nerr. These data are copied from the C library by the
runtime linker at process initialization. Thus, each application that uses these data gets a private
copy of the data in its own data segment.

There are two drawbacks to this technique. First, each application pays a performance penalty
for the overhead of copying the data at runtime. Second, the size of the data array sys_errlist
has now become part of the C library's interface. Suppose the size of this array were to change,
perhaps as new error messages are added. Any dynamic executables that reference this array
have to undergo a new link-edit to be able to access any of the new error messages. Without this
new link-edit, the allocated space within the dynamic executable is insufficient to hold the new
data.
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These drawbacks can be eliminated if the data required by a dynamic executable are provided
by a functional interface. The ANSI C function strerror(3C) returns a pointer to the
appropriate error string, based on the error number supplied to it. One implementation of this
function might be:

$ cat strerror.c

static const char * sys_errlist[] = {

"Error 0",
"Not owner",
"No such file or directory",
......

};

static const int sys_nerr =

sizeof (sys_errlist) / sizeof (char *);

char *

strerror(int errnum)

{

if ((errnum < 0) || (errnum >= sys_nerr))

return (0);

return ((char *)sys_errlist[errnum]);

}

The error routine in foo.c can now be simplified to use this functional interface. This
simplification in turn removes any need to perform the original copy relocations at process
initialization.

Additionally, because the data are now local to the shared object, the data are no longer part of
its interface. The shared object therefore has the flexibility of changing the data without
adversely effecting any dynamic executables that use it. Eliminating data items from a shared
object's interface generally improves performance while making the shared object's interface
and code easier to maintain.

ldd(1), when used with either the -d or -r options, can verify any copy relocations that exist
within a dynamic executable.

For example, suppose the dynamic executable prog had originally been built against the shared
object libfoo.so.1 and the following two copy relocations had been recorded.

$ nm -x prog | grep _size_

[36] |0x000207d8|0x40|OBJT |GLOB |15 |_size_gets_smaller

[39] |0x00020818|0x40|OBJT |GLOB |15 |_size_gets_larger

$ dump -rv size | grep _size_

0x207d8 _size_gets_smaller R_SPARC_COPY 0

0x20818 _size_gets_larger R_SPARC_COPY 0

A new version of this shared object is supplied that contains different data sizes for these
symbols.
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$ nm -x libfoo.so.1 | grep _size_

[26] |0x00010378|0x10|OBJT |GLOB |8 |_size_gets_smaller

[28] |0x00010388|0x80|OBJT |GLOB |8 |_size_gets_larger

Running ldd(1) against the dynamic executable reveals the following.

$ ldd -d prog

libfoo.so.1 => ./libfoo.so.1

...........

copy relocation sizes differ: _size_gets_smaller

(file prog size=40; file ./libfoo.so.1 size=10);

./libfoo.so.1 size used; possible insufficient data copied

copy relocation sizes differ: _size_gets_larger

(file prog size=40; file ./libfoo.so.1 size=80);

./prog size used; possible data truncation

ldd(1) shows that the dynamic executable will copy as much data as the shared object has to
offer, but only accepts as much as its allocated space allows.

Copy relocations can be eliminated by building the application from position-independent
code. See “Position-Independent Code” on page 129.

Using the -B symbolic Option
The link-editor's -B symbolic option enables you to bind symbol references to their global
definitions within a shared object. This option is historic, in that it was designed for use in
creating the runtime linker itself.

Defining an object's interface and reducing non-public symbols to local is preferable to using
the -B symbolic option. See “Reducing Symbol Scope” on page 57. Using -B symbolic can
often result in some non-intuitive side effects.

If a symbolically bound symbol is interposed upon, then references to the symbol from outside
of the symbolically bound object bind to the interposer. The object itself is already bound
internally. Essentially, two symbols with the same name are now being referenced from within
the process. A symbolically bound data symbol that results in a copy relocation creates the same
interposition situation. See “Copy Relocations” on page 137.

Note – Symbolically bound shared objects are identified by the .dynamic flag DF_SYMBOLIC. This
flag is informational only. The runtime linker processes symbol lookups from these objects in
the same manner as any other object. Any symbolic binding is assumed to have been created at
the link-edit phase.
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Profiling Shared Objects
The runtime linker can generate profiling information for any shared objects that are processed
during the running of an application. The runtime linker is responsible for binding shared
objects to an application and is therefore able to intercept any global function bindings. These
bindings take place through .plt entries. See “When Relocations Are Performed” on page 80
for details of this mechanism.

The LD_PROFILE environment variable specifies the name of a shared object to profile. You can
analyze a single shared object using this environment variable. The setting of the environment
variable can be used to analyze the use of the shared object by one or more applications. In the
following example, the use of libc by the single invocation of the command ls(1) is analyzed.

$ LD_PROFILE=libc.so.1 ls -l

In the following example, the environment variable setting is recorded in a configuration file.
This setting causes any application's use of libc to accumulate the analyzed information.

# crle -e LD_PROFILE=libc.so.1

$ ls -l

$ make

$ ...

When profiling is enabled, a profile data file is created, if it does not already exist. The file is
mapped by the runtime linker. In the previous examples, this data file is
/var/tmp/libc.so.1.profile. 64–bit libraries require an extended profile format and are
written using the .profilex suffix. You can also specify an alternative directory to store the
profile data using the LD_PROFILE_OUTPUT environment variable.

This profile data file is used to deposit profil(2) data and call count information related to the
use of the specified shared object. This profiled data can be directly examined with gprof(1).

Note – gprof(1) is most commonly used to analyze the gmon.out profile data created by an
executable that has been compiled with the -xpg option of cc(1). The runtime linker's profile
analysis does not require any code to be compiled with this option. Applications whose
dependent shared objects are being profiled should not make calls to profil(2), because this
system call does not provide for multiple invocations within the same process. For the same
reason, these applications must not be compiled with the -xpg option of cc(1). This
compiler-generated mechanism of profiling is also built on top of profil(2).

One of the most powerful features of this profiling mechanism is to enable the analysis of a
shared object as used by multiple applications. Frequently, profiling analysis is carried out using
one or two applications. However, a shared object, by its very nature, can be used by a multitude
of applications. Analyzing how these applications use the shared object can offer insights into
where energy might be spent to improvement the overall performance of the shared object.
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The following example shows a performance analysis of libc over a creation of several
applications within a source hierarchy.

$ LD_PROFILE=libc.so.1 ; export LD_PROFILE

$ make

$ gprof -b /lib/libc.so.1 /var/tmp/libc.so.1.profile

.....

granularity: each sample hit covers 4 byte(s) ....

called/total parents

index %time self descendents called+self name index

called/total children

.....

-----------------------------------------------

0.33 0.00 52/29381 _gettxt [96]

1.12 0.00 174/29381 _tzload [54]

10.50 0.00 1634/29381 <external>

16.14 0.00 2512/29381 _opendir [15]

160.65 0.00 25009/29381 _endopen [3]

[2] 35.0 188.74 0.00 29381 _open [2]

-----------------------------------------------

.....

granularity: each sample hit covers 4 byte(s) ....

% cumulative self self total

time seconds seconds calls ms/call ms/call name

35.0 188.74 188.74 29381 6.42 6.42 _open [2]

13.0 258.80 70.06 12094 5.79 5.79 _write [4]

9.9 312.32 53.52 34303 1.56 1.56 _read [6]

7.1 350.53 38.21 1177 32.46 32.46 _fork [9]

....

The special name <external> indicates a reference from outside of the address range of the
shared object being profiled. Thus, in the previous example, 1634 calls to the function open(2)
within libc occurred from the dynamic executables, or from other shared objects, bound with
libc while the profiling analysis was in progress.

Note – The profiling of shared objects is multithread safe, except in the case where one thread
calls fork(2) while another thread is updating the profile data information. The use of fork(2)
removes this restriction.
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Application Binary Interfaces and Versioning

ELF objects processed by the link-editors provide many global symbols to which other objects
can bind. These symbols describe the object's application binary interface (ABI). During the
evolution of an object, this interface can change due to the addition or deletion of global
symbols. In addition, the object's evolution can involve internal implementation changes.

Versioning refers to several techniques that can be applied to an object to indicate interface and
implementation changes. These techniques provide for controlled evolution of the object, while
maintaining backward compatibility.

This chapter describes how to defined an object's ABI. Also covered, are how changes to this
ABI interface can affect backward compatibility. These concepts are explored with models that
convey how interface, together with implementation changes, can be incorporated into a new
release of an object.

The focus of this chapter is on the runtime interfaces of dynamic executables and shared
objects. The techniques used to describe and manage changes within these dynamic objects are
presented in generic terms. A common set of naming conventions and versioning scenarios as
applied to shared objects can be found in Appendix B, “Versioning Quick Reference.”

Developers of dynamic objects must be aware of the ramifications of an interface change and
understand how such changes can be managed, especially in regards to maintaining backward
compatibility with previously shipped objects.

The global symbols that are made available by any dynamic object represent the object's public
interface. Frequently, the number of global symbols that remain in an object after a link-edit are
more than you would like to make public. These global symbols stem from the symbol state that
is required between the relocatable objects used to create the object. These symbols represent
private interfaces within the object.

To define an object'sABI, you should first determine those global symbols that you want to
make publicly available from the object. These public symbols can be established using the
link-editor's -M option and an associated mapfile as part of the final link-edit. This technique is
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introduced in “Reducing Symbol Scope” on page 57. This public interface establishes one or
more version definitions within the object being created. These definitions form the foundation
for the addition of new interfaces as the object evolves.

The following sections build upon this initial public interface. First though, you should
understand how various changes to an interface can be categorized so that these interfaces can
be managed appropriately.

Interface Compatibility
Many types of change can be made to an object. In their simplest terms, these changes can be
categorized into one of two groups.

■ Compatible updates. These updates are additive. All previously available interfaces remain
intact.

■ Incompatible updates. These updates change the existing interface. Existing users of the
interface can fail, or behave incorrectly.

The following table categorizes some common object changes.

TABLE 5–1 Examples of Interface Compatibility

Object Change Update Type

The addition of a symbol Compatible

The removal of a symbol Incompatible

The addition of an argument to a non-varargs(3EXT) function Incompatible

The removal of an argument from a function Incompatible

The change of size, or content, of a data item to a function or as an external
definition

Incompatible

A bug fix, or internal enhancement to a function, providing the semantic
properties of the object remain unchanged

Compatible

A bug fix, or internal enhancement to a function when the semantic properties of
the object change

Incompatible

Note – Because of interposition, the addition of a symbol can constitute an incompatible update.
The new symbol might conflict with an applications use of that symbol. However, this form of
incompatibility does seem rare in practice as source-level name space management is
commonly used.

Interface Compatibility

Linker and Libraries Guide • September 2008144



Compatible updates can be accommodated by maintaining version definitions that are internal
to the object being generated. Incompatible updates can be accommodated by producing a new
object with a new external versioned name. Both of these versioning techniques enable the
selective binding of applications. These techniques also enable verification of correct version
binding at runtime. These two techniques are explored in more detail in the following sections.

Internal Versioning
A dynamic object can have one or more internal version definitions associated with the object.
Each version definition is commonly associated with one or more symbol names. A symbol
name can only be associated with one version definition. However, a version definition can
inherit the symbols from other version definitions. Thus, a structure exists to define one or
more independent, or related, version definitions within the object being created. As new
changes are made to the object, new version definitions can be added to express these changes.

Version definitions within a shared object provide two capabilities.

■ Dynamic objects that are built against a versioned shared object can record their
dependency on the version definitions bound to. These version dependencies are verified at
runtime to ensure that the appropriate interfaces, or functionality, are available for the
correct execution of an application.

■ Dynamic objects can select the version definitions of a shared object to bind to during their
link-edit. This mechanism enables developers to control their dependency on a shared
object to the interfaces, or functionality, that provide the most flexibility.

Creating a Version Definition
Version definitions commonly consist of an association of symbol names to a unique version
name. These associations are established within a mapfile and supplied to the final link-edit of
an object using the link-editor's -M option. This technique is introduced in the section
“Reducing Symbol Scope” on page 57.

A version definition is established whenever a version name is specified as part of the mapfile
directive. In the following example, two source files are combined, together with mapfile

directives, to produce an object with a defined public interface.

$ cat foo.c

extern const char * _foo1;

void foo1()

{

(void) printf(_foo1);

}
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$ cat data.c

const char * _foo1 = "string used by foo1()\n";

$ cat mapfile

SUNW_1.1 { # Release X

global:

foo1;

local:

*;

};

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o

$ nm -x libfoo.so.1 | grep "foo.$"

[33] |0x0001058c|0x00000004|OBJT |LOCL |0x0 |17 |_foo1

[35] |0x00000454|0x00000034|FUNC |GLOB |0x0 |9 |foo1

The symbol foo1 is the only global symbol that is defined to provide the shared object's public
interface. The special auto-reduction directive “*” causes the reduction of all other global
symbols to have local binding within the object being generated. The auto-reduction directive is
introduced in “Defining Additional Symbols with a mapfile” on page 50. The associated
version name, SUNW_1.1, causes the generation of a version definition. Thus, the shared object's
public interface consists of the global symbol foo1 associated to the internal version definition
SUNW_1.1.

Whenever a version definition, or the auto-reduction directive, are used to generate an object, a
base version definition is also created. This base version is defined using the name of the object
being built. This base version is used to associate any reserved symbols generated by the
link-editor. See “Generating the Output File” on page 62 for a list of reserved symbols.

The version definitions that are contained within an object can be displayed using pvs(1) with
the -d option.

$ pvs -d libfoo.so.1

libfoo.so.1;

SUNW_1.1;

The object libfoo.so.1 has an internal version definition named SUNW_1.1, together with a
base version definition libfoo.so.1.

Note – The link-editor's -z noversion option allows symbol reduction to be directed by a
mapfile but suppresses the creation of version definitions.

From this initial version definition, the object can evolve by adding new interfaces together with
updated functionality. For example, a new function, foo2, together with its supporting data
structures, can be added to the object by updating the source files foo.c and data.c.
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$ cat foo.c

extern const char * _foo1;

extern const char * _foo2;

void foo1()

{

(void) printf(_foo1);

}

void foo2()

{

(void) printf(_foo2);

}

$ cat data.c

const char * _foo1 = "string used by foo1()\n";
const char * _foo2 = "string used by foo2()\n";

A new version definition, SUNW_1.2, can be created to define a new interface representing the
symbol foo2. In addition, this new interface can be defined to inherit the original version
definition SUNW_1.1.

The creation of this new interface is important, as the interface describes the evolution of the
object. These interfaces enable users to verify and select the interfaces to bind with. These
concepts are covered in more detail in “Binding to a Version Definition” on page 151 and in
“Specifying a Version Binding” on page 155.

The following example shows the mapfile directives that create these two interfaces.

$ cat mapfile

SUNW_1.1 { # Release X

global:

foo1;

local:

*;

};

SUNW_1.2 { # Release X+1

global:

foo2;

} SUNW_1.1;

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o

$ nm -x libfoo.so.1 | grep "foo.$"

[33] |0x00010644|0x00000004|OBJT |LOCL |0x0 |17 |_foo1

[34] |0x00010648|0x00000004|OBJT |LOCL |0x0 |17 |_foo2

[36] |0x000004bc|0x00000034|FUNC |GLOB |0x0 |9 |foo1

[37] |0x000004f0|0x00000034|FUNC |GLOB |0x0 |9 |foo2
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The symbols foo1 and foo2 are both defined to be part of the shared object's public interface.
However, each of these symbols is assigned to a different version definition. foo1 is assigned to
version SUNW_1.1. foo2 is assigned to version SUNW_1.2.

These version definitions, their inheritance, and their symbol association can be displayed using
pvs(1) together with the -d, -v and -s options.

$ pvs -dsv libfoo.so.1

libfoo.so.1:

_end;

_GLOBAL_OFFSET_TABLE_;

_DYNAMIC;

_edata;

_PROCEDURE_LINKAGE_TABLE_;

_etext;

SUNW_1.1:

foo1;

SUNW_1.1;

SUNW_1.2: {SUNW_1.1}:

foo2;

SUNW_1.2

The version definition SUNW_1.2 has a dependency on the version definition SUNW_1.1.

The inheritance of one version definition by another version definition is a useful technique.
This inheritance reduces the version information that is eventually recorded by any object that
binds to a version dependency. Version inheritance is covered in more detail in the section
“Binding to a Version Definition” on page 151.

A version definition symbol is created and associated with a version definition. As shown in the
previous pvs(1) example, these symbols are displayed when using the -v option.

Creating a Weak Version Definition
Internal changes to an object that do not require the introduction of a new interface definition
can be defined by creating a weak version definition. Examples of such changes are bug fixes or
performance improvements. Such a version definition is empty. The version definition has no
global interface symbols associated with the definition.

For example, suppose the data file data.c, used in the previous examples, is updated to provide
more detailed string definitions.

$ cat data.c

const char * _foo1 = "string used by function foo1()\n";
const char * _foo2 = "string used by function foo2()\n";

A weak version definition can be introduced to identify this change.
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$ cat mapfile

SUNW_1.1 { # Release X

global:

foo1;

local:

*;

};

SUNW_1.2 { # Release X+1

global:

foo2;

} SUNW_1.1;

SUNW_1.2.1 { } SUNW_1.2; # Release X+2

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o

$ pvs -dv libfoo.so.1

libfoo.so.1;

SUNW_1.1;

SUNW_1.2: {SUNW_1.1};

SUNW_1.2.1 [WEAK]: {SUNW_1.2};

The empty version definition is signified by the weak label. These weak version definitions
enable applications to verify the existence of a particular implementation detail. An application
can bind to the version definition that is associated with an implementation detail that the
application requires. The section “Binding to a Version Definition” on page 151 illustrates how
these definitions can be used in more detail.

Defining Unrelated Interfaces
The previous examples show how new version definitions added to an object inherit any
existing version definitions. You can also create version definitions that are unique and
independent. In the following example, two new files, bar1.c and bar2.c, are added to the
object libfoo.so.1. These files contribute two new symbols, bar1 and bar2, respectively.

$ cat bar1.c

extern void foo1();

void bar1()

{

foo1();

}

$ cat bar2.c

extern void foo2();

void bar2()

{
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foo2();

}

These two symbols are intended to define two new public interfaces. Neither of these new
interfaces are related to each other. However, each interface expresses a dependency on the
original SUNW_1.2 interface.

The following mapfile definition creates the required association.

$ cat mapfile

SUNW_1.1 { # Release X

global:

foo1;

local:

*;

};

SUNW_1.2 { # Release X+1

global:

foo2;

} SUNW_1.1;

SUNW_1.2.1 { } SUNW_1.2; # Release X+2

SUNW_1.3a { # Release X+3

global:

bar1;

} SUNW_1.2;

SUNW_1.3b { # Release X+3

global:

bar2;

} SUNW_1.2;

The version definitions created in libfoo.so.1 when using this mapfile, and their related
dependencies, can be inspected using pvs(1).

$ cc -o libfoo.so.1 -M mapfile -G foo.o bar1.o bar2.o data.o

$ pvs -dv libfoo.so.1

libfoo.so.1;

SUNW_1.1;

SUNW_1.2: {SUNW_1.1};

SUNW_1.2.1 [WEAK]: {SUNW_1.2};

SUNW_1.3a: {SUNW_1.2};

SUNW_1.3b: {SUNW_1.2};

Version definitions can be used to verify runtime binding requirements. Version definitions
can also be used to control the binding of an object during the objects creation. The following
sections explore these version definition usages in more detail.
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Binding to a Version Definition
When a dynamic executable or shared object is built against other shared objects, these
dependencies are recorded in the resulting object. See “Shared Object Processing” on page 32
and “Recording a Shared Object Name” on page 114 for more details. If a dependency also
contain version definitions, then an associated version dependency is recorded in the object
being built.

The following example uses the data files from the previous section to generate a shared object,
libfoo.so.1, which is suitable for a compile time environment.

$ cc -o libfoo.so.1 -h libfoo.so.1 -M mapfile -G foo.o bar.o \

data.o

$ ln -s libfoo.so.1 libfoo.so

$ pvs -dsv libfoo.so.1

libfoo.so.1:

_end;

_GLOBAL_OFFSET_TABLE_;

_DYNAMIC;

_edata;

_PROCEDURE_LINKAGE_TABLE_;

_etext;

SUNW_1.1:

foo1;

SUNW_1.1;

SUNW_1.2: {SUNW_1.1}:

foo2;

SUNW_1.2;

SUNW_1.2.1 [WEAK]: {SUNW_1.2}:

SUNW_1.2.1;

SUNW_1.3a: {SUNW_1.2}:

bar1;

SUNW_1.3a;

SUNW_1.3b: {SUNW_1.2}:

bar2;

SUNW_1.3b

Six public interfaces are offered by the shared object libfoo.so.1. Four of these interfaces,
SUNW_1.1, SUNW_1.2, SUNW_1.3a, and SUNW_1.3b, define exported symbol names. One interface,
SUNW_1.2.1, describes an internal implementation change to the object. One interface,
libfoo.so.1, defines several reserved labels. Dynamic objects created with libfoo.so.1 as a
dependency, record the version names of the interfaces the dynamic object binds to.

The following example creates an application that references symbols foo1 and foo2. The
versioning dependency information that is recorded in the application can be examined using
pvs(1) with the -r option.
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$ cat prog.c

extern void foo1();

extern void foo2();

main()

{

foo1();

foo2();

}

$ cc -o prog prog.c -L. -R. -lfoo

$ pvs -r prog

libfoo.so.1 (SUNW_1.2, SUNW_1.2.1);

In this example, the application prog has bound to the two interfaces SUNW_1.1 and SUNW_1.2.
These interfaces provided the global symbols foo1 and foo2 respectively.

Because version definition SUNW_1.1 is defined within libfoo.so.1 as being inherited by the
version definition SUNW_1.2, you only need to record the one dependency. This inheritance
provides for the normalization of version definition dependencies. This normalization reduces
the amount of version information that is maintained within an object. This normalization also
reduces the version verification processing that is required at runtime.

Because the application prog was built against the shared object's implementation containing
the weak version definition SUNW_1.2.1, this dependency is also recorded. Even though this
version definition is defined to inherit the version definition SUNW_1.2, the version's weak
nature precludes its normalization with SUNW_1.1. A weak version definition results in a
separate dependency recording.

Had there been multiple weak version definitions that inherited from each other, then these
definitions are normalized in the same manner as non-weak version definitions are.

Note – The recording of a version dependency can be suppressed by the link-editor's
-z noversion option.

The runtime linker validates the existence of any recorded version definitions from the objects
that are bound to when the application is executed. This validation can be displayed using
ldd(1) with the -v option. For example, by running ldd(1) on the application prog, the version
definition dependencies are shown to be found correctly in the dependency libfoo.so.1.

$ ldd -v prog

find object=libfoo.so.1; required by prog

libfoo.so.1 => ./libfoo.so.1

find version=libfoo.so.1;

libfoo.so.1 (SUNW_1.2) => ./libfoo.so.1

libfoo.so.1 (SUNW_1.2.1) => ./libfoo.so.1

....
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Note – ldd(1) with the -v option implies verbose output. A recursive list of all dependencies,
together with all versioning requirements, is generated.

If a non-weak version definition dependency cannot be found, a fatal error occurs during
application initialization. Any weak version definition dependency that cannot be found is
silently ignored. For example, if the application prog is run in an environment in which
libfoo.so.1 only contains the version definition SUNW_1.1, then the following fatal error
occurs.

$ pvs -dv libfoo.so.1

libfoo.so.1;

SUNW_1.1;

$ prog

ld.so.1: prog: fatal: libfoo.so.1: version ‘SUNW_1.2’ not \

found (required by file prog)

If prog had not recorded any version definition dependencies, the nonexistence of the symbol
foo2 could result in a fatal relocation error a runtime. This relocation error might occur at
process initialization, or during process execution. An error condition might not occur at all if
the execution path of the application did not call the function foo2. See “Relocation Errors” on
page 81.

A version definition dependency provides an alternative and immediate indication of the
availability of the interfaces required by the application.

For example, prog might run in an environment in which libfoo.so.1 only contains the
version definitions SUNW_1.1 and SUNW_1.2. In this event, all non-weak version definition
requirements are satisfied. The absence of the weak version definition SUNW_1.2.1 is deemed
nonfatal. In this case, no runtime error condition is generated.

$ pvs -dv libfoo.so.1

libfoo.so.1;

SUNW_1.1;

SUNW_1.2: {SUNW_1.1};

$ prog

string used by foo1()

string used by foo2()

ldd(1) can be used to display all version definitions that cannot be found.

$ ldd prog

libfoo.so.1 => ./libfoo.so.1

libfoo.so.1 (SUNW_1.2.1) => (version not found)

...........
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At runtime, if an implementation of a dependency contains no version definition information,
then any version verification of the dependency is silently ignored. This policy provides a level
of backward compatibility as a transition from non-versioned to versioned shared objects
occurs. ldd(1) can always be used to display any version requirement discrepancies.

Note – The environment variable LD_NOVERSION can be used to suppress all runtime versioning
verification.

Verifying Versions in Additional Objects
Version definition symbols also provide a mechanism for verifying the version requirements of
an object obtained by dlopen(3C). An object that is added to the process's address space by
using dlopen(3C) receives no automatic version dependency verification. Thus, the caller of
dlopen(3C) is responsible for verifying that any versioning requirements are met.

The presence of a required version definition can be verified by looking up the associated
version definition symbol using dlsym(3C). The following example adds the shared object
libfoo.so.1 to a process using dlopen(3C). The availability of the interface SUNW_1.2 is then
verified.

#include <stdio.h>

#include <dlfcn.h>

main()

{

void * handle;

const char * file = "libfoo.so.1";
const char * vers = "SUNW_1.2";
....

if ((handle = dlopen(file, (RTLD_LAZY | RTLD_FIRST))) == NULL) {

(void) printf("dlopen: %s\n", dlerror());

exit (1);

}

if (dlsym(handle, vers) == NULL) {

(void) printf("fatal: %s: version ‘%s’ not found\n",
file, vers);

exit (1);

}

....

Note – The use of the dlopen(3C) flag RTLD_FIRST ensures that the dlsym(3C) search is
restricted to libfoo.so.1.
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Specifying a Version Binding
When creating a dynamic object against a shared object containing version definitions, you can
instruct the link-editor to limit the binding to specific version definitions. Effectively, the
link-editor enables you to control an object's binding to specific interfaces.

An object's binding requirements can be controlled using a file control directive. This directive is
supplied using the link-editor's -M option and an associated mapfile. The following syntax for
file control directives is available.

name - version [ version ... ] [ $ADDVERS=version ];

■ name – Represents the name of the shared object dependency. This name should match the
shared object's compilation environment name as used by the link-editor. See “Library
Naming Conventions” on page 33.

■ version – Represents the version definition name within the shared object that should be
made available for binding. Multiple version definitions can be specified.

■ $ADDVERS – Allows for additional version definitions to be recorded.

The control of version binding can be useful in the following scenarios.

■ When a shared object defines independent, unique versions. This versioning is possible
when defining different standards interfaces. An object can be built with binding controls to
ensure the object only binds to a specific interface.

■ When a shared object has been versioned over several software releases. An object can be
built with binding controls to restrict its binding to the interfaces that were available in a
previous software release. Thus, an object can run with an old release of the shared object
dependency, after being built using the latest release of the shared object.

The following example illustrates the use of the version control mechanism. This example uses
the shared object libfoo.so.1 containing the following version interface definitions.

$ pvs -dsv libfoo.so.1

libfoo.so.1:

_end;

_GLOBAL_OFFSET_TABLE_;

_DYNAMIC;

_edata;

_PROCEDURE_LINKAGE_TABLE_;

_etext;

SUNW_1.1:

foo1;

foo2;

SUNW_1.1;

SUNW_1.2: {SUNW_1.1}:

bar;
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The version definitions SUNW_1.1 and SUNW_1.2 represent interfaces within libfoo.so.1 that
were made available in software Release X and Release X+1 respectively.

An application can be built to bind only to the interfaces available in Release X by using the
following version control mapfile directive.

$ cat mapfile

libfoo.so - SUNW_1.1;

For example, suppose you develop an application, prog, and want to ensure that the application
can run on Release X. The application must only use the interfaces available in Release X. If
the application mistakenly references the symbol bar, then the application is not compliant
with the required interface. This condition is signalled by the link-editor as an undefined
symbol error.

$ cat prog.c

extern void foo1();

extern void bar();

main()

{

foo1();

bar();

}

$ cc -o prog prog.c -M mapfile -L. -R. -lfoo

Undefined first referenced

symbol in file

bar prog.o (symbol belongs to unavailable \

version ./libfoo.so (SUNW_1.2))

ld: fatal: Symbol referencing errors. No output written to prog

To be compliant with the SUNW_1.1 interface, you must remove the reference to bar. You can
either rework the application to remove the requirement on bar, or add an implementation of
bar to the creation of the application.

Note – By default, shared object dependencies encountered as part of a link-edit, are also verified
against any file control directives. Use the environment variable LD_NOVERSION to suppress the
version verification of any shared object dependencies.

Binding to Additional Version Definitions
To record more version dependencies than would be produced from the normal symbol
binding of an object, use the $ADDVERS file control directive. The following sections describe
scenarios where this additional binding can be useful.
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Redefining an Interface

One scenario is the consumption of an ISV specific interface into a public standard interface.

From the previous libfoo.so.1 example, assume that in Release X+2, the version definition
SUNW_1.1 is subdivided into two standard releases, STAND_A and STAND_B. To preserve
compatibility, the SUNW_1.1 version definition must be maintained. In this example, this
version definition is expressed as inheriting the two standard definitions.

$ pvs -dsv libfoo.so.1

libfoo.so.1:

_end;

_GLOBAL_OFFSET_TABLE_;

_DYNAMIC;

_edata;

_PROCEDURE_LINKAGE_TABLE_;

_etext;

SUNW_1.1: {STAND_A, STAND_B}:

SUNW_1.1;

SUNW_1.2: {SUNW_1.1}:

bar;

STAND_A:

foo1;

STAND_A;

STAND_B:

foo2;

STAND_B;

If the only requirement of application prog is the interface symbol foo1, the application will
have a single dependency on the version definition STAND_A. This precludes running prog on a
system where libfoo.so.1 is less than Release X+2. The version definition STAND_A did not
exist in previous releases, even though the interface foo1 did.

The application prog can be built to align its requirement with previous releases by creating a
dependency on SUNW_1.1.

$ cat mapfile

libfoo.so - SUNW_1.1 $ADDVERS=SUNW_1.1;

$ cat prog

extern void foo1();

main()

{

foo1();

}

$ cc -M mapfile -o prog prog.c -L. -R. -lfoo

$ pvs -r prog

libfoo.so.1 (SUNW_1.1);
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This explicit dependency is sufficient to encapsulate the true dependency requirements. This
dependency satisfies compatibility with older releases.

Binding to a Weak Version

“Creating a Weak Version Definition” on page 148 described how weak version definitions can
be used to mark an internal implementation change. These version definitions are well suited to
indicate bug fixes and performance improvements made to an object. If the existence of a weak
version is required, an explicit dependency on this version definition can be generated. The
creation of such a dependency can be important when a bug fix, or performance improvement,
is critical for the object to function correctly.

From the previous libfoo.so.1 example, assume a bug fix is incorporated as the weak version
definition SUNW_1.2.1 in software Release X+3:

$ pvs -dsv libfoo.so.1

libfoo.so.1:

_end;

_GLOBAL_OFFSET_TABLE_;

_DYNAMIC;

_edata;

_PROCEDURE_LINKAGE_TABLE_;

_etext;

SUNW_1.1: {STAND_A, STAND_B}:

SUNW_1.1;

SUNW_1.2: {SUNW_1.1}:

bar;

STAND_A:

foo1;

STAND_A;

STAND_B:

foo2;

STAND_B;

SUNW_1.2.1 [WEAK]: {SUNW_1.2}:

SUNW_1.2.1;

Normally, if an application is built against this libfoo.so.1, the application records a weak
dependency on the version definition SUNW_1.2.1. This dependency is informational only. This
dependency does not cause termination of the application should the version definition not
exist in the implementation of libfoo.so.1 that is used at runtime.

The file control directive, $ADDVERS, can be used to generate an explicit dependency on a
version definition. If this definition is weak, then this explicit reference also the version
definition to be promoted to a strong dependency.

The application prog can be built to enforce the requirement that the SUNW_1.2.1 interface be
available at runtime by using the following file control directive.
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$ cat mapfile

libfoo.so - SUNW_1.1 $ADDVERS=SUNW_1.2.1;

$ cat prog

extern void foo1();

main()

{

foo1();

}

$ cc -M mapfile -o prog prog.c -L. -R. -lfoo

$ pvs -r prog

libfoo.so.1 (SUNW_1.2.1);

prog has an explicit dependency on the interface STAND_A. Because the version definition
SUNW_1.2.1 is promoted to a strong version, the version SUNW_1.2.1 is normalized with the
dependency STAND_A. At runtime, if the version definition SUNW_1.2.1 cannot be found, a fatal
error is generated.

Note – When working with a small number of dependencies, you can use the link-editor's -u
option to explicitly bind to a version definition. Use this option to reference the version
definition symbol. However, a symbol reference is nonselective. When working with multiple
dependencies, that contain similarly named version definitions, this technique might be
insufficient to create explicit bindings.

Version Stability
Various models have been described that provide for binding to a version definition within an
object. These models allow for the runtime validation of interface requirements. This
verification only remains valid if the individual version definitions remain constant over the life
time of the object.

A version definition for an object can be created for other objects to bind with. This version
definition must continue to exist in subsequent releases of the object. Both the version name
and the symbols associated with the version must remain constant. To help enforce these
requirements, wildcard expansion of the symbol names defined within a version definition is
not supported. The number of symbols that can match a wildcard might differ over the course
of an objects evolution. This difference can lead to accidental interface instability.

Relocatable Objects
The previous sections have described how version information can be recorded within dynamic
objects. Relocatable objects can maintain versioning information in a similar manner.
However, subtle differences exist regarding how this information is used.
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Any version definitions supplied to the link-edit of a relocatable object are recorded in the
object. These definitions follow the same format as version definitions recorded in dynamic
objects. However, by default, symbol reduction is not carried out on the relocatable object being
created. Symbol reductions that are defined by the versioning information are applied to the
relocatable object when the object is used to create a dynamic object.

In addition, any version definition found in a relocatable object is propagated to the dynamic
object. For an example of version processing in relocatable objects, see “Reducing Symbol
Scope” on page 57.

Note – Symbol reduction that is implied by a version definition can be applied to a relocatable
object by using the link-editors -B reduce option.

External Versioning
Runtime references to a shared object should always refer to the versioned file name. A
versioned file name is usually expressed as a file name with a version number suffix.

Should a shared object's interface changes in an incompatible manner, such a change can break
old applications. In this instance, a new shared object should be distributed with a new
versioned file name. In addition, the original versioned file name must still be distributed to
provide the interfaces required by the old applications.

You should provide shared objects as separate versioned file names within the runtime
environment when building applications over a series of software releases. You can then
guarantee that the interface against which the applications were built is available for the
application to bind during their execution.

The following section describes how to coordinate the binding of an interface between the
compilation and runtime environments.

Coordination of Versioned Filenames
A link-edit commonly references shared object dependencies using the link-editors -l option.
This option uses the link-editor's library search mechanism to locate shared objects that are
prefixed with lib and suffixed with .so.

However, at runtime, any shared object dependencies should exist as a versioned file name.
Instead of maintaining two distinct shared objects that follow two naming conventions, create
file system links between the two file names.

For example, the shared object libfoo.so.1 can be made available to the compilation
environment by using a symbolic link. The compilation file name is a symbolic link to the
runtime file name.
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$ cc -o libfoo.so.1 -G -K pic foo.c

$ ln -s libfoo.so.1 libfoo.so

$ ls -l libfoo*

lrwxrwxrwx 1 usr grp 11 1991 libfoo.so -> libfoo.so.1

-rwxrwxr-x 1 usr grp 3136 1991 libfoo.so.1

Either a symbolic link or hard link can be used. However, as a documentation and diagnostic
aid, symbolic links are more useful.

The shared object libfoo.so.1 has been generated for the runtime environment. The symbolic
link libfoo.so, has also enabled this file's use in a compilation environment.

$ cc -o prog main.o -L. -lfoo

The link-editor processes the relocatable object main.o with the interface described by the
shared object libfoo.so.1, which is found by following the symbolic link libfoo.so.

Over a series of software releases, new versions of libfoo.so can be distributed with changed
interfaces. The compilation environment can be constructed to use the interface that is
applicable by changing the symbolic link.

$ ls -l libfoo*

lrwxrwxrwx 1 usr grp 11 1993 libfoo.so -> libfoo.so.3

-rwxrwxr-x 1 usr grp 3136 1991 libfoo.so.1

-rwxrwxr-x 1 usr grp 3237 1992 libfoo.so.2

-rwxrwxr-x 1 usr grp 3554 1993 libfoo.so.3

In this example, three major versions of the shared object are available. Two versions,
libfoo.so.1 and libfoo.so.2, provide the dependencies for existing applications.
libfoo.so.3 offers the latest major release for creating and running new applications.

The use of this symbolic link mechanism solely is insufficient to coordinate the compilation
shared object with a runtime versioned file name. As the example presently stands, the
link-editor records in the dynamic executable prog the file name of the shared object the
link-editor processes. In this case, that file name seen by the link-editor is the compilation
environment file.

$ dump -Lv prog

prog:

**** DYNAMIC SECTION INFORMATION ****

.dynamic:

[INDEX] Tag Value

[1] NEEDED libfoo.so

.........

When the application prog is executed, the runtime linker searches for the dependency
libfoo.so. prog binds to the file to which this symbolic link is pointing.
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To ensure the correct runtime name is recorded as a dependency, the shared object
libfoo.so.1 should be built with an soname definition. This definition identifies the shared
object's runtime name. This name is used as the dependency name by any object that links
against the shared object. This definition can be provided using the -h option during the
creation of the shared object.

$ cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 foo.c

$ ln -s libfoo.so.1 libfoo.so

$ cc -o prog main.o -L. -lfoo

$ dump -Lv prog

prog:

**** DYNAMIC SECTION INFORMATION ****

.dynamic:

[INDEX] Tag Value

[1] NEEDED libfoo.so.1

.........

This symbolic link and the soname mechanism establish a robust coordination between the
shared-object naming conventions of the compilation and runtime environment. The interface
processed during the link-edit is accurately recorded in the output file generated. This
recording ensures that the intended interface are furnished at runtime.

Multiple External Versioned Files in the Same Process
The creation of a new externally versioned shared object is a major change. Be sure you
understand the complete dependencies of any processes that use a member of a family of
externally versioned shared objects.

For example, an application might have a dependency on libfoo.so.1 and an externally
delivered object libISV.so.1. This latter object might also have a dependency on libfoo.so.1.
The application might be redesigned to use the new interfaces in libfoo.so.2. However, the
application might not change the use of the external object libISV.so.1. Depending on the
scope of visibility of the implementations of libfoo.so that get loaded at runtime, both major
versions of the file can be brought into the running process. The only reason to change the
version of libfoo.so is to mark an incompatible change. Therefore, having both versions of the
object within a process can lead to incorrect symbol binding and hence undesirable
interactions.

The creation of an incompatible interface change should be avoided. Only if you have full
control over the interface definition, and all of the objects that reference this definition, should
an incompatible change be considered.
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Support Interfaces

The link-editors provide a number of support interfaces that enable the monitoring, and
modification, of link-editor and runtime linker processing. These interfaces typically require a
more advanced understanding of link-editing concepts than has been described in previous
chapters. The following interfaces are described in this chapter.

■ ld-support – “Link-Editor Support Interface” on page 163
■ rtld-audit – “Runtime Linker Auditing Interface” on page 171
■ rtld-debugger – “Runtime Linker Debugger Interface” on page 181

Link-Editor Support Interface
The link-editor performs many operations including the opening of files and the concatenation
of sections from these files. Monitoring, and sometimes modifying, these operations can often
be beneficial to components of a compilation system.

This section describes the ld-support interface. This interface provides for input file inspection,
and to some degree, input file data modification of those files that compose a link-edit. Two
applications that employ this interface are the link-editor and the make(1S) utility. The link
editor uses the interface to process debugging information within relocatable objects. The make
utility uses the interface to save state information.

The ld-support interface is composed of a support library that offers one or more support
interface routines. This library is loaded as part of the link-edit process. Any support routines
that are found in the library are called at various stages of link-editing.

You should be familiar with the elf(3ELF) structures and file format when using this interface.
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Invoking the Support Interface
The link-editor accepts one or more support libraries provided by either the SGS_SUPPORT
environment variable or with the link-editor's -S option. The environment variable consists of a
colon separated list of support libraries.

$ SGS_SUPPORT=./support.so.1:libldstab.so.1 cc ...

The -S option specifies a single support library. Multiple -S options can be specified.

$ LD_OPTIONS="-S./support.so.1 -Slibldstab.so.1" cc ...

A support library is a shared object. The link-editor opens each support library, in the order the
libraries are specified, using dlopen(3C). If both the environment variable and -S option are
encountered, then the support libraries specified with the environment variable are processed
first. Each support library is then searched, using dlsym(3C), for any support interface routines.
These support routines are then called at various stages of link-editing.

A support library must be consistent with the ELF class of the link-editor being invoked, either
32–bit or 64–bit. See “32–Bit Environments and 64–Bit Environments” on page 164 for more
details.

Note – By default, the Solaris OS support library libldstab.so.1 is used by the link-editor to
process, and compact, compiler-generated debugging information supplied within input
relocatable objects. This default processing is suppressed if you invoke the link-editor with any
support libraries specified using the -S option. The default processing of libldstab.so.1 can
be required in addition to your support library services. In this case, add libldstab.so.1

explicitly to the list of support libraries that are supplied to the link-editor.

32–Bit Environments and 64–Bit Environments
As described in “32–Bit Environments and 64–Bit Environments” on page 24, the 64–bit
link-editor, ld(1), is capable of generating 32–bit objects. In addition, the 32–bit link-editor is
capable of generating 64–bit objects. Each of these objects has an associated support interface
defined.

The support interface for 64–bit objects is similar to the interface of 32–bit objects, but ends in a
64 suffix. For example ld_start() and ld_start64(). This convention allows both
implementations of the support interface to reside in a single shared object libldstab.so.1 of
each class, 32–bit and 64–bit.

The SGS_SUPPORT environment variable can be specified with a _32 or _64 suffix, and the
link-editor options -z ld32 and -z ld64 can be used to define -S option requirements. These
definitions will only be interpreted, respectively, by the 32–bit or 64–bit class of the link-editor.
This enables both classes of support library to be specified when the class of the link-editor
might not be known.
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Support Interface Functions
All ld-support interface are defined in the header file link.h. All interface arguments are basic
C types or ELF types. The ELF data types can be examined with the ELF access library libelf.
See elf(3ELF) for a description of libelf contents. The following interface functions are
provided by the ld-support interface, and are described in their expected order of use.

ld_version()

This function provides the initial handshake between the link-editor and the support library.

uint_t ld_version(uint_t version);

The link-editor calls this interface with the highest version of the ld-support interface that
the link-editor is capable of supporting. The support library can verify this version is
sufficient for its use. The support library can then return the version that the support library
expects to use. This version is normally LD_SUP_VCURRENT.

If the support library does not provide this interface, the initial support level
LD_SUP_VERSION1 is assumed.

If the support library returns a version of zero, or a value that is greater than the ld-support
interface the link-editor supports, the support library is not be used.

ld_start()

This function is called after initial validation of the link-editor command line. This function
indicates the start of input file processing.

void ld_start(const char * name, const Elf32_Half type,
const char * caller);

void ld_start64(const char * name, const Elf64_Half type,
const char * caller);

name is the output file name being created. type is the output file type, which is either
ET_DYN, ET_REL, or ET_EXEC, as defined in sys/elf.h. caller is the application calling the
interface, which is normally /usr/ccs/bin/ld.

ld_open()

This function is called for each file input to the link-edit. This function, which was added in
version LD_SUP_VERSION3, provides greater flexibility than the ld_file() function. This
function allows the support library to replace the file descriptor, ELF descriptor, together
with the associated file names. This function provides the following possible usage scenarios.
■ The addition of new sections to an existing ELF file. In this case, the original ELF

descriptor should be replaced with a descriptor that allows the ELF file to be updated. See
the ELF_C_RDWR argument of elf_begin(3ELF).
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■ The entire input file can be replaced with an alternative. In this case, the original file
descriptor and ELF descriptor should be replaced with descriptors that are associated
with the new file.

In both scenarios the path name and file name can be replaced with alternative names that
indicate the input file has been modified.

void ld_open(const char ** pname, const char ** fname, int * fd,
int flags, Elf ** elf, Elf * ref, size_t off, Elf_Kind kind);

void ld_open64(const char ** pname, const char ** fname, int * fd,
int flags, Elf ** elf, Elf * ref, size_t off, Elf_Kind kind);

pname is the path name of the input file about to be processed. fname is the file name of the
input file about to be processed. fname is typically the base name of the pname. Both pname
and fname can be modified by the support library.

fd is the file descriptor of the input file. This descriptor can be closed by the support library,
and a new file descriptor can be returned to the link-editor. A file descriptor with the value -1
can be returned to indicate that the file should be ignored.

The flags field indicates how the link-editor obtained the file. This field can be one or more of
the following definitions.
■ LD_SUP_DERIVED – The file name was not explicitly named on the command line. The file

was derived from a -l expansion. Or, the file identifies an extracted archive member.
■ LD_SUP_EXTRACTED – The file was extracted from an archive.
■ LD_SUP_INHERITED – The file was obtained as a dependency of a command-line shared

object.

If no flags values are specified, then the input file has been explicitly named on the command
line.

elf is the ELF descriptor of the input file. This descriptor can be closed by the support library,
and a new ELF descriptor can be returned to the link-editor. An ELF descriptor with the
value 0 can be returned to indicate that the file should be ignored. When the elf descriptor is
associated with a member of an archive library, the ref descriptor is the ELF descriptor of the
underlying archive file. The off represents the offset of the archive member within the archive
file.

kind indicates the input file type, which is either ELF_K_AR, or ELF_K_ELF, as defined in
libelf.h.

ld_file()

This function is called for each file input to the link-edit. This function is called before any
processing of the files data is carried out.
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void ld_file(const char * name, const Elf_Kind kind, int flags,
Elf * elf);

void ld_file64(const char * name, const Elf_Kind kind, int flags,
Elf * elf);

name is the input file about to be processed. kind indicates the input file type, which is either
ELF_K_AR, or ELF_K_ELF, as defined in libelf.h. The flags field indicates how the link-editor
obtained the file. This field can contain the same definitions as the flags field for ld_open().
■ LD_SUP_DERIVED – The file name was not explicitly named on the command line. The file

was derived from a -l expansion. Or, the file identifies an extracted archive member.
■ LD_SUP_EXTRACTED – The file was extracted from an archive.
■ LD_SUP_INHERITED – The file was obtained as a dependency of a command-line shared

object.

If no flags values are specified, then the input file has been explicitly named on the command
line.

elf is the ELF descriptor of the input file.

ld_input_section()

This function is called for each section of the input file. This function, which was added in
version LD_SUP_VERSION2, is called before the link-editor has determined whether the
section should be propagated to the output file. This function differs from ld_section()

processing, which is only called for sections that contribute to the output file.

void ld_input_section(const char * name, Elf32_Shdr ** shdr,
Elf32_Word sndx, Elf_Data * data, Elf * elf, unit_t flags);

void ld_input_section64(const char * name, Elf64_Shdr ** shdr,
Elf64_Word sndx, Elf_Data * data, Elf * elf, uint_t flags);

name is the input section name. shdr is a pointer to the associated section header. sndx is the
section index within the input file. data is a pointer to the associated data buffer. elf is a
pointer to the file's ELF descriptor. flags is reserved for future use.

Modification of the section header is permitted by reallocating a section header and
reassigning the *shdr to the new header. The link-editor uses the section header information
that *shdr points to upon return from ld_input_section() to process the section.

You can modify the data by reallocating the data and reassigning the Elf_Data buffer's
d_buf pointer. Any modification to the data should ensure the correct setting of the
Elf_Data buffer's d_size element. For input sections that become part of the output image,
setting the d_size element to zero effectively removes the data from the output image.
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The flags field points to a uint_t data field that is initially zero filled. No flags are currently
assigned, although the ability to assign flags in future updates, by the link-editor or the
support library, is provided.

ld_section()

This function is called for each section of the input file that is propagated to the output file.
This function is called before any processing of the section data is carried out.

void ld_section(const char * name, Elf32_Shdr * shdr,
Elf32_Word sndx, Elf_Data * data, Elf * elf);

void ld_section64(const char * name, Elf64_Shdr * shdr,
Elf64_Word sndx, Elf_Data * data, Elf * elf);

name is the input section name. shdr is a pointer to the associated section header. sndx is the
section index within the input file. data is a pointer to the associated data buffer. elf is a
pointer to the files ELF descriptor.

You can modify the data by reallocating the data and reassigning the Elf_Data buffer's
d_buf pointer. Any modification to the data should ensure the correct setting of the
Elf_Data buffer's d_size element. For input sections that become part of the output image,
setting the d_size element to zero effectively removes the data from the output image.

Note – Sections that are removed from the output file are not reported to ld_section().
Sections are stripped using the link-editor's -s option. Sections are discarded due to
SHT_SUNW_COMDAT processing or SHF_EXCLUDE identification. See “COMDAT Section” on
page 224, and Table 7–8.

ld_input_done()

This function, which was added in version LD_SUP_VERSION2, is called when input file
processing is complete, but before the output file is laid out.

void ld_input_done(uint_t * flags);

The flags field points to a uint_t data field that is initially zero filled. No flags are currently
assigned, although the ability to assign flags in future updates, by the link-editor or the
support library, is provided.

ld_atexit()

This function is called when the link-edit is complete.

void ld_atexit(int status);

void ld_atexit64(int status);
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status is the exit(2) code that will be returned by the link-editor and is either EXIT_FAILURE
or EXIT_SUCCESS, as defined in stdlib.h.

Support Interface Example
The following example creates a support library that prints the section name of any relocatable
object file processed as part of a 32–bit link-edit.

$ cat support.c

#include <link.h>

#include <stdio.h>

static int indent = 0;

void

ld_start(const char * name, const Elf32_Half type,

const char * caller)

{

(void) printf("output image: %s\n", name);

}

void

ld_file(const char * name, const Elf_Kind kind, int flags,

Elf * elf)

{

if (flags & LD_SUP_EXTRACTED)

indent = 4;

else

indent = 2;

(void) printf("%*sfile: %s\n", indent, "", name);

}

void

ld_section(const char * name, Elf32_Shdr * shdr, Elf32_Word sndx,

Elf_Data * data, Elf * elf)

{

Elf32_Ehdr * ehdr = elf32_getehdr(elf);

if (ehdr->e_type == ET_REL)

(void) printf("%*s section [%ld]: %s\n", indent,

"", (long)sndx, name);

}

This support library is dependent upon libelf to provide the ELF access function
elf32_getehdr(3ELF) that is used to determine the input file type. The support library is built
using the following.
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$ cc -o support.so.1 -G -K pic support.c -lelf -lc

The following example shows the section diagnostics resulting from the construction of a trivial
application from a relocatable object and a local archive library. The invocation of the support
library, in addition to default debugging information processing, is brought about by the -S
option usage.

$ LD_OPTIONS="-S./support.so.1 -Slibldstab.so.1" \

cc -o prog main.c -L. -lfoo

output image: prog

file: /opt/COMPILER/crti.o

section [1]: .shstrtab

section [2]: .text

.......

file: /opt/COMPILER/crt1.o

section [1]: .shstrtab

section [2]: .text

.......

file: /opt/COMPILER/values-xt.o

section [1]: .shstrtab

section [2]: .text

.......

file: main.o

section [1]: .shstrtab

section [2]: .text

.......

file: ./libfoo.a

file: ./libfoo.a(foo.o)

section [1]: .shstrtab

section [2]: .text

.......

file: /lib/libc.so

file: /opt/COMPILER/crtn.o

section [1]: .shstrtab

section [2]: .text

.......

Note – The number of sections that are displayed in this example have been reduced to simplify
the output. Also, the files included by the compiler driver can vary.
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Runtime Linker Auditing Interface
The rtld-audit interface enables a process to access information pertaining to the runtime
linking of the process. An example of using this mechanism is the runtime profiling of shared
objects that is described in “Profiling Shared Objects” on page 141.

The rtld-audit interface is implemented as an audit library that offers one or more auditing
interface routines. If this library is loaded as part of a process, the audit routines are called by the
runtime linker at various stages of process execution. These interfaces enable the audit library
to access the following informattion.

■ The search for dependencies. Search paths can be substituted by the audit library.
■ Information regarding loaded objects.
■ Symbol bindings that occur between loaded objects. These bindings can be altered by the

audit library.
■ Exploitation of the lazy binding mechanism provided by procedure linkage table entries to

allow auditing of function calls and their return values. The arguments to a function and its
return value can be modified by the audit library. See “Procedure Linkage Table
(Processor-Specific)” on page 287.

Some of these facilities can be achieved by preloading specialized shared objects. However, a
preloaded object exists within the same namespace as the objects of a process. This preloading
often restricts or complicates the implementation of the preloaded shared object. The rtld-audit
interface offers the user a unique namespace in which to execute their audit libraries. This
namespace ensures that the audit library does not intrude upon the normal bindings that occur
within the process.

Establishing a Namespace
When the runtime linker binds a dynamic executable with its dependencies, a linked list of
link-maps is generated to describe the process. The link-map structure describes each object
within the process. The link-map structure is defined in /usr/include/sys/link.h. The
symbol search mechanism required to bind objects of an application traverses this list of
link-maps. This link-map list is said to provide the namespace for process symbol resolution.

The runtime linker is also described by a link-map. This link-map is maintained on a different
list from the list of application objects. The runtime linker therefore resides in its own unique
name space, which prevents the application from binding to any services within the runtime
linker. An application can only call upon the public services of the runtime linker by the filter
libc.so.1, or libdl.so.1.

The rtld-audit interface employs its own link-map list on which the audit libraries are
maintained. The audit libraries are thus isolated from the symbol binding requirements of the
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application. Inspection of the application link-map list is possible with dlmopen(3C). When
used with the RTLD_NOLOAD flag, dlmopen(3C) allows the audit library to query an object's
existence without causing its loading.

Two identifiers are defined in /usr/include/link.h to define the application and runtime
linker link-map lists.

#define LM_ID_BASE 0 /* application link-map list */

#define LM_ID_LDSO 1 /* runtime linker link-map list */

Every rtld-audit support library is assigned a unique new link-map identifier.

Creating an Audit Library
An audit library is built like any other shared object. However, the audit libraries unique
namespace within a process requires some additional care.
■ The library must provide all dependency requirements.
■ The library should not use system interfaces that do not provide for multiple instances of the

interface within a process.

If the audit library calls printf(3C), then the audit library must define a dependency on libc.
See “Generating a Shared Object Output File” on page 47. Because the audit library has a unique
namespace, symbol references cannot be satisfied by the libc that is present in the application
being audited. If an audit library has a dependency on libc, then two versions of libc.so.1 are
loaded into the process. One version satisfies the binding requirements of the application
link-map list. The other version satisfies the binding requirements of the audit link-map list.

To ensure that audit libraries are built with all dependencies recorded, use the link-editors
-z defs option.

Some system interfaces assume that the interfaces are the only instance of their implementation
within a process. Examples of such implementations are signals and malloc(3C). Audit libraries
should avoid using such interfaces, as doing so can inadvertently alter the behavior of the
application.

Note – An audit library can allocate memory using mapmalloc(3MALLOC), as this allocation
method can exist with any allocation scheme normally employed by the application.

Invoking the Auditing Interface
The rtld-audit interface is enabled by one of two means. Each method implies a scope to the
objects that are audited.
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■ Local auditing is enabled through dynamic entries recorded within an object at the time the
object was built. The audit libraries that are made available by this method are provided with
information in regards to those dynamic objects that are identified for auditing.

■ Global auditing is enabled using the environment variable LD_AUDIT. Global auditing can
also be enabled for an application by combining a local auditing dynamic entry with the
-z globalaudit option. The audit libraries that are made available by these methods are
provided with information regarding all dynamic objects used by the process.

Either method of invocation consists of a string that contains a colon-separated list of shared
objects that are loaded by dlopen(3C). Each object is loaded onto its own audit link-map list.
Each object is searched for audit routines using dlsym(3C). Audit routines that are found are
called at various stages during the applications execution.

The rtld-audit interface enables multiple audit libraries to be supplied. Audit libraries that
expect to be employed in this fashion should not alter the bindings that would normally be
returned by the runtime linker. Alteration of these bindings can produce unexpected results
from audit libraries that follow.

Secure applications can only obtain audit libraries from trusted directories. By default, the only
trusted directories that are known to the runtime linker for 32–bit objects are/lib/secure and
/usr/lib/secure. For 64–bit objects, the trusted directories are /lib/secure/64 and
/usr/lib/secure/64.

Note – Auditing can be disabled at runtime by setting the environment variable LD_NOAUDIT to a
non-null value.

Recording Local Auditors
Local auditing requirements can be established when an object is built using the link-editor
options -p or -P. For example, to audit libfoo.so.1, with the audit library audit.so.1, record
the requirement at link-edit time using the -p option.

$ cc -G -o libfoo.so.1 -Wl,-paudit.so.1 -K pic foo.c

$ dump -Lv libfoo.so.1 | fgrep AUDIT

[3] AUDIT audit.so.1

At runtime, the existence of this audit identifier results in the audit library being loaded.
Information is then passed to the audit library regarding the identifying object.

With this mechanism alone, information such as searching for the identifying object occurs
prior to the audit library being loaded. To provide as much auditing information as possible, the
existence of an object requiring local auditing is propagated to users of that object. For example,
if an application is built with a dependency on libfoo.so.1, then the application is identified to
indicate its dependencies require auditing.
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$ cc -o main main.c libfoo.so.1

$ dump -Lv main | fgrep AUDIT

[5] DEPAUDIT audit.so.1

The auditing enabled through this mechanism results in the audit library being passed
information regarding all of the applications explicit dependencies. This dependency auditing
can also be recorded directly when creating an object by using the link-editor's -P option.

$ cc -o main main.c -Wl,-Paudit.so.1

$ dump -Lv main | fgrep AUDIT

[5] DEPAUDIT audit.so.1

Recording Global Auditors
Global auditing requirements can be established by setting the environment variable LD_AUDIT.
For example, this environment variable can be used to audit the application main together with
all the dependencies of the process, with the audit library audit.so.1.

$ LD_AUDIT=audit.so.1 main

Global auditing can also be achieved by recording a local auditor in the application, together
with the -z globalaudit option. For example, the application main can be built to enable
global auditing by using the link-editor's -P option and -z globalaudit option.

$ cc -o main main.c -Wl,-Paudit.so.1 -z globalaudit

$ dump -Lv main | fgrep AUDIT

[5] DEPAUDIT audit.so.1

[26] FLAGS_1 [ GLOBAL_AUDITING ]

The auditing enabled through both of these mechanisms results in the audit library being
passed information regarding all of the dynamic objects of the process.

Audit Interface Functions
The following functions are provided by the rtld-audit interface. The functions are described in
their expected order of use.

Note – References to architecture, or object class specific interfaces are reduced to their generic
name to simplify the discussions. For example, a reference to la_symbind32() and
la_symbind64() is specified as la_symbind().

la_version()

This function provides the initial handshake between the runtime linker and the audit
library. This interface must be provided for the audit library to be loaded.
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uint_t la_version(uint_t version);

The runtime linker calls this interface with the highest version of the rtld-audit interface the
runtime linker is capable of supporting. The audit library can verify this version is sufficient
for its use, and return the version the audit library expects to use. This version is normally
LAV_CURRENT, which is defined in /usr/include/link.h.

If the audit library return is zero, or a version that is greater than the rtld-audit interface the
runtime linker supports, the audit library is discarded.

la_activity()

This function informs an auditor that link-map activity is occurring.

void la_activity(uintptr_t * cookie, uint_t flags);

cookie identifies the object heading the link-map. flags indicates the type of activity as
defined in /usr/include/link.h.
■ LA_ACT_ADD – Objects are being added to the link-map list.
■ LA_ACT_DELETE – Objects are being deleted from the link-map list.
■ LA_ACT_CONSISTENT – Object activity has been completed.

la_objsearch()

This function informs an auditor that an object is about to be searched for.

char * la_objsearch(const char * name, uintptr_t * cookie, uint_t flags);

name indicates the file or path name being searched for. cookie identifies the object initiating
the search. flags identifies the origin and creation of name as defined in
/usr/include/link.h.
■ LA_SER_ORIG – The initial search name. Typically, this name indicates the file name that

is recorded as a DT_NEEDED entry, or the argument supplied to dlopen(3C).
■ LA_SER_LIBPATH – The path name has been created from a LD_LIBRARY_PATH

component.
■ LA_SER_RUNPATH – The path name has been created from a runpath component.
■ LA_SER_DEFAULT – The path name has been created from a default search path

component.
■ LA_SER_CONFIG – The path component originated from a configuration file. See crle(1).
■ LA_SER_SECURE – The path component is specific to secure objects.

The return value indicates the search path name that the runtime linker should continue to
process. A value of zero indicates that this path should be ignored. An audit library that
monitors search paths should return name.

la_objopen()

This function is called when a new object is loaded by the runtime linker.
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uint_t la_objopen(Link_map * lmp, Lmid_t lmid, uintptr_t * cookie);

lmp provides the link-map structure that describes the new object. lmid identifies the
link-map list to which the object has been added. cookie provides a pointer to an identifier.
This identifier is initialized to the objects lmp. This identifier can be modified by the audit
library to better identify the object to other rtld-audit interface routines.

The la_objopen() function returns a value that indicates the symbol bindings of interest for
this object. The return value is a mask of the following values that are defined
in/usr/include/link.h.
■ LA_FLG_BINDTO – Audit symbol bindings to this object.
■ LA_FLG_BINDFROM – Audit symbol bindings from this object.

These values allow an auditor to select the objects to monitor with la_symbind(). A return
value of zero indicates that binding information is of no interest for this object.

For example, an auditor can monitor the bindings from libfoo.so to libbar.so.
la_objopen() for libfoo.so should return LA_FLG_BINDFROM. la_objopen() for
libbar.so should return LA_FLG_BINDTO.

An auditor can monitor all bindings between libfoo.so and libbar.so. la_objopen() for
both objects should return LA_FLG_BINDFROM and LA_FLG_BINDTO.

An auditor can monitor all bindings to libbar.so. la_objopen() for libbar.so should
return LA_FLG_BINDTO. All la_objopen() calls should return LA_FLG_BINDFROM.

la_objfilter()

This function is called when a filter loads a new filtee. See “Shared Objects as Filters” on
page 119.

int la_objfilter(uintptr_t * fltrcook, const char * fltestr,
uintptr_t * fltecook, uint_t flags);

fltrcook identifies the filter. fltestr points to the filtee string. fltecook identifies the filtee. flags
is presently unused. la_objfilter() is called after la_objopen() for both the filter and
filtee.

A return value of zero indicates that this filtee should be ignored. An audit library that
monitors the use of filters should return a non-zero value.

la_preinit()

This function is called once after all objects have been loaded for the application, but before
transfer of control to the application occurs.

void la_preinit(uintptr_t * cookie);

cookie identifies the primary object that started the process, normally the dynamic
executable.
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la_symbind()

This function is called when a binding occurs between two objects that have been tagged for
binding notification from la_objopen().

uintptr_t la_symbind32(Elf32_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook, uint_t * flags);

uintptr_t la_symbind64(Elf64_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook, uint_t * flags,
const char * sym_name);

sym is a constructed symbol structure, whose sym->st_value indicates the address of the
symbol definition being bound. See /usr/include/sys/elf.h. la_symbind32() adjusts the
sym->st_name to point to the actual symbol name. la_symbind64() leaves sym->st_name to
be the index into the bound objects string table.

ndx indicates the symbol index within the bound object's dynamic symbol table. refcook
identifies the object making reference to this symbol. This identifier is the same identifier as
passed to the la_objopen() function that returned LA_FLG_BINDFROM. defcook identifies the
object defining this symbol. This identifier is the same as passed to the la_objopen() that
returned LA_FLG_BINDTO.

flags points to a data item that can convey information regarding the binding. This data item
can also be used to modify the continued auditing of this procedure linkage table entry. This
value is a mask of the symbol binding flags that are defined in /usr/include/link.h.

The following flags can be supplied to la_symbind().
■ LA_SYMB_DLSYM – The symbol binding occurred as a result of calling dlsym(3C).
■ LA_SYMB_ALTVALUE (LAV_VERSION2) – An alternate value was returned for the symbol

value by a previous call to la_symbind().

If la_pltenter() or la_pltexit() functions exist, these functions are called after
la_symbind() for procedure linkage table entries. These functions are called each time that
the symbol is referenced. See also “Audit Interface Limitations” on page 180.

The following flags can be supplied from la_symbind() to alter this default behavior. These
flags are applied as a bitwise-inclusive OR with the value pointed to by the flags argument.
■ LA_SYMB_NOPLTENTER – Do not call the la_pltenter() function for this symbol.
■ LA_SYMB_NOPLTEXIT – Do not call the la_pltexit() function for this symbol.

The return value indicates the address to which control should be passed following this call.
An audit library that monitors symbol binding should return the value of sym->st_value so
that control is passed to the bound symbol definition. An audit library can intentionally
redirect a symbol binding by returning a different value.

sym_name, which is applicable for la_symbind64() only, contains the name of the symbol
being processed. This name is available in the sym->st_name field for the 32–bit interface.
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la_pltenter()

These functions are system specific. These functions are called when a procedure linkage
table entry, between two objects that have been tagged for binding notification, is called.

uintptr_t la_sparcv8_pltenter(Elf32_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook,
La_sparcv8_regs * regs, uint_t * flags);

uintptr_t la_sparcv9_pltenter(Elf64_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook,
La_sparcv9_regs * regs, uint_t * flags,
const char * sym_name);

uintptr_t la_i86_pltenter(Elf32_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook,
La_i86_regs * regs, uint_t * flags);

uintptr_t la_amd64_pltenter(Elf64_Sym * sym, uint_t ndx,
uintptr_t * refcook, uintptr_t * defcook,
La_amd64_regs * regs, uint_t * flags, const char * sym_name);

sym, ndx, refcook, defcook and sym_name provide the same information as passed to
la_symbind().

For la_sparcv8_pltenter() and la_sparcv9_pltenter(), regs points to the out registers.
For la_i86_pltenter(), regs points to the stack and frame registers. For
la_amd64_pltenter(), regs points to the stack and frame registers, and the registers used in
passing integer arguments. regs are defined in /usr/include/link.h.

flags points to a data item that can convey information regarding the binding. This data item
can be used to modify the continued auditing of this procedure linkage table entry. This data
item is the same as pointed to by the flags from la_symbind()

The following flags can be supplied from la_pltenter() to alter the present auditing
behavior. These flags are applied as a bitwise-inclusive OR with the value pointed to by the
flags argument.
■ LA_SYMB_NOPLTENTER – la_pltenter() is not be called again for this symbol.
■ LA_SYMB_NOPLTEXIT – la_pltexit() is not be called for this symbol.

The return value indicates the address to which control should be passed following this call.
An audit library that monitors symbol binding should return the value of sym->st_value so
that control is passed to the bound symbol definition. An audit library can intentionally
redirect a symbol binding by returning a different value.

la_pltexit()

This function is called when a procedure linkage table entry, between two objects that have
been tagged for binding notification, returns. This function is called before control reaches
the caller.
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uintptr_t la_pltexit(Elf32_Sym * sym, uint_t ndx, uintptr_t * refcook,
uintptr_t * defcook, uintptr_t retval);

uintptr_t la_pltexit64(Elf64_Sym * sym, uint_t ndx, uintptr_t * refcook,
uintptr_t * defcook, uintptr_t retval, const char * sym_name);

sym, ndx, refcook, defcook and sym_name provide the same information as passed to
la_symbind(). retval is the return code from the bound function. An audit library that
monitors symbol binding should return retval. An audit library can intentionally return a
different value.

Note – The la_pltexit() interface is experimental. See “Audit Interface Limitations” on
page 180.

la_objclose()

This function is called after any termination code for an object has been executed and prior
to the object being unloaded.

uint_t la_objclose(uintptr_t * cookie);

cookie identifies the object, and was obtained from a previous la_objopen(). Any return
value is presently ignored.

Audit Interface Example
The following simple example creates an audit library that prints the name of each shared object
dependency loaded by the dynamic executable date(1).

$ cat audit.c

#include <link.h>

#include <stdio.h>

uint_t

la_version(uint_t version)

{

return (LAV_CURRENT);

}

uint_t

la_objopen(Link_map * lmp, Lmid_t lmid, uintptr_t * cookie)

{

if (lmid == LM_ID_BASE)

(void) printf("file: %s loaded\n", lmp->l_name);

return (0);
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}

$ cc -o audit.so.1 -G -K pic -z defs audit.c -lmapmalloc -lc

$ LD_AUDIT=./audit.so.1 date

file: date loaded

file: /lib/libc.so.1 loaded

file: /lib/libm.so.2 loaded

file: /usr/lib/locale/en_US/en_US.so.2 loaded

Thur Aug 10 17:03:55 PST 2000

Audit Interface Demonstrations
A number of demonstration applications that use the rtld-audit interface are provided in the
SUNWosdem package under /usr/demo/link_audit.

sotruss

This demo provides tracing of procedure calls between the dynamic objects of a named
application.

whocalls

This demo provides a stack trace for a specified function whenever called by a named
application.

perfcnt

This demo traces the amount of time spent in each function for a named application.

symbindrep

This demo reports all symbol bindings performed to load a named application.

sotruss(1) and whocalls(1) are included in the SUNWtoo package. perfcnt and symbindrep are
example programs. These applications are not intended for use in a production environment.

Audit Interface Limitations
Limitations exist within the rtld-audit implementation. Take care to understand these
limitation when designing an auditing library.

Exercising Application Code
An audit library receives information as objects are added to a process. At the time the audit
library receives such information, the object being monitored might not be ready to execute.
For example, an auditor can receive an la_objopen() call for a loaded object. However, the
object must load its own dependencies and be relocated before any code within the object can
be exercised. An audit library might want to inspect the loaded object by obtaining a handle
using dlopen(3C). This handle can then be used to search for interfaces using dlsym(3C).
However, interfaces obtained in this manner should not be called unless it is known that the
initialization of the destination object has completed.

Runtime Linker Auditing Interface

Linker and Libraries Guide • September 2008180



Use of la_pltexit()
There are some limitations to the use of the la_pltexit() family. These limitations stem from
the need to insert an extra stack frame between the caller and callee to provide a la_pltexit()
return value. This requirement is not a problem when calling just the la_pltenter() routines,
as. In this case, any intervening stack can be cleaned up prior to transferring control to the
destination function.

Because of these limitations, la_pltexit() should be considered an experimental interface.
When in doubt, avoid the use of the la_pltexit() routines.

Functions That Directly Inspect the Stack
A small number of functions exist that directly inspect the stack or make assumptions of its
state. Some examples of these functions are the setjmp(3C) family, vfork(2), and any function
that returns a structure, not a pointer to a structure. These functions are compromised by the
extra stack that is created to support la_pltexit().

The runtime linker cannot detect functions of this type, and thus the audit library creator is
responsible for disabling la_pltexit() for such routines.

Runtime Linker Debugger Interface
The runtime linker performs many operations including the mapping of objects into memory
and the binding of symbols. Debugging programs often need to access information that
describes these runtime linker operations as part of analyzing an application. These debugging
programs run as a separate process from the application the debugger is analyzing.

This section describes the rtld-debugger interface for monitoring and modifying a dynamically
linked application from another process. The architecture of this interface follows the model
used in libc_db(3LIB).

When using the rtld-debugger interface, at least two processes are involved.
■ One or more target processes. The target processes must be dynamically linked and use the

runtime linker /usr/lib/ld.so.1 for 32–bit processes, or /usr/lib/64/ld.so.1 for
64–bit processes.

■ A controlling process links with the rtld-debugger interface library and uses the interface to
inspect the dynamic aspects of the target processes. A 64–bit controlling process can debug
both 64–bit targets and 32–bit targets. However, a 32–bit controlling process is limited to
32–bit targets.

The most anticipated use of the rtld-debugger interface is when the controlling process is a
debugger and its target is a dynamic executable.

The rtld-debugger interface enables the following activities with a target process.
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■ Initial rendezvous with the runtime linker.
■ Notification of the loading and unloading of dynamic objects.
■ Retrieval of information regarding any loaded objects.
■ Stepping over procedure linkage table entries.
■ Enabling object padding.

Interaction Between Controlling and Target Process
To be able to inspect and manipulate a target process, the rtld-debugger interface employs an
exported interface, an imported interface, and agents for communicating between these
interfaces.

The controlling process is linked with the rtld-debugger interface provided by
librtld_db.so.1, and makes requests of the interface exported from this library. This interface
is defined in /usr/include/rtld_db.h. In turn, librtld_db.so.1 makes requests of the
interface imported from the controlling process. This interaction allows the rtld-debugger
interface to perform the following.

■ Look up symbols in a target process.
■ Read and write memory in the target process.

The imported interface consists of a number of proc_service routines that most debuggers
already employ to analyze processes. These routines are described in “Debugger Import
Interface” on page 192.

The rtld-debugger interface assumes that the process being analyzed is stopped when requests
are made of the rtld-debugger interface. If this halt does not occur, data structures within the
runtime linker of the target process might not be in a consistent state for examination.

The flow of information between librtld_db.so.1, the controlling process (debugger) and the
target process (dynamic executable) is diagrammed in the following figure.
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Note – The rtld-debugger interface is dependent upon the proc_service interface,
/usr/include/proc_service.h, which is considered experimental. The rtld-debugger
interface might have to track changes in the proc_service interface as it evolves.

A sample implementation of a controlling process that uses the rtld-debugger interface is
provided in the SUNWosdem package under /usr/demo/librtld_db. This debugger, rdb,
provides an example of using the proc_service imported interface, and shows the required
calling sequence for all librtld_db.so.1 exported interfaces. The following sections describe
the rtld-debugger interfaces. More detailed information can be obtained by examining the
sample debugger.

Debugger Interface Agents
An agent provides an opaque handle that can describe internal interface structures. The agent
also provides a mechanism of communication between the exported and imported interfaces.
The rtld-debugger interface is intended to be used by a debugger which can manipulate several
processes at the same time, these agents are used to identify the process.

struct ps_prochandle

Is an opaque structure that is created by the controlling process to identify the target process
that is passed between the exported and imported interface.

rtld_db

/proc

Debugger

Linker info request

Process data

Linker
 info

R/W process 
request

Dynamic
application

Controlling
process

Target
process

FIGURE 6–1 rtld-debugger Information Flow
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struct rd_agent

Is an opaque structure created by the rtld-debugger interface that identifies the target process
that is passed between the exported and imported interface.

Debugger Exported Interface
This section describes the various interfaces exported by the /usr/lib/librtld_db.so.1 audit
library. It is broken down into functional groups.

Agent Manipulation Interfaces
rd_init()

This function establishes the rtld-debugger version requirements. The base version is defined
as RD_VERSION1. The current version is always defined by RD_VERSION.

rd_err_e rd_init(int version);

Version RD_VERSION2, added in the Solaris 8 10/00 release, extends the rd_loadobj_t
structure. See the rl_flags, rl_bend and rl_dynamic fields in “Scanning Loadable Objects”
on page 185.

Version RD_VERSION3, added in the Solaris 8 01/01 release, extends the rd_plt_info_t
structure. See the pi_baddr and pi_flags fields in “Procedure Linkage Table Skipping” on
page 189.

If the version requirement of the controlling process is greater than the rtld-debugger
interface available, then RD_NOCAPAB is returned.

rd_new()

This function creates a new exported interface agent.

rd_agent_t * rd_new(struct ps_prochandle * php);

php is a cookie created by the controlling process to identify the target process. This cookie is
used by the imported interface offered by the controlling process to maintain context, and is
opaque to the rtld-debugger interface.

rd_reset()

This function resets the information within the agent based off the same ps_prochandle
structure given to rd_new().

rd_err_e rd_reset(struct rd_agent * rdap);

This function is called when a target process is restarted.
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rd_delete()

This function deletes an agent and frees any state associated with it.

void rd_delete(struct rd_agent * rdap);

Error Handling
The following error states can be returned by the rtld-debugger interface (defined in
rtld_db.h).

typedef enum {

RD_ERR,

RD_OK,

RD_NOCAPAB,

RD_DBERR,

RD_NOBASE,

RD_NODYNAM,

RD_NOMAPS

} rd_err_e;

The following interfaces can be used to gather the error information.

rd_errstr()

This function returns a descriptive error string describing the error code rderr.

char * rd_errstr(rd_err_e rderr);

rd_log()

This function turns logging on (1) or off (0).

void rd_log(const int onoff);

When logging is turned on, the imported interface function ps_plog() provided by the
controlling process, is called with more detailed diagnostic information.

Scanning Loadable Objects
You can obtain information for each object maintained on the runtime linkers link-map is
achieved by using the following structure, defined in rtld_db.h.

typedef struct rd_loadobj {

psaddr_t rl_nameaddr;

unsigned rl_flags;

psaddr_t rl_base;

psaddr_t rl_data_base;

unsigned rl_lmident;

psaddr_t rl_refnameaddr;

psaddr_t rl_plt_base;
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unsigned rl_plt_size;

psaddr_t rl_bend;

psaddr_t rl_padstart;

psaddr_t rl_padend;

psaddt_t rl_dynamic;

} rd_loadobj_t;

Notice that all addresses given in this structure, including string pointers, are addresses in the
target process and not in the address space of the controlling process itself.

rl_nameaddr

A pointer to a string that contains the name of the dynamic object.

rl_flags

With revision RD_VERSION2, dynamically loaded relocatable objects are identified with
RD_FLG_MEM_OBJECT.

rl_base

The base address of the dynamic object.

rl_data_base

The base address of the data segment of the dynamic object.

rl_lmident

The link-map identifier (see “Establishing a Namespace” on page 171).

rl_refnameaddr

If the dynamic object is a standard filter, then this points to the name of the filtees.

rl_plt_base, rl_plt_size
These elements are present for backward compatibility and are currently unused.

rl_bend

The end address of the object (text + data + bss). With revision RD_VERSION2, a
dynamically loaded relocatable object will cause this element to point to the end of the
created object, which will include its section headers.

rl_padstart

The base address of the padding before the dynamic object (refer to “Dynamic Object
Padding” on page 191).

rl_padend

The base address of the padding after the dynamic object (refer to “Dynamic Object
Padding” on page 191).

rl_dynamic

This field, added with RD_VERSION2, provides the base address of the object's dynamic
section, which allows reference to such entries as DT_CHECKSUM (see Table 7–32).

The rd_loadobj_iter() routine uses this object data structure to access information from the
runtime linker's link-map lists.
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rd_loadobj_iter()

This function iterates over all dynamic objects currently loaded in the target process.

typedef int rl_iter_f(const rd_loadobj_t *, void *);

rd_err_e rd_loadobj_iter(rd_agent_t * rap, rl_iter_f * cb,
void * clnt_data);

On each iteration the imported function specified by cb is called. clnt_data can be used to
pass data to the cb call. Information about each object is returned by means of a pointer to a
volatile (stack allocated) rd_loadobj_t structure.

Return codes from the cb routine are examined by rd_loadobj_iter() and have the
following meaning.
■ 1 – continue processing link-maps.
■ 0 – stop processing link-maps and return control to the controlling process.

rd_loadobj_iter() returns RD_OK on success. A return of RD_NOMAPS indicates the runtime
linker has not yet loaded the initial link-maps.

Event Notification
A controlling process can track certain events that occur within the scope of the runtime linker
that. These events are:

RD_PREINIT

The runtime linker has loaded and relocated all the dynamic objects and is about to start
calling the .init sections of each object loaded.

RD_POSTINIT

The runtime linker has finished calling all of the .init sections and is about to transfer
control to the primary executable.

RD_DLACTIVITY

The runtime linker has been invoked to either load or unload a dynamic object.

These events can be monitored using the following interface, defined in sys/link.h and
rtld_db.h.

typedef enum {

RD_NONE = 0,

RD_PREINIT,

RD_POSTINIT,

RD_DLACTIVITY

} rd_event_e;

/*

* Ways that the event notification can take place:
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*/

typedef enum {

RD_NOTIFY_BPT,

RD_NOTIFY_AUTOBPT,

RD_NOTIFY_SYSCALL

} rd_notify_e;

/*

* Information on ways that the event notification can take place:

*/

typedef struct rd_notify {

rd_notify_e type;

union {

psaddr_t bptaddr;

long syscallno;

} u;

} rd_notify_t;

The following functions track events.

rd_event_enable()

This function enables (1) or disables (0) event monitoring.

rd_err_e rd_event_enable(struct rd_agent * rdap, int onoff);

Note – Presently, for performance reasons, the runtime linker ignores event disabling. The
controlling process should not assume that a given break-point can not be reached because
of the last call to this routine.

rd_event_addr()

This function specifies how the controlling program is notified of a given event.

rd_err_e rd_event_addr(rd_agent_t * rdap, rd_event_e event,
rd_notify_t * notify);

Depending on the event type, the notification of the controlling process takes place by calling
a benign, cheap system call that is identified by notify->u.syscallno, or executing a break
point at the address specified by notify->u.bptaddr. The controlling process is responsible
for tracing the system call or place the actual break-point.

When an event has occurred, additional information can be obtained by this interface, defined
in rtld_db.h.

typedef enum {

RD_NOSTATE = 0,

RD_CONSISTENT,
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RD_ADD,

RD_DELETE

} rd_state_e;

typedef struct rd_event_msg {

rd_event_e type;

union {

rd_state_e state;

} u;

} rd_event_msg_t;

The rd_state_e values are:

RD_NOSTATE

There is no additional state information available.

RD_CONSISTANT

The link-maps are in a stable state and can be examined.

RD_ADD

A dynamic object is in the process of being loaded and the link-maps are not in a stable state.
They should not be examined until the RD_CONSISTANT state is reached.

RD_DELETE

A dynamic object is in the process of being deleted and the link-maps are not in a stable state.
They should not be examined until the RD_CONSISTANT state is reached.

The rd_event_getmsg() function is used to obtain this event state information.

rd_event_getmsg()

This function provides additional information concerning an event.

rd_err_e rd_event_getmsg(struct rd_agent * rdap, rd_event_msg_t * msg);

The following table shows the possible state for each of the different event types.

RD_PREINIT RD_POSTINIT RD_DLACTIVITY

RD_NOSTATE RD_NOSTATE RD_CONSISTANT

RD_ADD

RD_DELETE

Procedure Linkage Table Skipping
The rtld-debugger interface enables a controlling process to skip over procedure linkage table
entries. When a controlling process, such as a debugger, is asked to step into a function for the
first time, the procedure linkage table processing, causes control to be passed to the runtime
linker to search for the function definition.
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The following interface enables a controlling process to step over the runtime linker's
procedure linkage table processing. The controlling process can determine when a procedure
linkage table entry is encountered based on external information provided in the ELF file.

Once a target process has stepped into a procedure linkage table entry, the process calls the
rd_plt_resolution() interface.

rd_plt_resolution()

This function returns the resolution state of the current procedure linkage table entry and
information on how to skip it.

rd_err_e rd_plt_resolution(rd_agent_t * rdap, paddr_t pc,
lwpid_t lwpid, paddr_t plt_base, rd_plt_info_t * rpi);

pc represents the first instruction of the procedure linkage table entry. lwpid provides the lwp
identifier and plt_base provides the base address of the procedure linkage table. These three
variables provide information sufficient for various architectures to process the procedure
linkage table.

rpi provides detailed information regarding the procedure linkage table entry as defined in
the following data structure, defined in rtld_db.h.

typedef enum {

RD_RESOLVE_NONE,

RD_RESOLVE_STEP,

RD_RESOLVE_TARGET,

RD_RESOLVE_TARGET_STEP

} rd_skip_e;

typedef struct rd_plt_info {

rd_skip_e pi_skip_method;

long pi_nstep;

psaddr_t pi_target;

psaddr_t pi_baddr;

unsigned int pi_flags;

} rd_plt_info_t;

#define RD_FLG_PI_PLTBOUND 0x0001

The elements of the rd_plt_info_tstructure are:

pi_skip_method

Identifies how the procedure linkage table entry can be traversed. This method is set to one
of the rd_skip_e values.

pi_nstep

Identifies how many instructions to step over when RD_RESOLVE_STEP or
RD_RESOLVE_TARGET_STEP are returned.
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pi_target

Specifies the address at which to set a breakpoint when RD_RESOLVE_TARGET_STEP or
RD_RESOLVE_TARGET are returned.

pi_baddr

The procedure linkage table destination address, added with RD_VERSION3. When the
RD_FLG_PI_PLTBOUND flag of the pi_flags field is set, this element identifies the resolved
(bound) destination address.

pi_flags

A flags field, added with RD_VERSION3. The flag RD_FLG_PI_PLTBOUND identifies the
procedure linkage entry as having been resolved (bound) to its destination address, which is
available in the pi_baddr field.

The following scenarios are possible from the rd_plt_info_t return values.

■ The first call through this procedure linkage table must be resolved by the runtime linker. In
this case, the rd_plt_info_t contains:

{RD_RESOLVE_TARGET_STEP, M, <BREAK>, 0, 0}

The controlling process sets a breakpoint at BREAK and continues the target process. When
the breakpoint is reached, the procedure linkage table entry processing has finished. The
controlling process can then step M instructions to the destination function. Notice that the
bound address (pi_baddr) has not been set since this is the first call through a procedure
linkage table entry.

■ On the Nth time through this procedure linkage table, rd_plt_info_t contains:

{RD_RESOLVE_STEP, M, 0, <BoundAddr>, RD_FLG_PI_PLTBOUND}

The procedure linkage table entry has already been resolved and the controlling process can
step M instructions to the destination function. The address that the procedure linkage table
entry is bound to is <BoundAddr> and the RD_FLG_PI_PLTBOUND bit has been set in the flags
field.

Dynamic Object Padding
The default behavior of the runtime linker relies on the operating system to load dynamic
objects where they can be most efficiently referenced. Some controlling processes benefit from
the existence of padding around the objects loaded into memory of the target process. This
interface enables a controlling process to request this padding.

rd_objpad_enable()

This function enables or disables the padding of any subsequently loaded objects with the
target process. Padding occurs on both sides of the loaded object.

rd_err_e rd_objpad_enable(struct rd_agent * rdap, size_t padsize);
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padsize specifies the size of the padding, in bytes, to be preserved both before and after any
objects loaded into memory. This padding is reserved as a memory mapping using mmap(2)
with PROT_NONE permissions and the MAP_NORESERVE flag. Effectively, the runtime linker
reserves areas of the virtual address space of the target process adjacent to any loaded objects.
These areas can later be used by the controlling process.

A padsize of 0 disables any object padding for later objects.

Note – Reservations obtained using mmap(2) from /dev/zero with MAP_NORESERVE can be
reported using the proc(1) facilities and by referring to the link-map information provided in
rd_loadobj_t.

Debugger Import Interface
The imported interface that a controlling process must provide to librtld_db.so.1 is defined
in /usr/include/proc_service.h. A sample implementation of these proc_service
functions can be found in the rdb demonstration debugger. The rtld-debugger interface uses
only a subset of the proc_service interfaces available. Future versions of the rtld-debugger
interface might take advantage of additional proc_service interfaces without creating an
incompatible change.

The following interfaces are currently being used by the rtld-debugger interface.

ps_pauxv()

This function returns a pointer to a copy of the auxv vector.

ps_err_e ps_pauxv(const struct ps_prochandle * ph, auxv_t ** aux);

Because the auxv vector information is copied to an allocated structure, the pointer remains
as long as the ps_prochandle is valid.

ps_pread()

This function reads data from the target process.

ps_err_e ps_pread(const struct ps_prochandle * ph, paddr_t addr,
char * buf, int size);

From address addr in the target process, size bytes are copied to buf.

ps_pwrite()

This function writes data to the target process.

ps_err_e ps_pwrite(const struct ps_prochandle * ph, paddr_t addr,
char * buf, int size);

size bytes from buf are copied into the target process at address addr.
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ps_plog()

This function is called with additional diagnostic information from the rtld-debugger
interface.

void ps_plog(const char * fmt, ...);

The controlling process determines where, or if, to log this diagnostic information. The
arguments to ps_plog() follow the printf(3C) format.

ps_pglobal_lookup()

This function searches for the symbol in the target process.

ps_err_e ps_pglobal_lookup(const struct ps_prochandle * ph,
const char * obj, const char * name, ulong_t * sym_addr);

The symbol named name is searched for within the object named obj within the target
process ph. If the symbol is found, the symbol address is stored in sym_addr.

ps_pglobal_sym()

This function searches for the symbol in the target process.

ps_err_e ps_pglobal_sym(const struct ps_prochandle * ph,
const char * obj, const char * name, ps_sym_t * sym_desc);

The symbol named name is searched for within the object named obj within the target
process ph. If the symbol is found, the symbol descriptor is stored in sym_desc.

In the event that the rtld-debugger interface needs to find symbols within the application or
runtime linker prior to any link-map creation, the following reserved values for obj are
available.

#define PS_OBJ_EXEC ((const char *)0x0) /* application id */

#define PS_OBJ_LDSO ((const char *)0x1) /* runtime linker id */

The controlling process can use the procfs file system for these objects, using the following
pseudo code.

ioctl(.., PIOCNAUXV, ...) - obtain AUX vectors

ldsoaddr = auxv[AT_BASE];

ldsofd = ioctl(..., PIOCOPENM, &ldsoaddr);

/* process elf information found in ldsofd ... */

execfd = ioctl(.., PIOCOPENM, 0);

/* process elf information found in execfd ... */

Once the file descriptors are found, the ELF files can be examined for their symbol information
by the controlling program.
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Object File Format

This chapter describes the executable and linking format (ELF) of the object files produced by
the assembler and link-editor. Three significant types of object file exist.

■ A relocatable object file holds sections containing code and data. This file is suitable to be
linked with other relocatable object files to create dynamic executable files, shared object
files, or another relocatable object.

■ A dynamic executable file holds a program that is ready to execute. The file specifies how
exec(2) creates a program's process image. This file is typically bound to shared object files
at runtime to create a process image.

■ A shared object file holds code and data that is suitable for additional linking. The link-editor
can process this file with other relocatable object files and shared object files to create other
object files. The runtime linker combines this file with a dynamic executable file and other
shared object files to create a process image.

The first section in this chapter, “File Format” on page 195, focuses on the format of object files
and how the format pertains to creating programs. The second section, “Dynamic Linking” on
page 261, focuses on how the format pertains to loading programs.

Programs can manipulate object files with the functions that are provided by the ELF access
library, libelf. Refer to elf(3ELF) for a description of libelf contents. Sample source code
that uses libelf is provided in the SUNWosdem package under the /usr/demo/ELF directory.

File Format
Object files participate in both program linking and program execution. For convenience and
efficiency, the object file format provides parallel views of a file's contents, reflecting the
differing needs of these activities. The following figure shows an object file's organization.
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An ELF header resides at the beginning of an object file and holds a road map describing the
file's organization.

Note – Only the ELF header has a fixed position in the file. The flexibility of the ELF format
requires no specified order for header tables, sections or segments. However, this figure is
typical of the layout used in the Solaris OS.

Sections represent the smallest indivisible units that can be processed within an ELF file.
Segments are a collection of sections. Segments represent the smallest individual units that can
be mapped to a memory image by exec(2) or by the runtime linker.

Sections hold the bulk of object file information for the linking view. This data includes
instructions, data, symbol table, and relocation information. Descriptions of sections appear in
the first part of this chapter. The second part of this chapter discusses segments and the
program execution view of the file.

A program header table, if present, tells the system how to create a process image. Files used to
generate a process image, executable files and shared objects, must have a program header table.
Relocatable object files do not need a program header table.

A section header table contains information describing the file's sections. Every section has an
entry in the table. Each entry gives information such as the section name and section size. Files
that are used in link-editing must have a section header table.

Linking view 

Segment 1

Program header
table (optional)

Section header
table

ELF header

Section 1

. . .

Section n

. . .

. . .

Execution view

Program header
table

Section header
table (optional)

ELF header

. . .

Segment 2

FIGURE 7–1 Object File Format
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Data Representation
The object file format supports various processors with 8-bit bytes, 32–bit architectures and
64–bit architectures. Nevertheless, the data representation is intended to be extensible to larger,
or smaller, architectures. Table 7–1 and Table 7–2 list the 32–bit data types and 64–bit data
types.

Object files represent some control data with a machine-independent format. This format
provides for the common identification and interpretation of object files. The remaining data in
an object file use the encoding of the target processor, regardless of the machine on which the
file was created.

TABLE 7–1 ELF 32–Bit Data Types

Name Size Alignment Purpose

Elf32_Addr 4 4 Unsigned program address

Elf32_Half 2 2 Unsigned medium integer

Elf32_Off 4 4 Unsigned file offset

Elf32_Sword 4 4 Signed integer

Elf32_Word 4 4 Unsigned integer

unsigned char 1 1 Unsigned small integer

TABLE 7–2 ELF 64–Bit Data Types

Name Size Alignment Purpose

Elf64_Addr 8 8 Unsigned program address

Elf64_Half 2 2 Unsigned medium integer

Elf64_Off 8 8 Unsigned file offset

Elf64_Sword 4 4 Signed integer

Elf64_Word 4 4 Unsigned integer

Elf64_Xword 8 8 Unsigned long integer

Elf64_Sxword 8 8 Signed long integer

unsigned char 1 1 Unsigned small integer

All data structures that the object file format defines follow the natural size and alignment
guidelines for the relevant class. Data structures can contain explicit padding to ensure 4-byte
alignment for 4-byte objects, to force structure sizes to a multiple of 4, and so forth. Data also
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have suitable alignment from the beginning of the file. Thus, for example, a structure
containing an Elf32_Addr member is aligned on a 4-byte boundary within the file. Similarly, a
structure containing an Elf64_Addr member is aligned on an 8–byte boundary.

Note – For portability, ELF uses no bit-fields.

ELF Header
Some control structures within object files can grow because the ELF header contains their
actual sizes. If the object file format does change, a program can encounter control structures
that are larger or smaller than expected. Programs might therefore ignore extra information.
The treatment of missing information depends on context and is specified if and when
extensions are defined.

The ELF header has the following structure. See sys/elf.h.

#define EI_NIDENT 16

typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf32_Half e_type;

Elf32_Half e_machine;

Elf32_Word e_version;

Elf32_Addr e_entry;

Elf32_Off e_phoff;

Elf32_Off e_shoff;

Elf32_Word e_flags;

Elf32_Half e_ehsize;

Elf32_Half e_phentsize;

Elf32_Half e_phnum;

Elf32_Half e_shentsize;

Elf32_Half e_shnum;

Elf32_Half e_shstrndx;

} Elf32_Ehdr;

typedef struct {

unsigned char e_ident[EI_NIDENT];

Elf64_Half e_type;

Elf64_Half e_machine;

Elf64_Word e_version;

Elf64_Addr e_entry;

Elf64_Off e_phoff;

Elf64_Off e_shoff;

Elf64_Word e_flags;

Elf64_Half e_ehsize;

File Format

Linker and Libraries Guide • September 2008198



Elf64_Half e_phentsize;

Elf64_Half e_phnum;

Elf64_Half e_shentsize;

Elf64_Half e_shnum;

Elf64_Half e_shstrndx;

} Elf64_Ehdr;

e_ident

The initial bytes mark the file as an object file. These bytes provide machine-independent
data with which to decode and interpret the file's contents. Complete descriptions appear in
“ELF Identification” on page 202.

e_type

Identifies the object file type, as listed in the following table.

Name Value Meaning

ET_NONE 0 No file type

ET_REL 1 Relocatable file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOPROC 0xff00 Processor-specific

ET_HIPROC 0xffff Processor-specific

Although the core file contents are unspecified, type ET_CORE is reserved to mark the file.
Values from ET_LOPROC through ET_HIPROC (inclusive) are reserved for processor-specific
semantics. Other values are reserved for future use.

e_machine

Specifies the required architecture for an individual file. Relevant architectures are listed in
the following table.

Name Value Meaning

EM_NONE 0 No machine

EM_SPARC 2 SPARC

EM_386 3 Intel 80386

EM_SPARC32PLUS 18 Sun SPARC 32+
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Name Value Meaning

EM_SPARCV9 43 SPARC V9

EM_AMD64 62 AMD 64

Other values are reserved for future use. Processor-specific ELF names are distinguished by
using the machine name. For example, the flags defined for e_flags use the prefix EF_. A flag
that is named WIDGET for the EM_XYZ machine would be called EF_XYZ_WIDGET.

e_version

Identifies the object file version, as listed in the following table.

Name Value Meaning

EV_NONE 0 Invalid version

EV_CURRENT >=1 Current version

The value 1 signifies the original file format. The value of EV_CURRENT changes as necessary
to reflect the current version number.

e_entry

The virtual address to which the system first transfers control, thus starting the process. If the
file has no associated entry point, this member holds zero.

e_phoff

The program header table's file offset in bytes. If the file has no program header table, this
member holds zero.

e_shoff

The section header table's file offset in bytes. If the file has no section header table, this
member holds zero.

e_flags

Processor-specific flags associated with the file. Flag names take the form EF_machine_flag.
This member is presently zero for x86. The SPARC flags are listed in the following table.

Name Value Meaning

EF_SPARC_EXT_MASK 0xffff00 Vendor Extension mask

EF_SPARC_32PLUS 0x000100 Generic V8+ features

EF_SPARC_SUN_US1 0x000200 Sun UltraSPARCTM 1 Extensions

EF_SPARC_HAL_R1 0x000400 HAL R1 Extensions
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Name Value Meaning

EF_SPARC_SUN_US3 0x000800 Sun UltraSPARC 3 Extensions

EF_SPARCV9_MM 0x3 Mask for Memory Model

EF_SPARCV9_TSO 0x0 Total Store Ordering

EF_SPARCV9_PSO 0x1 Partial Store Ordering

EF_SPARCV9_RMO 0x2 Relaxed Memory Ordering

e_ehsize

The ELF header's size in bytes.

e_phentsize

The size in bytes of one entry in the file's program header table. All entries are the same size.

e_phnum

The number of entries in the program header table. The product of e_phentsize and
e_phnum gives the table's size in bytes. If a file has no program header table, e_phnum holds
the value zero.

If the number of program headers is greater than or equal to PN_XNUM (0xffff), this member
has the value PN_XNUM (0xffff). The actual number of program header table entries is
contained in the sh_info field of the section header at index 0. Otherwise, the sh_info
member of the initial section header entry contains the value zero. See Table 7–6 and
Table 7–7.

e_shentsize

A section header's size in bytes. A section header is one entry in the section header table. All
entries are the same size.

e_shnum

The number of entries in the section header table. The product of e_shentsize and e_shnum

gives the section header table's size in bytes. If a file has no section header table, e_shnum
holds the value zero.

If the number of sections is greater than or equal to SHN_LORESERVE (0xff00), e_shnum has
the value zero. The actual number of section header table entries is contained in the sh_size
field of the section header at index 0. Otherwise, the sh_size member of the initial section
header entry contains the value zero. See Table 7–6 and Table 7–7.

e_shstrndx

The section header table index of the entry that is associated with the section name string
table. If the file has no section name string table, this member holds the value SHN_UNDEF.

If the section name string table section index is greater than or equal to SHN_LORESERVE

(0xff00), this member has the value SHN_XINDEX (0xffff) and the actual index of the section
name string table section is contained in the sh_link field of the section header at index 0.
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Otherwise, the sh_link member of the initial section header entry contains the value zero.
See Table 7–6 and Table 7–7.

ELF Identification
ELF provides an object file framework to support multiple processors, multiple data encoding,
and multiple classes of machines. To support this object file family, the initial bytes of the file
specify how to interpret the file. These bytes are independent of the processor on which the
inquiry is made and independent of the file's remaining contents.

The initial bytes of an ELF header and an object file correspond to the e_ident member.

TABLE 7–3 ELF Identification Index

Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1 File identification

EI_MAG2 2 File identification

EI_MAG3 3 File identification

EI_CLASS 4 File class

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_OSABI 7 Operating system/ABI identification

EI_ABIVERSION 8 ABI version

EI_PAD 9 Start of padding bytes

EI_NIDENT 16 Size of e_ident[]

These indexes access bytes that hold the following values.

EI_MAG0 - EI_MAG3
A 4–byte magic number, identifying the file as an ELF object file, as listed in the following
table.

Name Value Position

ELFMAG0 0x7f e_ident[EI_MAG0]
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Name Value Position

ELFMAG1 ’E’ e_ident[EI_MAG1]

ELFMAG2 ’L’ e_ident[EI_MAG2]

ELFMAG3 ’F’ e_ident[EI_MAG3]

EI_CLASS

Byte e_ident[EI_CLASS] identifies the file's class, or capacity, as listed in the following table.

Name Value Meaning

ELFCLASSNONE 0 Invalid class

ELFCLASS32 1 32–bit objects

ELFCLASS64 2 64–bit objects

The file format is designed to be portable among machines of various sizes, without
imposing the sizes of the largest machine on the smallest. The class of the file defines the
basic types used by the data structures of the object file container. The data that is contained
in object file sections can follow a different programming model.

Class ELFCLASS32 supports machines with files and virtual address spaces up to 4 gigabytes.
This class uses the basic types that are defined in Table 7–1.

Class ELFCLASS64 is reserved for 64–bit architectures such as 64–bit SPARC and x64. This
class uses the basic types that are defined in Table 7–2.

EI_DATA

Byte e_ident[EI_DATA] specifies the data encoding of the processor-specific data in the
object file, as listed in the following table.

Name Value Meaning

ELFDATANONE 0 Invalid data encoding

ELFDATA2LSB 1 See Figure 7–2.

ELFDATA2MSB 2 See Figure 7–3.

More information on these encodings appears in the section “Data Encoding” on page 204.
Other values are reserved for future use.

EI_VERSION

Byte e_ident[EI_VERSION] specifies the ELF header version number. Currently, this value
must be EV_CURRENT.
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EI_OSABI

Byte e_ident[EI_OSABI] identifies the operating system together with the ABI to which the
object is targeted. Some fields in other ELF structures have flags and values that have
operating system or ABI specific meanings. The interpretation of those fields is determined
by the value of this byte.

EI_ABIVERSION

Byte e_ident[EI_ABIVERSION] identifies the version of the ABI to which the object is
targeted. This field is used to distinguish among incompatible versions of an ABI. The
interpretation of this version number is dependent on the ABI identified by the EI_OSABI
field. If no values are specified for the EI_OSABI field for the processor, or no version values
are specified for the ABI determined by a particular value of the EI_OSABI byte, the value
zero is used to indicate unspecified.

EI_PAD

This value marks the beginning of the unused bytes in e_ident. These bytes are reserved and
are set to zero. Programs that read object files should ignore these values.

Data Encoding
A file's data encoding specifies how to interpret the integer types in a file. Class ELFCLASS32 files
and class ELFCLASS64 files use integers that occupy 1, 2, 4, and 8 bytes to represent offsets,
addresses and other information. Under the defined encodings, objects are represented as
described by the figures that follow. Byte numbers appear in the upper left corners.

ELFDATA2LSB encoding specifies 2's complement values, with the least significant byte
occupying the lowest address. This encoding if often referred to informally as little endian.

ELFDATA2MSB encoding specifies 2's complement values, with the most significant byte
occupying the lowest address. This encoding if often referred to informally as big endian.
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FIGURE 7–2 Data Encoding ELFDATA2LSB
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Sections
An object file's section header table allows you to locate all of the sections of the file. The section
header table is an array of Elf32_Shdr or Elf64_Shdr structures. A section header table index is
a subscript into this array. The ELF header's e_shoff member indicates the byte offset from the
beginning of the file to the section header table. The e_shnum member indicates how many
entries that the section header table contains. The e_shentsize member indicates the size in
bytes of each entry.

If the number of sections is greater than or equal to SHN_LORESERVE (0xff00), e_shnum has the
value SHN_UNDEF (0). The actual number of section header table entries is contained in the
sh_size field of the section header at index 0. Otherwise, the sh_size member of the initial
entry contains the value zero.

Some section header table indexes are reserved in contexts where index size is restricted. For
example, the st_shndx member of a symbol table entry and the e_shnum and e_shstrndx

members of the ELF header. In such contexts, the reserved values do not represent actual
sections in the object file. Also in such contexts, an escape value indicates that the actual section
index is to be found elsewhere, in a larger field.

TABLE 7–4 ELF Special Section Indexes

Name Value

SHN_UNDEF 0

SHN_LORESERVE 0xff00

SHN_LOPROC 0xff00

SHN_BEFORE 0xff00

SHN_AFTER 0xff01
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FIGURE 7–3 Data Encoding ELFDATA2MSB
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TABLE 7–4 ELF Special Section Indexes (Continued)
Name Value

SHN_AMD64_LCOMMON 0xff02

SHN_HIPROC 0xff1f

SHN_LOOS 0xff20

SHN_LOSUNW 0xff3f

SHN_SUNW_IGNORE 0xff3f

SHN_HISUNW 0xff3f

SHN_HIOS 0xff3f

SHN_ABS 0xfff1

SHN_COMMON 0xfff2

SHN_XINDEX 0xffff

SHN_HIRESERVE 0xffff

Note – Although index 0 is reserved as the undefined value, the section header table contains an
entry for index 0. That is, if the e_shnum member of the ELF header indicates a file has 6 entries
in the section header table, the sections have the indexes 0 through 5. The contents of the initial
entry are specified later in this section.

SHN_UNDEF

An undefined, missing, irrelevant, or otherwise meaningless section reference. For example,
a symbol defined relative to section number SHN_UNDEF is an undefined symbol.

SHN_LORESERVE

The lower boundary of the range of reserved indexes.

SHN_LOPROC - SHN_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHN_LOOS - SHN_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

SHN_LOSUNW - SHN_HISUNW
Values in this inclusive range are reserved for Sun-specific semantics.

SHN_SUNW_IGNORE

This section index provides a temporary symbol definition within relocatable objects.
Reserved for internal use by dtrace(1M).
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SHN_BEFORE, SHN_AFTER

Provide for initial and final section ordering in conjunction with the SHF_LINK_ORDER and
SHF_ORDERED section flags. See Table 7–8.

SHN_AMD64_LCOMMON

x64 specific common block label. This label is similar to SHN_COMMON, but provides for
identifying a large common block.

SHN_ABS

Absolute values for the corresponding reference. For example, symbols defined relative to
section number SHN_ABS have absolute values and are not affected by relocation.

SHN_COMMON

Symbols defined relative to this section are common symbols, such as FORTRAN COMMON or
unallocated C external variables. These symbols are sometimes referred to as tentative.

SHN_XINDEX

An escape value indicating that the actual section header index is too large to fit in the
containing field. The header section index is found in another location specific to the
structure where the section index appears.

SHN_HIRESERVE

The upper boundary of the range of reserved indexes. The system reserves indexes between
SHN_LORESERVE and SHN_HIRESERVE, inclusive. The values do not reference the section
header table. The section header table does not contain entries for the reserved indexes.

Sections contain all information in an object file except the ELF header, the program header
table, and the section header table. Moreover, the sections in object files satisfy several
conditions.
■ Every section in an object file has exactly one section header describing the section. Section

headers can exist that do not have a section.
■ Each section occupies one contiguous, possibly empty, sequence of bytes within a file.
■ Sections in a file cannot overlap. No byte in a file resides in more than one section.
■ An object file can have inactive space. The various headers and the sections might not cover

every byte in an object file. The contents of the inactive data are unspecified.

A section header has the following structure. See sys/elf.h.

typedef struct {

elf32_Word sh_name;

Elf32_Word sh_type;

Elf32_Word sh_flags;

Elf32_Addr sh_addr;

Elf32_Off sh_offset;

Elf32_Word sh_size;

Elf32_Word sh_link;

Elf32_Word sh_info;
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Elf32_Word sh_addralign;

Elf32_Word sh_entsize;

} Elf32_Shdr;

typedef struct {

Elf64_Word sh_name;

Elf64_Word sh_type;

Elf64_Xword sh_flags;

Elf64_Addr sh_addr;

Elf64_Off sh_offset;

Elf64_Xword sh_size;

Elf64_Word sh_link;

Elf64_Word sh_info;

Elf64_Xword sh_addralign;

Elf64_Xword sh_entsize;

} Elf64_Shdr;

sh_name

The name of the section. This members value is an index into the section header string table
section giving the location of a null-terminated string. Section names and their descriptions
are listed in Table 7–10.

sh_type

Categorizes the section's contents and semantics. Section types and their descriptions are
listed in Table 7–5.

sh_flags

Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed
in Table 7–8.

sh_addr

If the section appears in the memory image of a process, this member gives the address at
which the section's first byte should reside. Otherwise, the member contains the value zero.

sh_offset

The byte offset from the beginning of the file to the first byte in the section. For a SHT_NOBITS
section, this member indicates the conceptual offset in the file, as the section occupies no
space in the file.

sh_size

The section's size in bytes. Unless the section type is SHT_NOBITS, the section occupies
sh_size bytes in the file. A section of type SHT_NOBITS can have a nonzero size, but the
section occupies no space in the file.

sh_link

A section header table index link, whose interpretation depends on the section type.
Table 7–9 describes the values.
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sh_info

Extra information, whose interpretation depends on the section type. Table 7–9 describes
the values. If the sh_flags field for this section header includes the attribute SHF_INFO_LINK,
then this member represents a section header table index.

sh_addralign

Some sections have address alignment constraints. For example, if a section holds a
double-word, the system must ensure double-word alignment for the entire section. In this
case, the value of sh_addr must be congruent to 0, modulo the value of sh_addralign.
Currently, only 0 and positive integral powers of two are allowed. Values 0 and 1 mean the
section has no alignment constraints.

sh_entsize

Some sections hold a table of fixed-size entries, such as a symbol table. For such a section,
this member gives the size in bytes of each entry. The member contains the value zero if the
section does not hold a table of fixed-size entries.

A section header's sh_type member specifies the section's semantics, as shown in the following
table.

TABLE 7–5 ELF Section Types, sh_type

Name Value

SHT_NULL 0

SHT_PROGBITS 1

SHT_SYMTAB 2

SHT_STRTAB 3

SHT_RELA 4

SHT_HASH 5

SHT_DYNAMIC 6

SHT_NOTE 7

SHT_NOBITS 8

SHT_REL 9

SHT_SHLIB 10

SHT_DYNSYM 11

SHT_INIT_ARRAY 14

SHT_FINI_ARRAY 15
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TABLE 7–5 ELF Section Types, sh_type (Continued)
Name Value

SHT_PREINIT_ARRAY 16

SHT_GROUP 17

SHT_SYMTAB_SHNDX 18

SHT_LOOS 0x60000000

SHT_LOSUNW 0x6ffffff4

SHT_SUNW_dof 0x6ffffff4

SHT_SUNW_cap 0x6ffffff5

SHT_SUNW_SIGNATURE 0x6ffffff6

SHT_SUNW_ANNOTATE 0x6ffffff7

SHT_SUNW_DEBUGSTR 0x6ffffff8

SHT_SUNW_DEBUG 0x6ffffff9

SHT_SUNW_move 0x6ffffffa

SHT_SUNW_COMDAT 0x6ffffffb

SHT_SUNW_syminfo 0x6ffffffc

SHT_SUNW_verdef 0x6ffffffd

SHT_SUNW_verneed 0x6ffffffe

SHT_SUNW_versym 0x6fffffff

SHT_HISUNW 0x6fffffff

SHT_HIOS 0x6fffffff

SHT_LOPROC 0x70000000

SHT_SPARC_GOTDATA 0x70000000

SHT_AMD64_UNWIND 0x70000001

SHT_HIPROC 0x7fffffff

SHT_LOUSER 0x80000000

SHT_HIUSER 0xffffffff

SHT_NULL

Identifies the section header as inactive. This section header does not have an associated
section. Other members of the section header have undefined values.
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SHT_PROGBITS

Identifies information defined by the program, whose format and meaning are determined
solely by the program.

SHT_SYMTAB, SHT_DYNSYM
Identifies a symbol table. Typically, a SHT_SYMTAB section provides symbols for link-editing.
As a complete symbol table, the table can contain many symbols that are unnecessary for
dynamic linking. Consequently, an object file can also contain a SHT_DYNSYM section, which
holds a minimal set of dynamic linking symbols, to save space.

See “Symbol Table Section” on page 246 for details.

SHT_STRTAB, SHT_DYNSTR
Identifies a string table. An object file can have multiple string table sections. See “String
Table Section” on page 245 for details.

SHT_RELA

Identifies relocation entries with explicit addends, such as type Elf32_Rela for the 32–bit
class of object files. An object file can have multiple relocation sections. See “Relocation
Sections” on page 233 for details.

SHT_HASH

Identifies a symbol hash table. A dynamically linked object file must contain a symbol hash
table. Currently, an object file can have only one hash table, but this restriction might be
relaxed in the future. See “Hash Table Section” on page 227 for details.

SHT_DYNAMIC

Identifies information for dynamic linking. Currently, an object file can have only one
dynamic section. See “Dynamic Section” on page 273 for details.

SHT_NOTE

Identifies information that marks the file in some way. See “Note Section” on page 231 for
details.

SHT_NOBITS

Identifies a section that occupies no space in the file but otherwise resembles SHT_PROGBITS.
Although this section contains no bytes, the sh_offset member contains the conceptual file
offset.

SHT_REL

Identifies relocation entries without explicit addends, such as type Elf32_Rel for the 32–bit
class of object files. An object file can have multiple relocation sections. See “Relocation
Sections” on page 233 for details.

SHT_SHLIB

Identifies a reserved section which has unspecified semantics. Programs that contain a
section of this type do not conform to the ABI.
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SHT_INIT_ARRAY

Identifies a section containing an array of pointers to initialization functions. Each pointer in
the array is taken as a parameterless procedure with a void return. See “Initialization and
Termination Sections” on page 38 for details.

SHT_FINI_ARRAY

Identifies a section containing an array of pointers to termination functions. Each pointer in
the array is taken as a parameterless procedure with a void return. See “Initialization and
Termination Sections” on page 38 for details.

SHT_PREINIT_ARRAY

Identifies a section containing an array of pointers to functions that are invoked before all
other initialization functions. Each pointer in the array is taken as a parameterless procedure
with a void return. See “Initialization and Termination Sections” on page 38 for details.

SHT_GROUP

Identifies a section group. A section group identifies a set of related sections that must be
treated as a unit by the link-editor. Sections of type SHT_GROUP can appear only in relocatable
objects. See “Group Section” on page 225 for details.

SHT_SYMTAB_SHNDX

Identifies a section containing extended section indexes, that are associated with a symbol
table. If any section header indexes referenced by a symbol table, contain the escape value
SHN_XINDEX, an associated SHT_SYMTAB_SHNDX is required.

The SHT_SYMTAB_SHNDX section is an array of Elf32_Word values. This array contains one
entry for every entry in the associated symbol table entry. The values represent the section
header indexes against which the symbol table entries are defined. Only if corresponding
symbol table entry's st_shndx field contains the escape value SHN_XINDEX will the matching
Elf32_Word hold the actual section header index. Otherwise, the entry must be SHN_UNDEF
(0).

SHT_LOOS – SHT_HIOS

Values in this inclusive range are reserved for operating system-specific semantics.

SHT_LOSUNW – SHT_HISUNW

Values in this inclusive range are reserved for Solaris OS semantics.

SHT_SUNW_dof

Reserved for internal use by dtrace(1M).

SHT_SUNW_cap

Specifies hardware and software capability requirements. See “Hardware and Software
Capabilities Section” on page 226 for details.

SHT_SUNW_SIGNATURE

Identifies module verification signature.
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SHT_SUNW_ANNOTATE

The processing of an annotate section follows all of the default rules for processing a section.
The only exception occurs if the annotate section is in non-allocatable memory. If the
section header flag SHF_ALLOC is not set, the link-editor silently ignores any unsatisfied
relocations against this section.

SHT_SUNW_DEBUGSTR, SHT_SUNW_DEBUG
Identifies debugging information. Sections of this type are stripped from the object using the
link-editor's -s option, or after the link-edit using strip(1).

SHT_SUNW_move

Identifies data to handle partially initialized symbols. See “Move Section” on page 229 for
details.

SHT_SUNW_COMDAT

Identifies a section that allows multiple copies of the same data to be reduced to a single copy.
See “COMDAT Section” on page 224 for details.

SHT_SUNW_syminfo

Identifies additional symbol information. See “Syminfo Table Section” on page 254 for
details.

SHT_SUNW_verdef

Identifies fine-grained versions defined by this file. See “Version Definition Section” on
page 256 for details.

SHT_SUNW_verneed

Identifies fine-grained dependencies required by this file. See “Version Dependency Section”
on page 259 for details.

SHT_SUNW_versym

Identifies a table describing the relationship of symbols to the version definitions offered by
the file. See “Version Symbol Section” on page 258 for details.

SHT_LOPROC - SHT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHT_SPARC_GOTDATA

Identifies SPARC specific data, referenced using GOT-relative addressing. That is, offsets
relative to the address assigned to the symbol _GLOBAL_OFFSET_TABLE_. For 64–bit SPARC,
data in this section must be bound at link-edit time to locations within {+-} 2^32 bytes of
the GOT address.

SHT_AMD64_UNWIND

Identifies x64 specific data, containing unwind function table entries for stack unwinding.

SHT_LOUSER

Specifies the lower boundary of the range of indexes that are reserved for application
programs.
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SHT_HIUSER

Specifies the upper boundary of the range of indexes that are reserved for application
programs. Section types between SHT_LOUSER and SHT_HIUSER can be used by the
application without conflicting with current or future system-defined section types.

Other section-type values are reserved. As mentioned before, the section header for index 0
(SHN_UNDEF) exists, even though the index marks undefined section references. The following
table shows the values.

TABLE 7–6 ELF Section Header Table Entry: Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address

sh_offset 0 No file offset

sh_size 0 No size

sh_link SHN_UNDEF No link information

sh_info 0 No auxiliary information

sh_addralign 0 No alignment

sh_entsize 0 No entries

Should the number of sections or program headers exceed the ELF header data sizes, elements
of section header 0 are used to define extended ELF header attributes. The following table shows
the values.

TABLE 7–7 ELF Extended Section Header Table Entry: Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address

sh_offset 0 No file offset
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TABLE 7–7 ELF Extended Section Header Table Entry: Index 0 (Continued)
Name Value Note

sh_size e_shnum The number of entries in the
section header table

sh_link e_shstrndx The section header index of the
entry that is associated with the
section name string table

sh_info e_phnum The number of entries in the
program header table

sh_addralign 0 No alignment

sh_entsize 0 No entries

A section header's sh_flags member holds 1-bit flags that describe the section's attributes.

TABLE 7–8 ELF Section Attribute Flags

Name Value

SHF_WRITE 0x1

SHF_ALLOC 0x2

SHF_EXECINSTR 0x4

SHF_MERGE 0x10

SHF_STRINGS 0x20

SHF_INFO_LINK 0x40

SHF_LINK_ORDER 0x80

SHF_OS_NONCONFORMING 0x100

SHF_GROUP 0x200

SHF_TLS 0x400

SHF_MASKOS 0x0ff00000

SHF_AMD64_LARGE 0x10000000

SHF_ORDERED 0x40000000

SHF_EXCLUDE 0x80000000

SHF_MASKPROC 0xf0000000

File Format

Chapter 7 • Object File Format 215



If a flag bit is set in sh_flags, the attribute is on for the section. Otherwise, the attribute is off, or
does not apply. Undefined attributes are reserved and are set to zero.

SHF_WRITE

Identifies a section that should be writable during process execution.

SHF_ALLOC

Identifies a section that occupies memory during process execution. Some control sections
do not reside in the memory image of an object file. This attribute is off for those sections.

SHF_EXECINSTR

Identifies a section that contains executable machine instructions.

SHF_MERGE

Identifies a section containing data that can be merged to eliminate duplication. Unless the
SHF_STRINGS flag is also set, the data elements in the section are of a uniform size. The size of
each element is specified in the section header's sh_entsize field. If the SHF_STRINGS flag is
also set, the data elements consist of null-terminated character strings. The size of each
character is specified in the section header's sh_entsize field.

SHF_STRINGS

Identifies a section that consists of null-terminated character strings. The size of each
character is specified in the section header's sh_entsize field.

SHF_INFO_LINK

This section headers sh_info field holds a section header table index.

SHF_LINK_ORDER

This section adds special ordering requirements to the link-editor. The requirements apply if
the sh_link field of this section's header references another section, the linked-to section. If
this section is combined with other sections in the output file, the section appears in the same
relative order with respect to those sections. Similarly the linked-to section appears with
respect to sections the linked-to section is combined with.

The special sh_link values SHN_BEFORE and SHN_AFTER (see Table 7–4) imply that the sorted
section is to precede or follow, respectively, all other sections in the set being ordered. Input
file link-line order is preserved if multiple sections in an ordered set have one of these special
values.

A typical use of this flag is to build a table that references text or data sections in address
order.

In the absence of the sh_link ordering information, sections from a single input file
combined within one section of the output file are contiguous. These section have the same
relative ordering as the sections did in the input file. The contributions from multiple input
files appear in link-line order.
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SHF_OS_NONCONFORMING

This section requires special OS-specific processing beyond the standard linking rules to
avoid incorrect behavior. If this section has either an sh_type value or contains sh_flags
bits in the OS-specific ranges for those fields, and the link-editor does not recognize these
values, then the object file containing this section is rejected with an error.

SHF_GROUP

This section is a member, perhaps the only member, of a section group. The section must be
referenced by a section of type SHT_GROUP. The SHF_GROUP flag can be set only for sections
that are contained in relocatable objects. See “Group Section” on page 225 for details.

SHF_TLS

This section holds thread-local storage. Each thread within a process has a distinct instance
of this data. See Chapter 8, “Thread-Local Storage,” for details.

SHF_MASKOS

All bits that are included in this mask are reserved for operating system-specific semantics.

SHF_AMD64_LARGE

The default compilation model for x64 only provides for 32–bit displacements. This
displacement limits the size of sections, and eventually segments, to 2 Gbytes. This attribute
flag identifies a section that can hold more than 2 Gbyte. This flag allows the linking of object
files that use different code models.

An x64 object file section that does not contain the SHF_AMD64_LARGE attribute flag can be
freely referenced by objects using small code models. A section that contains this flag can
only be referenced by objects that use larger code models. For example, an x64 medium code
model object can refer to data in sections that contain the attribute flag and sections that do
not contain the attribute flag. However, an x64 small code model object can only refer to data
in a section that does not contain this flag.

SHF_ORDERED

This section requires ordering in relation to other sections of the same type. Ordered
sections are combined within the section pointed to by the sh_link entry. The sh_link
entry of an ordered section can point to itself.

If the sh_info entry of the ordered section is a valid section within the same input file, the
ordered section is sorted based on the relative ordering within the output file of the section
pointed to by the sh_info entry.

The special sh_info values SHN_BEFORE and SHN_AFTER (see Table 7–4) imply that the sorted
section is to precede or follow, respectively, all other sections in the set being ordered. Input
file link-line order is preserved if multiple sections in an ordered set have one of these special
values.
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In the absence of the sh_info ordering information, sections from a single input file
combined within one section of the output file are contiguous. These sections have the same
relative ordering as the sections appear in the input file. The contributions from multiple
input files appear in link-line order.

SHF_EXCLUDE

This section is excluded from input to the link-edit of an executable or shared object. This
flag is ignored if the SHF_ALLOC flag is also set, or if relocations exist against the section.

SHF_MASKPROC

All bits that are included in this mask are reserved for processor-specific semantics.

Two members in the section header, sh_link and sh_info, hold special information,
depending on section type.

TABLE 7–9 ELF sh_link and sh_info Interpretation

sh_type sh_link sh_info

SHT_DYNAMIC The section header index of the
associated string table.

0

SHT_HASH The section header index of the
associated symbol table.

0

SHT_REL

SHT_RELA

The section header index of the
associated symbol table.

If the sh_flags member contains the
SHF_INFO_LINK flag, the section
header index of the section to which
the relocation applies, otherwise 0.
See also Table 7–10 and “Relocation
Sections” on page 233.

SHT_SYMTAB

SHT_DYNSYM

The section header index of the
associated string table.

One greater than the symbol table
index of the last local symbol,
STB_LOCAL.

SHT_GROUP The section header index of the
associated symbol table.

The symbol table index of an entry in
the associated symbol table. The
name of the specified symbol table
entry provides a signature for the
section group.

SHT_SYMTAB_SHNDX The section header index of the
associated symbol table.

0

SHT_SUNW_move The section header index of the
associated symbol table.

0

SHT_SUNW_COMDAT 0 0
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TABLE 7–9 ELF sh_link and sh_info Interpretation (Continued)
sh_type sh_link sh_info

SHT_SUNW_syminfo The section header index of the
associated symbol table.

The section header index of the
associated .dynamic section.

SHT_SUNW_verdef The section header index of the
associated string table.

The number of version definitions
within the section.

SHT_SUNW_verneed The section header index of the
associated string table.

The number of version dependencies
within the section.

SHT_SUNW_versym The section header index of the
associated symbol table.

0

Special Sections
Various sections hold program and control information. Sections in the following table are
used by the system and have the indicated types and attributes.

TABLE 7–10 ELF Special Sections

Name Type Attribute

.bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.comment SHT_PROGBITS None

.data, .data1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.dynamic SHT_DYNAMIC SHF_ALLOC + SHF_WRITE

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

.eh_frame_hdr SHT_AMD64_UNWIND SHF_ALLOC

.eh_frame SHT_AMD64_UNWIND SHF_ALLOC + SHF_WRITE

.fini SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.finiarray SHT_FINI_ARRAY SHF_ALLOC + SHF_WRITE

.got SHT_PROGBITS See “Global Offset Table
(Processor-Specific)” on page 286

.hash SHT_HASH SHF_ALLOC

.init SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.initarray SHT_INIT_ARRAY SHF_ALLOC + SHF_WRITE
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TABLE 7–10 ELF Special Sections (Continued)
Name Type Attribute

.interp SHT_PROGBITS See “Program Interpreter” on page 272

.note SHT_NOTE None

.lbss SHT_NOBITS SHF_ALLOC + SHF_WRITE +

SHF_AMD64_LARGE

.ldata, .ldata1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE +

SHF_AMD64_LARGE

.lrodata, .lrodata1 SHT_PROGBITS SHF_ALLOC + SHF_AMD64_LARGE

.plt SHT_PROGBITS See “Procedure Linkage Table
(Processor-Specific)” on page 287

.preinitarray SHT_PREINIT_ARRAY SHF_ALLOC + SHF_WRITE

.rela SHT_RELA None

.relname SHT_REL See “Relocation Sections” on page 233

.relaname SHT_RELA See “Relocation Sections” on page 233

.rodata, .rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB None

.strtab SHT_STRTAB Refer to the explanation following this
table.

.symtab SHT_SYMTAB See “Symbol Table Section” on page 246

.symtab_shndx SHT_SYMTAB_SHNDX See “Symbol Table Section” on page 246

.tbss SHT_NOBITS SHF_ALLOC + SHF_WRITE + SHF_TLS

.tdata, .tdata1 SHT_PROGBITS SHF_ALLOC + SHF_WRITE + SHF_TLS

.text SHT_PROGBITS SHF_ALLOC + SHF_EXECINSTR

.SUNW_bss SHT_NOBITS SHF_ALLOC + SHF_WRITE

.SUNW_cap SHT_SUNW_cap SHF_ALLOC

.SUNW_heap SHT_PROGBITS SHF_ALLOC + SHF_WRITE

.SUNW_move SHT_SUNW_move SHF_ALLOC

.SUNW_reloc SHT_REL

SHT_RELA

SHF_ALLOC

.SUNW_syminfo SHT_SUNW_syminfo SHF_ALLOC

File Format

Linker and Libraries Guide • September 2008220



TABLE 7–10 ELF Special Sections (Continued)
Name Type Attribute

.SUNW_version SHT_SUNW_verdef

SHT_SUNW_verneed

SHT_SUNW_versym

SHF_ALLOC

.bss

Uninitialized data that contribute to the program's memory image. By definition, the system
initializes the data with zeros when the program begins to run. The section occupies no file
space, as indicated by the section type SHT_NOBITS.

.comment

Comment information, typically contributed by the components of the compilation system.
This section can be manipulated by mcs(1).

.data, .data1
Initialized data that contribute to the program's memory image.

.dynamic

Dynamic linking information. See “Dynamic Section” on page 273 for details.

.dynstr

Strings needed for dynamic linking, most commonly the strings that represent the names
associated with symbol table entries.

.dynsym

Dynamic linking symbol table. See “Symbol Table Section” on page 246 for details.

.eh_frame_hdr, .eh_frame
Call frame information used to unwind the stack.

.fini

Executable instructions that contribute to a single termination function for the executable or
shared object containing the section. See “Initialization and Termination Routines” on
page 87 for details.

.finiarray

An array of function pointers that contribute to a single termination array for the executable
or shared object containing the section. See “Initialization and Termination Routines” on
page 87 for details.

.got

The global offset table. See “Global Offset Table (Processor-Specific)” on page 286 for details.

.hash

Symbol hash table. See “Hash Table Section” on page 227 for details.
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.init

Executable instructions that contribute to a single initialization function for the executable
or shared object containing the section. See “Initialization and Termination Routines” on
page 87 for details.

.initarray

An array of function pointers that contributes to a single initialization array for the
executable or shared object containing the section. See “Initialization and Termination
Routines” on page 87 for details.

.interp

The path name of a program interpreter. See “Program Interpreter” on page 272 for details.

.lbss

x64 specific uninitialized data. This data is similar to .bss, but provides for a section that is
larger than 2 Gbytes.

.ldata, .ldata1
x64 specific initialized data. This data is similar to .data, but provides for a section that is
larger than 2 Gbytes.

.lrodata, .lrodata1
x64 specific read-only data. This data is similar to .rodata, but provides for a section that is
larger than 2 Gbytes.

.note

Information in the format described in “Note Section” on page 231.

.plt

The procedure linkage table. See “Procedure Linkage Table (Processor-Specific)” on
page 287 for details.

.preinitarray

An array of function pointers that contribute to a single pre-initialization array for the
executable or shared object containing the section. See “Initialization and Termination
Routines” on page 87 for details.

.rela

Relocations that do not apply to a particular section. One use of this section is for register
relocations. See “Register Symbols” on page 254 for details.

.relname, .relaname
Relocation information, as “Relocation Sections” on page 233 describes. If the file has a
loadable segment that includes relocation, the sections' attributes include the SHF_ALLOC bit.
Otherwise, that bit is off. Conventionally, name is supplied by the section to which the
relocations apply. Thus, a relocation section for .text normally will have the name
.rel.text or .rela.text.
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.rodata, .rodata1
Read-only data that typically contribute to a non-writable segment in the process image. See
“Program Header” on page 261 for details.

.shstrtab

Section names.

.strtab

Strings, most commonly the strings that represent the names that are associated with symbol
table entries. If the file has a loadable segment that includes the symbol string table, the
section's attributes include the SHF_ALLOC bit. Otherwise, that bit is turned off.

.symtab

Symbol table, as “Symbol Table Section” on page 246 describes. If the file has a loadable
segment that includes the symbol table, the section's attributes include the SHF_ALLOC bit.
Otherwise, that bit is turned off.

.symtab_shndx

This section holds the special symbol table section index array, as described by .symtab. The
section's attributes include the SHF_ALLOC bit if the associated symbol table section does.
Otherwise, that bit is turned off.

.tbss

This section holds uninitialized thread-local data that contribute to the program's memory
image. By definition, the system initializes the data with zeros when the data is instantiated
for each new execution flow. The section occupies no file space, as indicated by the section
type, SHT_NOBITS. See Chapter 8, “Thread-Local Storage,” for details.

.tdata, .tdata1
These sections hold initialized thread-local data that contribute to the program's memory
image. A copy of its contents is instantiated by the system for each new execution flow. See
Chapter 8, “Thread-Local Storage,” for details.

.text

The text or executable instructions of a program.

.SUNW_bss

Partially initialized data for shared objects that contribute to the program's memory image.
The data is initialized at runtime. The section occupies no file space, as indicated by the
section type SHT_NOBITS.

.SUNW_cap

Hardware and software capability requirements. See “Hardware and Software Capabilities
Section” on page 226 for details.

.SUNW_heap

The heap of a dynamic executable created from dldump(3C).
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.SUNW_move

Additional information for partially initialized data. See “Move Section” on page 229 for
details.

.SUNW_reloc

Relocation information, as “Relocation Sections” on page 233 describes. This section is a
concatenation of relocation sections that provides better locality of reference of the
individual relocation records. Only the offset of the relocation record is meaningful, thus the
section sh_info value is zero.

.SUNW_syminfo

Additional symbol table information. See “Syminfo Table Section” on page 254 for details.

.SUNW_version

Versioning information. See “Versioning Sections” on page 256 for details.

Section names with a dot (.) prefix are reserved for the system, although applications can use
these sections if their existing meanings are satisfactory. Applications can use names without
the prefix to avoid conflicts with system sections. The object file format enables you to define
sections that are not reserved. An object file can have more than one section with the same
name.

Section names that are reserved for a processor architecture are formed by placing an
abbreviation of the architecture name ahead of the section name. The name should be taken
from the architecture names that are used for e_machine. For example, .Foo.psect is the psect
section defined by the FOO architecture.

Existing extensions use their historical names

COMDAT Section
COMDAT sections are uniquely identified by their section name (sh_name). If the link-editor
encounters multiple sections of type SHT_SUNW_COMDAT, with the same section name, the first
section is retained and the rest discarded. Any relocations that are applied to a discarded
SHT_SUNW_COMDAT section are ignored. Any symbols that are defined in a discarded section are
removed.

Additionally, the link-editor supports the section naming convention that is used for section
reordering when the compiler is invoked with the -xF option. If a function is placed in a
SHT_SUNW_COMDAT section that is named .sectname%funcname, the final SHT_SUNW_COMDAT
sections that are retained are coalesced into the section that is named .sectname. This method
can be used to place SHT_SUNW_COMDAT sections into the .text, .data, or any other section as
their final destination.
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Group Section
Some sections occur in interrelated groups. For example, an out-of-line definition of an inline
function might require additional information besides the section containing executable
instructions. This additional information can be a read-only data section containing literals
referenced, one or more debugging information sections, or other informational sections.

There can be internal references among group sections. However, these references make no
sense if one of the sections were removed, or one of the sections were replaced by a duplicate
from another object. Therefore, these groups are included, or these groups are omitted, from
the linked object as a unit.

A section of type SHT_GROUP defines such a grouping of sections. The name of a symbol from
one of the containing object's symbol tables provides a signature for the section group. The
section header of the SHT_GROUP section specifies the identifying symbol entry. The sh_link
member contains the section header index of the symbol table section that contains the entry.
The sh_info member contains the symbol table index of the identifying entry. The sh_flags
member of the section header contains the value zero. The name of the section (sh_name) is not
specified.

The section data of a SHT_GROUP section is an array of Elf32_Word entries. The first entry is a
flag word. The remaining entries are a sequence of section header indices.

The following flag is currently defined.

TABLE 7–11 ELF Group Section Flag

Name Value

GRP_COMDAT 0x1

GRP_COMDAT

GRP_COMDAT is a COMDAT group. This group can duplicate another COMDAT group in another
object file, where duplication is defined as having the same group signature. In such cases,
only one of the duplicate groups is retained by the link-editor. The members of the
remaining groups are discarded.

The section header indices in the SHT_GROUP section, identify the sections that make up the
group. These sections must have the SHF_GROUP flag set in their sh_flags section header
member. If the link-editor decides to remove the section group, the link-editor removes all
members of the group.

To facilitate removing a group without leaving dangling references and with only minimal
processing of the symbol table, the following rules are followed.
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■ References to the sections comprising a group from sections outside of the group must be
made through symbol table entries with STB_GLOBAL or STB_WEAK binding and section index
SHN_UNDEF. A definition of the same symbol in the object containing the reference must
have a separate symbol table entry from the reference. Sections outside of the group can not
reference symbols with STB_LOCAL binding for addresses that are contained in the group's
sections, including symbols with type STT_SECTION.

■ Non-symbol references to the sections comprising a group are not allowed from outside the
group. For example, you cannot use a group member's section header index in an sh_link

or sh_info member.
■ A symbol table entry defined relative to one of the group's sections can be removed if the

group members are discarded. This removal occurs if the symbol table entry is contained in
a symbol table section that is not part of the group.

Hardware and Software Capabilities Section
A SHT_SUNW_cap section identifies the hardware and software capabilities of an object. This
section contains an array of the following structures. See sys/link.h.

typedef struct {

Elf32_Word c_tag;

union {

Elf32_Word c_val;

Elf32_Addr c_ptr;

} c_un;

} Elf32_Cap;

typedef struct {

Elf64_Xword c_tag;

union {

Elf64_Xword c_val;

Elf64_Addr c_ptr;

} c_un;

} Elf64_Cap;

For each object with this type, c_tag controls the interpretation of c_un.

c_val

These objects represent integer values with various interpretations.

c_ptr

These objects represent program virtual addresses.

The following capabilities tags exist.
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TABLE 7–12 ELF Capability Array Tags

Name Value c_un

CA_SUNW_NULL 0 Ignored

CA_SUNW_HW_1 1 c_val

CA_SUNW_SF_1 2 c_val

CA_SUNW_NULL

Marks the end of the capabilities array.

CA_SUNW_HW_1

Indicates hardware capability values. The c_val element contains a value that represents the
associated hardware capabilities. On SPARC platforms, hardware capabilities are defined in
sys/auxv_SPARC.h. On x86 platforms, hardware capabilities are defined in
sys/auxv_386.h.

CA_SUNW_SF_1

Indicates software capability values. The c_val element contains a value that represents the
associated software capabilities that are defined in sys/elf.h.

Relocatable objects can contain a capabilities section. The link-editor combines any capabilities
sections from multiple input relocatable objects into a single capabilities section. The
link-editor also allows capabilities to be defined at the time an object is built. See “Identifying
Hardware and Software Capabilities” on page 63.

A dynamic object that contains a capabilities section that contains hardware capabilities
information, has a PT_SUNWCAP program header associated to the section. This program header
allows the runtime linker to validate the object against the hardware capabilities that are
available to the process.

Dynamic objects that exploit different hardware capabilities can provide a flexible runtime
environment using filters. See “Hardware Capability Specific Shared Objects” on page 353.

Hash Table Section
A hash table consists of Elf32_Word or Elf64_Word objects that provide for symbol table access.
The SHT_HASH section provides this hash table. The symbol table to which the hashing is
associated is specified in the sh_link entry of the hash table's section header. Labels are used in
the following figure to help explain the hash table organization, but these labels are not part of
the specification.
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The bucket array contains nbucket entries, and the chain array contains nchain entries.
Indexes start at 0. Both bucket and chain hold symbol table indexes. Chain table entries parallel
the symbol table. The number of symbol table entries should equal nchain, so symbol table
indexes also select chain table entries.

A hashing function that accepts a symbol name, returns a value to compute a bucket index.
Consequently, if the hashing function returns the value x for some name, bucket [x% nbucket]
gives an index y. This index is an index into both the symbol table and the chain table. If the
symbol table entry is not the name desired, chain[y] gives the next symbol table entry with the
same hash value.

The chain links can be followed until the selected symbol table entry holds the desired name, or
the chain entry contains the value STN_UNDEF.

The hash function is as follows.

unsigned long

elf_Hash(const unsigned char *name)

{

unsigned long h = 0, g;

while (*name)

{

h = (h << 4) + *name++;

if (g = h & 0xf0000000)

h ^= g >> 24;

h &= ~g;

}

return h;

}

bucket [0]
...

bucket [nbucket-1]

chain [0]
...

chain [nchain-1]

nchain

nbucket

FIGURE 7–4 Symbol Hash Table
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Move Section
Typically, within ELF files, initialized data variables are maintained within the object file. If a
data variable is very large, and contains only a small number of initialized (nonzero) elements,
the entire variable is still maintained in the object file.

Objects that contain large partially initialized data variables, such as FORTRAN COMMON blocks,
can result in a significant disk space overhead. The SHT_SUNW_move section provides a
mechanism of compressing these data variables. This compression reduces the disk size of the
associated object.

The SHT_SUNW_move section contains multiple entries of the type ELF32_Move or Elf64_Move.
These entries allow data variables to be defined as tentative items (.bss). These items occupy no
space in the object file, but contribute to the object's memory image at runtime. The move
records establish how the memory image is initialized with data to construct the complete data
variable.

ELF32_Move and Elf64_Move entries are defined as follows.

typedef struct {

Elf32_Lword m_value;

Elf32_Word m_info;

Elf32_Word m_poffset;

Elf32_Half m_repeat;

Elf32_Half m_stride;

} Elf32_Move;

#define ELF32_M_SYM(info) ((info)>>8)

#define ELF32_M_SIZE(info) ((unsigned char)(info))

#define ELF32_M_INFO(sym, size) (((sym)<<8)+(unsigned char)(size))

typedef struct {

Elf64_Lword m_value;

Elf64_Xword m_info;

Elf64_Xword m_poffset;

Elf64_Half m_repeat;

Elf64_Half m_stride;

} Elf64_Move;

#define ELF64_M_SYM(info) ((info)>>8)

#define ELF64_M_SIZE(info) ((unsigned char)(info))

#define ELF64_M_INFO(sym, size) (((sym)<<8)+(unsigned char)(size))

The elements of these structures are as follows.

m_value

The initialization value, which is the value that is moved into the memory image.
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m_info

The symbol table index, with respect to which the initialization is applied, together with the
size, in bytes, of the offset being initialized. The lower 8 bits of the member define the size,
which can be 1, 2, 4 or 8. The upper bytes define the symbol index.

m_poffset

The offset relative to the associated symbol to which the initialization is applied.

m_repeat

A repetition count.

m_stride

The stride count. This value indicates the number of units that should be skipped when
performing a repetitive initialization. A unit is the size of an initialization object as defined
by m_info. An m_stride value of zero indicates that the initialization be performed
contiguously for units.

The following data definition would traditionally consume 0x8000 bytes within an object file.

typedef struct {

int one;

char two;

} Data;

Data move[0x1000] = {

{0, 0}, {1, ’1’}, {0, 0},

{0xf, ’F’}, {0xf, ’F’}, {0, 0},

{0xe, ’E’}, {0, 0}, {0xe, ’E’}

};

A SHT_SUNW_move section can be used to describe this data. The data item is defined within the
.bss section. The non-zero elements of the data item are initialized with the appropriate move
entries.

$ elfdump -s data | fgrep move

[17] 0x00020868 0x00008000 OBJT GLOB 0 .bss move

$ elfdump -m data

Move Section: .SUNW_move

symndx offset size repeat stride value with respect to

[17] 8 4 1 1 0x000000000000000001 move

[17] 12 4 1 1 0x000000000031000000 move

[17] 24 4 2 1 0x00000000000000000f move

[17] 28 4 2 1 0x000000000046000000 move

[17] 48 4 1 1 0x00000000000000000e move

[17] 52 4 1 1 0x000000000045000000 move

[17] 64 4 1 1 0x00000000000000000e move

[17] 68 4 1 1 0x000000000045000000 move
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Move sections that are supplied from relocatable objects are concatenated and output in the
object being created by the link-editor. However, the following conditions cause the link-editor
to process the move entries. This processing expands the move entry contents into a traditional
data item.

■ The output file is a static executable.
■ The size of the move entries is greater than the size of the symbol into which the move data

would be expanded.
■ The -z nopartial option is in effect.

Note Section
A vendor or system engineer might need to mark an object file with special information that
other programs can check for conformance or compatibility. Sections of type SHT_NOTE and
program header elements of type PT_NOTE can be used for this purpose.

The note information in sections and program header elements holds any number of entries, as
shown in the following figure. For 64–bit objects and 32–bit objects, each entry is an array of
4-byte words in the format of the target processor. Labels are shown in Figure 7–6 to help
explain note information organization, but are not part of the specification.

namesz and name

The first namesz bytes in name contain a null-terminated character representation of the
entry's owner or originator. No formal mechanism exists for avoiding name conflicts. By
convention, vendors use their own name, such as “XYZ Computer Company,” as the
identifier. If no name is present, namesz contains the value zero. Padding is present, if
necessary, to ensure 4-byte alignment for the descriptor. Such padding is not included in
namesz.

name
...

desc
...

namesz

descsz

type

FIGURE 7–5 Note Information
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descsz and desc

The first descsz bytes in desc hold the note descriptor. If no descriptor is present, descsz
contains the value zero. Padding is present, if necessary, to ensure 4-byte alignment for the
next note entry. Such padding is not included in descsz.

type

Provides the interpretation of the descriptor. Each originator controls its own types.
Multiple interpretations of a single type value can exist. A program must recognize both the
name and the type to understand a descriptor. Types currently must be nonnegative.

The note segment that is shown in the following figure holds two entries.

Note – The system reserves note information with no name (namesz == 0) and with a
zero-length name (name[0] == ’\0’), but currently defines no types. All other names must
have at least one non-null character.

name

namesz

descsz No descriptor

type

7

0

1

X Y Z

C o \0 pad

name

namesz

descsz

type

7

8

3

desc word0

word1

X Y Z

C o \0 pad

+0 +1 +2 +3

FIGURE 7–6 Example Note Segment
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Relocation Sections
Relocation is the process of connecting symbolic references with symbolic definitions. For
example, when a program calls a function, the associated call instruction must transfer control
to the proper destination address at execution. Relocatable files must have information that
describes how to modify their section contents. This information allows executable and shared
object files to hold the right information for a process's program image. Relocation entries are
these data.

Relocation entries can have the following structure. See sys/elf.h.

typedef struct {

Elf32_Addr r_offset;

Elf32_Word r_info;

} Elf32_Rel;

typedef struct {

Elf32_Addr r_offset;

Elf32_Word r_info;

Elf32_Sword r_addend;

} Elf32_Rela;

typedef struct {

Elf64_Addr r_offset;

Elf64_Xword r_info;

} Elf64_Rel;

typedef struct {

Elf64_Addr r_offset;

Elf64_Xword r_info;

Elf64_Sxword r_addend;

} Elf64_Rela;

r_offset

This member gives the location at which to apply the relocation action. Different object files
have slightly different interpretations for this member.

For a relocatable file, the value indicates a section offset. The relocation section describes
how to modify another section in the file. Relocation offsets designate a storage unit within
the second section.

For an executable or shared object, the value indicates the virtual address of the storage unit
affected by the relocation. This information makes the relocation entries more useful for the
runtime linker.

Although the interpretation of the member changes for different object files to allow efficient
access by the relevant programs, the meanings of the relocation types stay the same.
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r_info

This member gives both the symbol table index, with respect to which the relocation must be
made, and the type of relocation to apply. For example, a call instruction's relocation entry
holds the symbol table index of the function being called. If the index is STN_UNDEF, the
undefined symbol index, the relocation uses zero as the symbol value.

Relocation types are processor-specific. A relocation entry's relocation type or symbol table
index is the result of applying ELF32_R_TYPE or ELF32_R_SYM, respectively, to the entry's
r_info member.

#define ELF32_R_SYM(info) ((info)>>8)

#define ELF32_R_TYPE(info) ((unsigned char)(info))

#define ELF32_R_INFO(sym, type) (((sym)<<8)+(unsigned char)(type))

#define ELF64_R_SYM(info) ((info)>>32)

#define ELF64_R_TYPE(info) ((Elf64_Word)(info))

#define ELF64_R_INFO(sym, type) (((Elf64_Xword)(sym)<<32)+ \

(Elf64_Xword)(type))

For 64–bit SPARC Elf64_Rela structures, the r_info field is further broken down into an
8–bit type identifier and a 24–bit type dependent data field. For the existing relocation types,
the data field is zero. New relocation types, however, might make use of the data bits.

#define ELF64_R_TYPE_DATA(info) (((Elf64_Xword)(info)<<32)>>40)

#define ELF64_R_TYPE_ID(info) (((Elf64_Xword)(info)<<56)>>56)

#define ELF64_R_TYPE_INFO(data, type) (((Elf64_Xword)(data)<<8)+ \

(Elf64_Xword)(type))

r_addend

This member specifies a constant addend used to compute the value to be stored into the
relocatable field.

Rela entries contain an explicit addend. Entries of type Rel store an implicit addend in the
location to be modified. 32–bit SPARC use only Elf32_Rela relocation enteries. 64–bit SPARC
and 64–bit x86 use only Elf64_Rela relocation entries. Thus, the r_addend member serves as
the relocation addend. x86 uses only Elf32_Rel relocation entries. The field to be relocated
holds the addend. In all cases, the addend and the computed result use the same byte order.

A relocation section can reference two other sections: a symbol table, identified by the sh_link
section header entry, and a section to modify, identified by the sh_info section header entry.
“Sections” on page 205 specifies these relationships. A sh_info entry is required when a
relocation section exists in a relocatable object, but is optional for executables and shared
objects. The relocation offset is sufficient to perform the relocation.

Relocation Types (Processor-Specific)
Relocation entries describe how to alter instruction and data fields in the following figures. Bit
numbers appear in the lower box corners.
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On the SPARC platform, relocation entries apply to bytes (byte8), half-words (half16), or
words.

On 64–bit SPARC and x64, relocations also apply to extended-words (xword64).

imm22

31 021

byte8

half16

word32

disp30

disp22

7 0

15 0

31 0

31 0

31 0

31 0

31 0

31 0

31 0

31 0

31 0

29

21

simm13

12

simm11

10

simm10

9

disp19

19

disp14

21 19

d2

13

simm7

6
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On x86, relocation entries apply to words (word32).

word32 specifies a 32–bit field occupying 4 bytes with an arbitrary byte alignment. These values
use the same byte order as other word values in the x86 architecture.

In all cases, the r_offset value designates the offset or virtual address of the first byte of the
affected storage unit. The relocation type specifies which bits to change and how to calculate
their values.

Calculations for the following relocation types assume the actions are transforming a
relocatable file into either an executable or a shared object file. Conceptually, the link-editor
merges one or more relocatable files to form the output. The link-editor first decides how to
combine and locate the input files. The link-editor then updates the symbol values and
performs the relocation. Relocations applied to executable or shared object files are similar and
accomplish the same result. Descriptions in the tables in this section use the following notation.

A The addend used to compute the value of the relocatable field.

B The base address at which a shared object is loaded into memory during execution.
Generally, a shared object file is built with a base virtual address of 0. However, the
execution address of the shared object is different. See “Program Header” on
page 261.

G The offset into the global offset table at which the address of the relocation entry's
symbol resides during execution. See “Global Offset Table (Processor-Specific)” on
page 286.

GOT The address of the global offset table. See “Global Offset Table (Processor-Specific)”
on page 286.

L The section offset or address of the procedure linkage table entry for a symbol. See
“Procedure Linkage Table (Processor-Specific)” on page 287.

63 0
xword64

word32

31 0

31
01

3
02

2
03 04 0x01020304

1

0

0
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P The section offset or address of the storage unit being relocated, computed using
r_offset.

S The value of the symbol whose index resides in the relocation entry.

Z The size of the symbol whose index resides in the relocation entry.

SPARC: Relocation Types

Field names in the following table tell whether the relocation type checks for overflow. A
calculated relocation value can be larger than the intended field, and a relocation type can verify
(V) the value fits or truncate (T) the result. As an example, V-simm13 means that the computed
value can not have significant, nonzero bits outside the simm13 field.

TABLE 7–13 SPARC: ELF Relocation Types

Name Value Field Calculation

R_SPARC_NONE 0 None None

R_SPARC_8 1 V-byte8 S + A

R_SPARC_16 2 V-half16 S + A

R_SPARC_32 3 V-word32 S + A

R_SPARC_DISP8 4 V-byte8 S + A - P

R_SPARC_DISP16 5 V-half16 S + A - P

R_SPARC_DISP32 6 V-disp32 S + A - P

R_SPARC_WDISP30 7 V-disp30 (S + A - P) >> 2

R_SPARC_WDISP22 8 V-disp22 (S + A - P) >> 2

R_SPARC_HI22 9 T-imm22 (S + A) >> 10

R_SPARC_22 10 V-imm22 S + A

R_SPARC_13 11 V-simm13 S + A

R_SPARC_LO10 12 T-simm13 (S + A) & 0x3ff

R_SPARC_GOT10 13 T-simm13 G & 0x3ff

R_SPARC_GOT13 14 V-simm13 G

R_SPARC_GOT22 15 T-simm22 G >> 10

R_SPARC_PC10 16 T-simm13 (S + A - P) & 0x3ff

R_SPARC_PC22 17 V-disp22 (S + A - P) >> 10
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TABLE 7–13 SPARC: ELF Relocation Types (Continued)
Name Value Field Calculation

R_SPARC_WPLT30 18 V-disp30 (L + A - P) >> 2

R_SPARC_COPY 19 None Refer to the explanation following this table.

R_SPARC_GLOB_DAT 20 V-word32 S + A

R_SPARC_JMP_SLOT 21 None Refer to the explanation following this table.

R_SPARC_RELATIVE 22 V-word32 B + A

R_SPARC_UA32 23 V-word32 S + A

R_SPARC_PLT32 24 V-word32 L + A

R_SPARC_HIPLT22 25 T-imm22 (L + A) >> 10

R_SPARC_LOPLT10 26 T-simm13 (L + A) & 0x3ff

R_SPARC_PCPLT32 27 V-word32 L + A - P

R_SPARC_PCPLT22 28 V-disp22 (L + A - P) >> 10

R_SPARC_PCPLT10 29 V-simm13 (L + A - P) & 0x3ff

R_SPARC_10 30 V-simm10 S + A

R_SPARC_11 31 V-simm11 S + A

R_SPARC_HH22 34 V-imm22 (S + A) >> 42

R_SPARC_HM10 35 T-simm13 ((S + A) >> 32) & 0x3ff

R_SPARC_LM22 36 T-imm22 (S + A) >> 10

R_SPARC_PC_HH22 37 V-imm22 (S + A - P) >> 42

R_SPARC_PC_HM10 38 T-simm13 ((S + A - P) >> 32) & 0x3ff

R_SPARC_PC_LM22 39 T-imm22 (S + A - P) >> 10

R_SPARC_WDISP16 40 V-d2/disp14 (S + A - P) >> 2

R_SPARC_WDISP19 41 V-disp19 (S + A - P) >> 2

R_SPARC_7 43 V-imm7 S + A

R_SPARC_5 44 V-imm5 S + A

R_SPARC_6 45 V-imm6 S + A

R_SPARC_HIX22 48 V-imm22 ((S + A) ^ 0xffffffffffffffff) >> 10

R_SPARC_LOX10 49 T-simm13 ((S + A) & 0x3ff) | 0x1c00

R_SPARC_H44 50 V-imm22 (S + A) >> 22
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TABLE 7–13 SPARC: ELF Relocation Types (Continued)
Name Value Field Calculation

R_SPARC_M44 51 T-imm10 ((S + A) >> 12) & 0x3ff

R_SPARC_L44 52 T-imm13 (S + A) & 0xfff

R_SPARC_REGISTER 53 V-word32 S + A

R_SPARC_UA16 55 V-half16 S + A

R_SPARC_GOTDATA_HIX22 80 T-imm22 ((S + A - GOT) >> 10) ^ ((S + A - GOT)

>> 31)

R_SPARC_GOTDATA_LOX10 81 T-imm13 ((S + A - GOT) & 0x3ff) | (((S + A -

GOT) >> 31) & 0x1c00)

R_SPARC_GOTDATA_OP_HIX22 82 T-imm22 (G >> 10) ^ (G >> 31)

R_SPARC_GOTDATA_OP_LOX10 83 T-imm13 (G & 0x3ff) | ((G >> 31) & 0x1c00)

R_SPARC_GOTDATA_OP 84 Word32 Refer to the explanation following this table.

Note – Additional relocations are available for thread-local storage references. These relocations
are covered in Chapter 8, “Thread-Local Storage.”

Some relocation types have semantics beyond simple calculation.

R_SPARC_GOT10

Resembles R_SPARC_LO10, except that the relocation refers to the address of the symbol's GOT
entry. Additionally, R_SPARC_GOT10 instructs the link-editor to create a global offset table.

R_SPARC_GOT13

Resembles R_SPARC_13, except that the relocation refers to the address of the symbol's GOT
entry. Additionally, R_SPARC_GOT13 instructs the link-editor to create a global offset table.

R_SPARC_GOT22

Resembles R_SPARC_22, except that the relocation refers to the address of the symbol's GOT
entry. Additionally, R_SPARC_GOT22 instructs the link-editor to create a global offset table.

R_SPARC_WPLT30

Resembles R_SPARC_WDISP30, except that the relocation refers to the address of the symbol's
procedure linkage table entry. Additionally, R_SPARC_WPLT30 instructs the link-editor to
create a procedure linkage table.

R_SPARC_COPY

Created by the link-editor for dynamic executables to preserve a read-only text segment. The
relocation offset member refers to a location in a writable segment. The symbol table index
specifies a symbol that should exist both in the current object file and in a shared object.
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During execution, the runtime linker copies data associated with the shared object's symbol
to the location specified by the offset. See “Copy Relocations” on page 137.

R_SPARC_GLOB_DAT

Resembles R_SPARC_32, except that the relocation sets a GOT entry to the address of the
specified symbol. The special relocation type enables you to determine the correspondence
between symbols and GOT entries.

R_SPARC_JMP_SLOT

Created by the link-editor for dynamic objects to provide lazy binding. The relocation offset
member gives the location of a procedure linkage table entry. The runtime linker modifies
the procedure linkage table entry to transfer control to the designated symbol address.

R_SPARC_RELATIVE

Created by the link-editor for dynamic objects. The relocation offset member gives the
location within a shared object that contains a value representing a relative address. The
runtime linker computes the corresponding virtual address by adding the virtual address at
which the shared object is loaded to the relative address. Relocation entries for this type must
specify a value of zero for the symbol table index.

R_SPARC_UA32

Resembles R_SPARC_32, except that the relocation refers to an unaligned word. The word to
be relocated must be treated as four separate bytes with arbitrary alignment, not as a word
aligned according to the architecture requirements.

R_SPARC_LM22

Resembles R_SPARC_HI22, except that the relocation truncates rather than validates.

R_SPARC_PC_LM22

Resembles R_SPARC_PC22, except that the relocation truncates rather than validates.

R_SPARC_HIX22

Used with R_SPARC_LOX10 for executables that are confined to the uppermost 4 gigabytes of
the 64–bit address space. Similar to R_SPARC_HI22, but supplies ones complement of linked
value.

R_SPARC_LOX10

Used with R_SPARC_HIX22. Similar to R_SPARC_LO10, but always sets bits 10 through 12 of
the linked value.

R_SPARC_L44

Used with the R_SPARC_H44 and R_SPARC_M44 relocation types to generate a 44-bit absolute
addressing model.

R_SPARC_REGISTER

Used to initialize a register symbol. The relocation offset member contains the register
number to be initialized. A corresponding register symbol must exist for this register. The
symbol must be of type SHN_ABS.

File Format

Linker and Libraries Guide • September 2008240



R_SPARC_GOTDATA_OP_HIX22, R_SPARC_GOTDATA_OP_LOX10, and R_SPARC_GOTDATA_OP

These relocations provide for code transformations.

64-bit SPARC: Relocation Types

The following notation, used in relocation calculation, is unique to 64–bit SPARC.

O The secondary addend used to compute the value of the relocation field. This
addend is extracted from the r_info field by applying the ELF64_R_TYPE_DATA
macro.

The relocations that are listed in the following table extend, or alter, the relocations defined for
32–bit SPARC. See “SPARC: Relocation Types” on page 237.

TABLE 7–14 64-bit SPARC: ELF Relocation Types

Name Value Field Calculation

R_SPARC_HI22 9 V-imm22 (S + A) >> 10

R_SPARC_GLOB_DAT 20 V-xword64 S + A

R_SPARC_RELATIVE 22 V-xword64 B + A

R_SPARC_64 32 V-xword64 S + A

R_SPARC_OLO10 33 V-simm13 ((S + A) & 0x3ff) + O

R_SPARC_DISP64 46 V-xword64 S + A - P

R_SPARC_PLT64 47 V-xword64 L + A

R_SPARC_REGISTER 53 V-xword64 S + A

R_SPARC_UA64 54 V-xword64 S + A

R_SPARC_H34 85 V-imm22 (S + A) >> 12

The following relocation type has semantics beyond simple calculation.

R_SPARC_OLO10

Resembles R_SPARC_LO10, except that an extra offset is added to make full use of the 13-bit
signed immediate field.

32-bit x86: Relocation Types

The relocations that are listed in the following table are defined for 32–bit x86.
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TABLE 7–15 32-bit x86: ELF Relocation Types

Name Value Field Calculation

R_386_NONE 0 None None

R_386_32 1 word32 S + A

R_386_PC32 2 word32 S + A - P

R_386_GOT32 3 word32 G + A

R_386_PLT32 4 word32 L + A - P

R_386_COPY 5 None Refer to the explanation following this table.

R_386_GLOB_DAT 6 word32 S

R_386_JMP_SLOT 7 word32 S

R_386_RELATIVE 8 word32 B + A

R_386_GOTOFF 9 word32 S + A - GOT

R_386_GOTPC 10 word32 GOT + A - P

R_386_32PLT 11 word32 L + A

R_386_16 20 word16 S + A

R_386_PC16 21 word16 S + A - P

R_386_8 22 word8 S + A

R_386_PC8 23 word8 S + A - P

Note – Additional relocations are available for thread-local storage references. These relocations
are covered in Chapter 8, “Thread-Local Storage.”

Some relocation types have semantics beyond simple calculation.

R_386_GOT32

Computes the distance from the base of the GOT to the symbol's GOT entry. The relocation
also instructs the link-editor to create a global offset table.

R_386_PLT32

Computes the address of the symbol's procedure linkage table entry and instructs the
link-editor to create a procedure linkage table.

R_386_COPY

Created by the link-editor for dynamic executables to preserve a read-only text segment. The
relocation offset member refers to a location in a writable segment. The symbol table index
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specifies a symbol that should exist both in the current object file and in a shared object.
During execution, the runtime linker copies data associated with the shared object's symbol
to the location specified by the offset. See “Copy Relocations” on page 137.

R_386_GLOB_DAT

Used to set a GOT entry to the address of the specified symbol. The special relocation type
enable you to determine the correspondence between symbols and GOT entries.

R_386_JMP_SLOT

Created by the link-editor for dynamic objects to provide lazy binding. The relocation offset
member gives the location of a procedure linkage table entry. The runtime linker modifies
the procedure linkage table entry to transfer control to the designated symbol address.

R_386_RELATIVE

Created by the link-editor for dynamic objects. The relocation offset member gives the
location within a shared object that contains a value representing a relative address. The
runtime linker computes the corresponding virtual address by adding the virtual address at
which the shared object is loaded to the relative address. Relocation entries for this type must
specify a value of zero for the symbol table index.

R_386_GOTOFF

Computes the difference between a symbol's value and the address of the GOT. The relocation
also instructs the link-editor to create the global offset table.

R_386_GOTPC

Resembles R_386_PC32, except that it uses the address of the GOT in its calculation. The
symbol referenced in this relocation normally is _GLOBAL_OFFSET_TABLE_, which also
instructs the link-editor to create the global offset table.

x64: Relocation Types

The relocations that are listed in the following table are defined for x64.

TABLE 7–16 x64: ELF Relocation Types

Name Value Field Calculation

R_AMD64_NONE 0 None None

R_AMD64_64 1 word64 S + A

R_AMD64_PC32 2 word32 S + A - P

R_AMD64_GOT32 3 word32 G + A

R_AMD64_PLT32 4 word32 L + A - P

R_AMD64_COPY 5 None Refer to the explanation following this table.
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TABLE 7–16 x64: ELF Relocation Types (Continued)
Name Value Field Calculation

R_AMD64_GLOB_DAT 6 word64 S

R_AMD64_JUMP_SLOT 7 word64 S

R_AMD64_RELATIVE 8 word64 B + A

R_AMD64_GOTPCREL 9 word32 G + GOT + A - P

R_AMD64_32 10 word32 S + A

R_AMD64_32S 11 word32 S + A

R_AMD64_16 12 word16 S + A

R_AMD64_PC16 13 word16 S + A - P

R_AMD64_8 14 word8 S + A

R_AMD64_PC8 15 word8 S + A - P

R_AMD64_PC64 24 word64 S + A - P

R_AMD64_GOTOFF64 25 word64 S + A - GOT

R_AMD64_GOTPC32 26 word32 GOT + A + P

Note – Additional relocations are available for thread-local storage references. These relocations
are covered in Chapter 8, “Thread-Local Storage.”

The special semantics for most of these relocation types are identical to those used for x86.
Some relocation types have semantics beyond simple calculation.

R_AMD64_GOTPCREL

This relocations has different semantics from the R_AMD64_GOT32 or equivalent R_386_GOTPC
relocation. The x64 architecture provides an addressing mode that is relative to the
instruction pointer. Therefore, an address can be loaded from the GOT using a single
instruction.

The calculation for the R_AMD64_GOTPCREL relocation provides the difference between the
location in the GOT where the symbol's address is given, and the location where the relocation
is applied.

R_AMD64_32

The computed value is truncated to 32–bits. The link-editor verifies that the generated value
for the relocation zero-extends to the original 64–bit value.
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R_AMD64_32S

The computed value is truncated to 32–bits. The link-editor verifies that the generated value
for the relocation sign-extends to the original 64–bit value.

R_AMD64_8, R_AMD64_16, R_AMD64_PC16, and R_AMD64_PC8

These relocations are not conformant to the x64 ABI, but are added here for documentation
purposes. The R_AMD64_8 relocation truncates the computed value to 8-bits. The
R_AMD64_16 relocation truncates the computed value to 16-bits.

String Table Section
String table sections hold null-terminated character sequences, commonly called strings. The
object file uses these strings to represent symbol and section names. You reference a string as an
index into the string table section.

The first byte, which is index zero, holds a null character. Likewise, a string table's last byte holds
a null character, ensuring null termination for all strings. A string whose index is zero specifies
either no name or a null name, depending on the context.

An empty string table section is permitted. The section header's sh_size member contains
zero. Nonzero indexes are invalid for an empty string table.

A section header's sh_name member holds an index into the section header string table section.
The section header string table is designated by the e_shstrndx member of the ELF header. The
following figure shows a string table with 25 bytes and the strings associated with various
indexes.

The following table shows the strings of the string table that are shown in the preceding figure.

TABLE 7–17 ELF String Table Indexes

Index String

0 None

1 name

0 \0 n a m e . \0 V a r
Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

10 i a b l e \0 a b l e
20 \0 \0 x x \0

FIGURE 7–7 ELF String Table
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TABLE 7–17 ELF String Table Indexes (Continued)
Index String

7 Variable

11 able

16 able

24 null string

As the example shows, a string table index can refer to any byte in the section. A string can
appear more than once. References to substrings can exist. A single string can be referenced
multiple times. Unreferenced strings also are allowed.

Symbol Table Section
An object file's symbol table holds information needed to locate and relocate a program's
symbolic definitions and symbolic references. A symbol table index is a subscript into this array.
Index 0 both designates the first entry in the table and serves as the undefined symbol index. See
Table 7–21.

A symbol table entry has the following format. See sys/elf.h.

typedef struct {

Elf32_Word st_name;

Elf32_Addr st_value;

Elf32_Word st_size;

unsigned char st_info;

unsigned char st_other;

Elf32_Half st_shndx;

} Elf32_Sym;

typedef struct {

Elf64_Word st_name;

unsigned char st_info;

unsigned char st_other;

Elf64_Half st_shndx;

Elf64_Addr st_value;

Elf64_Xword st_size;

} Elf64_Sym;

st_name

An index into the object file's symbol string table, which holds the character representations
of the symbol names. If the value is nonzero, the value represents a string table index that
gives the symbol name. Otherwise, the symbol table entry has no name.
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st_value

The value of the associated symbol. The value can be an absolute value or an address,
depending on the context. See “Symbol Values” on page 252.

st_size

Many symbols have associated sizes. For example, a data object's size is the number of bytes
that are contained in the object. This member holds the value zero if the symbol has no size
or an unknown size.

st_info

The symbol's type and binding attributes. A list of the values and meanings appears in
Table 7–18. The following code shows how to manipulate the values. See sys/elf.h.

#define ELF32_ST_BIND(info) ((info) >> 4)

#define ELF32_ST_TYPE(info) ((info) & 0xf)

#define ELF32_ST_INFO(bind, type) (((bind)<<4)+((type)&0xf))

#define ELF64_ST_BIND(info) ((info) >> 4)

#define ELF64_ST_TYPE(info) ((info) & 0xf)

#define ELF64_ST_INFO(bind, type) (((bind)<<4)+((type)&0xf))

st_other

A symbol's visibility. A list of the values and meanings appears in Table 7–20. The following
code shows how to manipulate the values for both 32–bit objects and 64–bit objects. Other
bits are set to zero, and have no defined meaning.

#define ELF32_ST_VISIBILITY(o) ((o)&0x3)

#define ELF64_ST_VISIBILITY(o) ((o)&0x3)

st_shndx

Every symbol table entry is defined in relation to some section. This member holds the
relevant section header table index. Some section indexes indicate special meanings. See
Table 7–4.

If this member contains SHN_XINDEX, then the actual section header index is too large to fit in
this field. The actual value is contained in the associated section of type SHT_SYMTAB_SHNDX.

A symbol's binding, determined from its st_info field, determines the linkage visibility and
behavior.

TABLE 7–18 ELF Symbol Binding, ELF32_ST_BIND and ELF64_ST_BIND

Name Value

STB_LOCAL 0

STB_GLOBAL 1
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TABLE 7–18 ELF Symbol Binding, ELF32_ST_BIND and ELF64_ST_BIND (Continued)
Name Value

STB_WEAK 2

STB_LOOS 10

STB_HIOS 12

STB_LOPROC 13

STB_HIPROC 15

STB_LOCAL

Local symbol. These symbols are not visible outside the object file containing their
definition. Local symbols of the same name can exist in multiple files without interfering
with each other.

STB_GLOBAL

Global symbols. These symbols are visible to all object files being combined. One file's
definition of a global symbol satisfies another file's undefined reference to the same global
symbol.

STB_WEAK

Weak symbols. These symbols resemble global symbols, but their definitions have lower
precedence.

STB_LOOS - STB_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

STB_LOPROC - STB_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Global symbols and weak symbols differ in two major ways.

■ When the link-editor combines several relocatable object files, multiple definitions of
STB_GLOBAL symbols with the same name are not allowed. However, if a defined global
symbol exists, the appearance of a weak symbol with the same name does not cause an error.
The link-editor honors the global definition and ignores the weak definitions.

Similarly, if a common symbol exists, the appearance of a weak symbol with the same name
does not cause an error. The link-editor uses the common definition and ignores the weak
definition. A common symbol has the st_shndx field holding SHN_COMMON. See “Symbol
Resolution” on page 40.

■ When the link-editor searches archive libraries, archive members that contain definitions of
undefined or tentative global symbols are extracted. The member's definition can be either a
global or a weak symbol.
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The link-editor, by default, does not extract archive members to resolve undefined weak
symbols. Unresolved weak symbols have a zero value. The use of -z weakextract overrides
this default behavior. This options enables weak references to cause the extraction of archive
members.

Note – Weak symbols are intended primarily for use in system software. Their use in application
programs is discouraged.

In each symbol table, all symbols with STB_LOCAL binding precede the weak symbols and global
symbols. As “Sections” on page 205 describes, a symbol table section's sh_info section header
member holds the symbol table index for the first non-local symbol.

A symbol's type, as determined from its st_info field, provides a general classification for the
associated entity.

TABLE 7–19 ELF Symbol Types, ELF32_ST_TYPE and ELF64_ST_TYPE

Name Value

STT_NOTYPE 0

STT_OBJECT 1

STT_FUNC 2

STT_SECTION 3

STT_FILE 4

STT_COMMON 5

STT_TLS 6

STT_LOOS 10

STT_HIOS 12

STT_LOPROC 13

STT_SPARC_REGISTER 13

STT_HIPROC 15

STT_NOTYPE

The symbol type is not specified.

STT_OBJECT

This symbol is associated with a data object, such as a variable, an array, and so forth.
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STT_FUNC

This symbol is associated with a function or other executable code.

STT_SECTION

This symbol is associated with a section. Symbol table entries of this type exist primarily for
relocation and normally have STB_LOCAL binding.

STT_FILE

Conventionally, the symbol's name gives the name of the source file that is associated with
the object file. A file symbol has STB_LOCAL binding and a section index of SHN_ABS. This
symbol, if present, precedes the other STB_LOCAL symbols for the file.

Symbol index 1 of the SHT_SYMTAB is an STT_FILE symbol representing the object file.
Conventionally, this symbol is followed by the files STT_SECTION symbols. These section
symbols are then followed by any global symbols that have been reduced to locals.

STT_COMMON

This symbol labels an uninitialized common block. This symbol is treated exactly the same
as STT_OBJECT.

STT_TLS

The symbol specifies a thread-local storage entity. When defined, this symbol gives the
assigned offset for the symbol, not the actual address.

Thread-local storage relocations can only reference symbols with type STT_TLS. A reference
to a symbol of type STT_TLS from an allocatable section, can only be achieved by using
special thread-local storage relocations. See Chapter 8, “Thread-Local Storage,” for details. A
reference to a symbol of type STT_TLS from a non-allocatable section does not have this
restriction.

STT_LOOS - STT_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

STT_LOPROC - STT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

A symbol's visibility is determined from its st_other field. This visibility can be specified in a
relocatable object. This visibility defines how that symbol can be accessed once the symbol has
become part of an executable or shared object.

TABLE 7–20 ELF Symbol Visibility

Name Value

STV_DEFAULT 0

STV_INTERNAL 1

STV_HIDDEN 2
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TABLE 7–20 ELF Symbol Visibility (Continued)
Name Value

STV_PROTECTED 3

STV_DEFAULT

The visibility of symbols with the STV_DEFAULT attribute is as specified by the symbol's
binding type. Global symbols and weak symbols are visible outside of their defining
component, the executable file or shared object. Local symbols are hidden. Global symbols
and weak symbols can also be preempted. These symbols can by interposed by definitions of
the same name in another component.

STV_PROTECTED

A symbol that is defined in the current component is protected if the symbol is visible in
other components, but cannot be preempted. Any reference to such a symbol from within
the defining component must be resolved to the definition in that component. This
resolution must occur, even if a symbol definition exists in another component that would
interpose by the default rules. A symbol with STB_LOCAL binding will not have
STV_PROTECTED visibility.

STV_HIDDEN

A symbol that is defined in the current component is hidden if its name is not visible to other
components. Such a symbol is necessarily protected. This attribute is used to control the
external interface of a component. An object named by such a symbol can still be referenced
from another component if its address is passed outside.

A hidden symbol contained in a relocatable object is either removed or converted to
STB_LOCAL binding when the object is included in an executable file or shared object.

STV_INTERNAL

This visibility attribute is currently reserved.

The visibility attributes do not affect the resolution of symbols within an executable or shared
object during link-editing. Such resolution is controlled by the binding type. Once the
link-editor has chosen its resolution, these attributes impose two requirements. Both
requirements are based on the fact that references in the code being linked might have been
optimized to take advantage of the attributes.

■ All of the non-default visibility attributes, when applied to a symbol reference, imply that a
definition to satisfy that reference must be provided within the object being linked. If this
type of symbol reference has no definition within the object being linked, then the reference
must have STB_WEAK binding. In this case, the reference is resolved to zero.

■ If any reference to a name, or definition of a name is a symbol with a non-default visibility
attribute, the visibility attribute is propagated to the resolving symbol in the object being
linked. If different visibility attributes are specified for distinct instances of a symbol, the
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most constraining visibility attribute is propagated to the resolving symbol in the object
being linked. The attributes, ordered from least to most constraining, are STV_PROTECTED,
STV_HIDDEN and STV_INTERNAL.

If a symbol's value refers to a specific location within a section, the symbols's section index
member, st_shndx, holds an index into the section header table. As the section moves during
relocation, the symbol's value changes as well. References to the symbol continue to point to the
same location in the program. Some special section index values give other semantics.

SHN_ABS

This symbol has an absolute value that does not change because of relocation.

SHN_COMMON, and SHN_AMD64_LCOMMON

This symbol labels a common block that has not yet been allocated. The symbol's value gives
alignment constraints, similar to a section's sh_addralign member. The link-editor
allocates the storage for the symbol at an address that is a multiple of st_value. The symbol's
size tells how many bytes are required.

SHN_UNDEF

This section table index indicates that the symbol is undefined. When the link-editor
combines this object file with another object that defines the indicated symbol, this file's
references to the symbol is bound to the definition.

As mentioned previously, the symbol table entry for index 0 (STN_UNDEF) is reserved. This entry
holds the values listed in the following table.

TABLE 7–21 ELF Symbol Table Entry: Index 0

Name Value Note

st_name 0 No name

st_value 0 Zero value

st_size 0 No size

st_info 0 No type, local binding

st_other 0

st_shndx SHN_UNDEF No section

Symbol Values
Symbol table entries for different object file types have slightly different interpretations for the
st_value member.

■ In relocatable files, st_value holds alignment constraints for a symbol whose section index
is SHN_COMMON.
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■ In relocatable files, st_value holds a section offset for a defined symbol. st_value is an
offset from the beginning of the section that st_shndx identifies.

■ In executable and shared object files, st_value holds a virtual address. To make these files'
symbols more useful for the runtime linker, the section offset (file interpretation) gives way
to a virtual address (memory interpretation) for which the section number is irrelevant.

Although the symbol table values have similar meanings for different object files, the data allow
efficient access by the appropriate programs.

Symbol Table Layout and Conventions
The symbols in a symbol table are written in the following order.
■ Index 0 in any symbol table is used to represent undefined symbols. This first entry in a

symbol table is always completely zeroed. The symbol type is therefore STT_NOTYPE.
■ If the symbol table contains any local symbols, the second entry of the symbol table is an

STT_FILE symbol giving the name of the file.
■ Section symbols of type STT_SECTION.
■ Register symbols of type STT_REGISTER.
■ Global symbols that have been reduced to local scope.
■ For each input file that supplies local symbols, a STT_FILE symbol giving the name of the

input file, followed by the symbols in question.
■ The global symbols immediately follow the local symbols in the symbol table. The first

global symbol is identified by the symbol table sh_info value. Local and global symbols are
always kept separate in this manner, and cannot be mixed together.

Two symbol tables are of special interest in the Solaris OS.

.symtab (SHT_SYMTAB)
This symbol table contains every symbol that describes the associated ELF file. This symbol
table is typically non-allocable, and is therefore not available in the memory image of the
process.

Global symbols can be eliminated from the .symtab by using a mapfile together with the
ELIMINATE keyword. See “Defining Additional Symbols with a mapfile” on page 50. Local
symbols can also be eliminated by using the link-editor -z redlocsym option.

.dynsym (SHT_DYNSYM)
This table contains a subset of the symbols from the .symtab table that are needed to support
dynamic linking. This symbol table is allocable, and is therefore available in the memory
image of the process.

The .dynsym table begins with the standard NULL symbol, followed by the files global
symbols. STT_FILE symbols are typically not present in this symbol table. STT_SECTION
symbols might be present if required by relocation entries.
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Register Symbols
The SPARC architecture supports register symbols, which are symbols that initialize a global
register. A symbol table entry for a register symbol contains the entries that are listed in the
following table.

TABLE 7–22 SPARC: ELF Symbol Table Entry: Register Symbol

Field Meaning

st_name Index into the string table for the name of the symbol, or the value 0 for a
scratch register.

st_value Register number. See the ABI manual for integer register assignments.

st_size Unused (0).

st_info Bind is typically STB_GLOBAL, type must be STT_SPARC_REGISTER.

st_other Unused (0).

st_shndx SHN_ABS if this object initializes this register symbol,SHN_UNDEF otherwise.

The register values that are defined for SPARC are listed in the following table.

TABLE 7–23 SPARC: ELF Register Numbers

Name Value Meaning

STO_SPARC_REGISTER_G2 0x2 %g2

STO_SPARC_REGISTER_G3 0x3 %g3

Absence of an entry for a particular global register means that the particular global register is
not used at all by the object.

Syminfo Table Section
The syminfo section contains multiple entries of the type Elf32_Syminfo or Elf64_Syminfo.
The .SUNW_syminfo section contains one entry for every entry in the associated symbol table
(sh_link).

If this section is present in an object, additional symbol information is to be found by taking the
symbol index from the associated symbol table and using that to find the corresponding
Elf32_Syminfo entry or Elf64_Syminfo entry in this section. The associated symbol table and
the Syminfo table will always have the same number of entries.
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Index 0 is used to store the current version of the Syminfo table, which is SYMINFO_CURRENT.
Since symbol table entry 0 is always reserved for the UNDEF symbol table entry, this usage does
not pose any conflicts.

An Syminfo entry has the following format. See sys/link.h.

typedef struct {

Elf32_Half si_boundto;

Elf32_Half si_flags;

} Elf32_Syminfo;

typedef struct {

Elf64_Half si_boundto;

Elf64_Half si_flags;

} Elf64_Syminfo;

si_boundto

An index to an entry in the .dynamic section, identified by the sh_info field, which
augments the Syminfo flags. For example, a DT_NEEDED entry identifies a dynamic object
associated with the Syminfo entry. The entries that follow are reserved values for
si_boundto.

Name Value Meaning

SYMINFO_BT_SELF 0xffff Symbol bound to self.

SYMINFO_BT_PARENT 0xfffe Symbol bound to parent. The parent is the first
object to cause this dynamic object to be
loaded.

SYMINFO_BT_NONE 0xfffd Symbol has no special symbol binding.

si_flags

This bit-field can have flags set, as shown in the following table.

Name Value Meaning

SYMINFO_FLG_DIRECT 0x01 Symbol reference has a direct association to
the object containing the definition.

SYMINFO_FLG_COPY 0x04 Symbol definition is the result of a
copy-relocation.

SYMINFO_FLG_LAZYLOAD 0x08 Symbol reference is to an object that should be
lazily loaded.
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Name Value Meaning

SYMINFO_FLG_DIRECTBIND 0x10 Symbol reference should be bound directly to
the definition.

SYMINFO_FLG_NOEXTDIRECT 0x20 Do not allow an external reference to directly
bind to this symbol definition.

Versioning Sections
Objects created by the link-editor can contain two types of versioning information.

■ Version definitions provide associations of global symbols and are implemented using
sections of type SHT_SUNW_verdef and SHT_SUNW_versym.

■ Version dependencies indicate the version definition requirements from other object
dependencies and are implemented using sections of type SHT_SUNW_verneed.

The structures that form these sections are defined in sys/link.h. Sections that contain
versioning information are named .SUNW_version.

Version Definition Section
This section is defined by the type SHT_SUNW_verdef. If this section exists, a SHT_SUNW_versym
section must also exist. These two structures provide an association of symbols to version
definitions within the file. See “Creating a Version Definition” on page 145. Elements of this
section have the following structure.

typedef struct {

Elf32_Half vd_version;

Elf32_Half vd_flags;

Elf32_Half vd_ndx;

Elf32_Half vd_cnt;

Elf32_Word vd_hash;

Elf32_Word vd_aux;

Elf32_Word vd_next;

} Elf32_Verdef;

typedef struct {

Elf32_Word vda_name;

Elf32_Word vda_next;

} Elf32_Verdaux;

typedef struct {

Elf64_Half vd_version;

Elf64_Half vd_flags;

Elf64_Half vd_ndx;
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Elf64_Half vd_cnt;

Elf64_Word vd_hash;

Elf64_Word vd_aux;

Elf64_Word vd_next;

} Elf64_Verdef;

typedef struct {

Elf64_Word vda_name;

Elf64_Word vda_next;

} Elf64_Verdaux;

vd_version

This member identifies the version of the structure, as listed in the following table.

Name Value Meaning

VER_DEF_NONE 0 Invalid version.

VER_DEF_CURRENT >=1 Current version.

The value 1 signifies the original section format. Extensions require new versions with
higher numbers. The value of VER_DEF_CURRENT changes as necessary to reflect the current
version number.

vd_flags

This member holds version definition-specific information, as listed in the following table.

Name Value Meaning

VER_FLG_BASE 0x1 Version definition of the file.

VER_FLG_WEAK 0x2 Weak version identifier.

The base version definition is always present when version definitions, or symbol
auto-reduction, have been applied to the file. The base version provides a default version for
the files reserved symbols. A weak version definition has no symbols associated with the
version. See “Creating a Weak Version Definition” on page 148.

vd_ndx

The version index. Each version definition has a unique index that is used to associate
SHT_SUNW_versym entries to the appropriate version definition.

vd_cnt

The number of elements in the Elf32_Verdaux array.

vd_hash

The hash value of the version definition name. This value is generated using the same
hashing function that is described in “Hash Table Section” on page 227.
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vd_aux

The byte offset from the start of this Elf32_Verdef entry to the Elf32_Verdaux array of
version definition names. The first element of the array must exist. This element points to the
version definition string this structure defines. Additional elements can be present. The
number of elements is indicated by the vd_cnt value. These elements represent the
dependencies of this version definition. Each of these dependencies will have its own version
definition structure.

vd_next

The byte offset from the start of this Elf32_Verdef structure to the next Elf32_Verdef
entry.

vda_name

The string table offset to a null-terminated string, giving the name of the version definition.

vda_next

The byte offset from the start of this Elf32_Verdaux entry to the next Elf32_Verdaux entry.

Version Symbol Section
The version symbol section is defined by the type SHT_SUNW_versym. This section consists of an
array of elements of the following structure.

typedef Elf32_Half Elf32_Versym;

typedef Elf64_Half Elf64_Versym;

The number of elements of the array must equal the number of symbol table entries that are
contained in the associated symbol table. This number is determined by the section's sh_link
value. Each element of the array contains a single index that can have the values shown in the
following table.

TABLE 7–24 ELF Version Dependency Indexes

Name Value Meaning

VER_NDX_LOCAL 0 Symbol has local scope.

VER_NDX_GLOBAL 1 Symbol has global scope and are assigned to the
base version definition.

>1 Symbol has global scope and are assigned to a
user-defined version definition.

Any index values that are greater than VER_NDX_GLOBAL must correspond to the vd_ndx value of
an entry in the SHT_SUNW_verdef section. If no index values that are greater than
VER_NDX_GLOBAL exist, then no SHT_SUNW_verdef section need be present.
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Version Dependency Section
The version dependency section is defined by the type SHT_SUNW_verneed. This section
complements the dynamic dependency requirements of the file by indicating the version
definitions required from these dependencies. A recording is made in this section only if a
dependency contains version definitions. Elements of this section have the following structure.

typedef struct {

Elf32_Half vn_version;

Elf32_Half vn_cnt;

Elf32_Word vn_file;

Elf32_Word vn_aux;

Elf32_Word vn_next;

} Elf32_Verneed;

typedef struct {

Elf32_Word vna_hash;

Elf32_Half vna_flags;

Elf32_Half vna_other;

Elf32_Word vna_name;

Elf32_Word vna_next;

} Elf32_Vernaux;

typedef struct {

Elf64_Half vn_version;

Elf64_Half vn_cnt;

Elf64_Word vn_file;

Elf64_Word vn_aux;

Elf64_Word vn_next;

} Elf64_Verneed;

typedef struct {

Elf64_Word vna_hash;

Elf64_Half vna_flags;

Elf64_Half vna_other;

Elf64_Word vna_name;

Elf64_Word vna_next;

} Elf64_Vernaux;

vn_version

This member identifies the version of the structure, as listed in the following table.

Name Value Meaning

VER_NEED_NONE 0 Invalid version.

VER_NEED_CURRENT >=1 Current version.
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The value 1 signifies the original section format. Extensions require new versions with
higher numbers. The value of VER_NEED_CURRENT changes as necessary to reflect the current
version number.

vn_cnt

The number of elements in the Elf32_Vernaux array.

vn_file

The string table offset to a null-terminated string, providing the file name of a version
dependency. This name matches one of the .dynamic dependencies found in the file. See
“Dynamic Section” on page 273.

vn_aux

The byte offset, from the start of this Elf32_Verneed entry, to the Elf32_Vernaux array of
version definitions that are required from the associated file dependency. At least one
version dependency must exist. Additional version dependencies can be present, the number
being indicated by the vn_cnt value.

vn_next

The byte offset, from the start of this Elf32_Verneed entry, to the next Elf32_Verneed entry.

vna_hash

The hash value of the version dependency name. This value is generated using the same
hashing function that is described in “Hash Table Section” on page 227.

vna_flags

Version dependency specific information, as listed in the following table.

Name Value Meaning

VER_FLG_WEAK 0x2 Weak version identifier.

A weak version dependency indicates an original binding to a weak version definition.

vna_other

Presently unused.

vna_name

The string table offset to a null-terminated string, giving the name of the version
dependency.

vna_next

The byte offset from the start of this Elf32_Vernaux entry to the next Elf32_Vernaux entry.
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Dynamic Linking
This section describes the object file information and system actions that create running
programs. Most information here applies to all systems. Information specific to one processor
resides in sections marked accordingly.

Executable and shared object files statically represent application programs. To execute such
programs, the system uses the files to create dynamic program representations, or process
images. A process image has segments that contain its text, data, stack, and so on. The following
major subsections are provided.
■ “Program Header” on page 261 describes object file structures that are directly involved in

program execution. The primary data structure, a program header table, locates segment
images in the file and contains other information that is needed to create the memory image
of the program.

■ “Program Loading (Processor-Specific)” on page 266 describes the information used to load a
program into memory.

■ “Runtime Linker” on page 272 describes the information used to specify and resolve symbolic
references among the object files of the process image.

Program Header
An executable or shared object file's program header table is an array of structures. Each
structure describes a segment or other information that the system needs to prepare the
program for execution. An object file segment contains one or more sections, as described in
“Segment Contents” on page 266.

Program headers are meaningful only for executable and shared object files. A file specifies its
own program header size with the ELF header's e_phentsize and e_phnum members.

A program header has the following structure. See sys/elf.h.

typedef struct {

Elf32_Word p_type;

Elf32_Off p_offset;

Elf32_Addr p_vaddr;

Elf32_Addr p_paddr;

Elf32_Word p_filesz;

Elf32_Word p_memsz;

Elf32_Word p_flags;

Elf32_Word p_align;

} Elf32_Phdr;

typedef struct {

Elf64_Word p_type;
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Elf64_Word p_flags;

Elf64_Off p_offset;

Elf64_Addr p_vaddr;

Elf64_Addr p_paddr;

Elf64_Xword p_filesz;

Elf64_Xword p_memsz;

Elf64_Xword p_align;

} Elf64_Phdr;

p_type

The kind of segment this array element describes or how to interpret the array element's
information. Type values and their meanings are specified in Table 7–25.

p_offset

The offset from the beginning of the file at which the first byte of the segment resides.

p_vaddr

The virtual address at which the first byte of the segment resides in memory.

p_paddr

The segment's physical address for systems in which physical addressing is relevant. Because
the system ignores physical addressing for application programs, this member has
unspecified contents for executable files and shared objects.

p_filesz

The number of bytes in the file image of the segment, which can be zero.

p_memsz

The number of bytes in the memory image of the segment, which can be zero.

p_flags

Flags that are relevant to the segment. Type values and their meanings are specified in
Table 7–26.

p_align

Loadable process segments must have congruent values for p_vaddr and p_offset, modulo
the page size. This member gives the value to which the segments are aligned in memory and
in the file. Values 0 and 1 mean no alignment is required. Otherwise, p_align should be a
positive, integral power of 2, and p_vaddr should equal p_offset, modulo p_align. See
“Program Loading (Processor-Specific)” on page 266.

Some entries describe process segments. Other entries give supplementary information and do
not contribute to the process image. Segment entries can appear in any order, except as
explicitly noted. Defined type values are listed in the following table.
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TABLE 7–25 ELF Segment Types

Name Value

PT_NULL 0

PT_LOAD 1

PT_DYNAMIC 2

PT_INTERP 3

PT_NOTE 4

PT_SHLIB 5

PT_PHDR 6

PT_TLS 7

PT_LOOS 0x60000000

PT_SUNW_UNWIND 0x6464e550

PT_LOSUNW 0x6ffffffa

PT_SUNWBSS 0x6ffffffa

PT_SUNWSTACK 0x6ffffffb

PT_SUNWDTRACE 0x6ffffffc

PT_SUNWCAP 0x6ffffffd

PT_HISUNW 0x6fffffff

PT_HIOS 0x6fffffff

PT_LOPROC 0x70000000

PT_HIPROC 0x7fffffff

PT_NULL

Unused. Member values are undefined. This type enables the program header table to
contain ignored entries.

PT_LOAD

Specifies a loadable segment, described by p_filesz and p_memsz. The bytes from the file are
mapped to the beginning of the memory segment. If the segment's memory size (p_memsz) is
larger than the file size (p_filesz), the extra bytes are defined to hold the value 0. These
bytes follow the initialized area of the segment. The file size can not be larger than the
memory size. Loadable segment entries in the program header table appear in ascending
order, and are sorted on the p_vaddr member.
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PT_DYNAMIC

Specifies dynamic linking information. See “Dynamic Section” on page 273.

PT_INTERP

Specifies the location and size of a null-terminated path name to invoke as an interpreter.
This type is mandatory for dynamic executable files. This type can occur in shared objects.
This type cannot occur more than once in a file. This type, if present, must precede any
loadable segment entries. See “Program Interpreter” on page 272 for details.

PT_NOTE

Specifies the location and size of auxiliary information. See “Note Section” on page 231 for
details.

PT_SHLIB

Reserved but has unspecified semantics.

PT_PHDR

Specifies the location and size of the program header table, both in the file and in the
memory image of the program. This segment type cannot occur more than once in a file.
Moreover, this segment can occur only if the program header table is part of the memory
image of the program. This type, if present, must precede any loadable segment entry. See
“Program Interpreter” on page 272 for details.

PT_TLS

Specifies a thread-local storage template. See “Thread-Local Storage Section” on page 300 for
details.

PT_LOOS - PT_HIOS
Values in this inclusive range are reserved for OS-specific semantics.

PT_SUNW_UNWIND

This segment contains the stack unwind tables.

PT_LOSUNW - PT_HISUNW
Values in this inclusive range are reserved for Sun-specific semantics.

PT_SUNWBSS

The same attributes as a PT_LOAD element and used to describe a .SUNW_bss section.

PT_SUNWSTACK

Describes a process stack. Only one PT_SUNWSTACK element can exist. Only access
permissions, as defined in the p_flags field, are meaningful.

PT_SUNWDTRACE

Reserved for internal use by dtrace(1M).

PT_SUNWCAP

Specifies hardware capability requirements. See “Hardware and Software Capabilities
Section” on page 226 for details.
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PT_LOPROC - PT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Note – Unless specifically required elsewhere, all program header segment types are optional. A
file's program header table can contain only those elements that are relevant to its contents.

Base Address
Executable and shared object files have a base address, which is the lowest virtual address
associated with the memory image of the program's object file. One use of the base address is to
relocate the memory image of the program during dynamic linking.

An executable or shared object file's base address is calculated during execution from three
values: the memory load address, the maximum page size, and the lowest virtual address of a
program's loadable segment. The virtual addresses in the program headers might not represent
the actual virtual addresses of the program's memory image. See “Program Loading
(Processor-Specific)” on page 266.

To compute the base address, you determine the memory address that are associated with the
lowest p_vaddr value for a PT_LOAD segment. You then obtain the base address by truncating
the memory address to the nearest multiple of the maximum page size. Depending on the kind
of file being loaded into memory, the memory address might not match the p_vaddr values.

Segment Permissions
A program to be loaded by the system must have at least one loadable segment, although this
restriction is not required by the file format. When the system creates loadable segment
memory images, the system gives access permissions, as specified in the p_flags member. All
bits that are included in the PF_MASKPROC mask are reserved for processor-specific semantics.

TABLE 7–26 ELF Segment Flags

Name Value Meaning

PF_X 0x1 Execute

PF_W 0x2 Write

PF_R 0x4 Read

PF_MASKPROC 0xf0000000 Unspecified

If a permission bit is 0, that bit's type of access is denied. Actual memory permissions depend on
the memory management unit, which can vary between systems. Although all flag
combinations are valid, the system can grant more access than requested. In no case, however,
will a segment have write permission unless this permission is specified explicitly. The following
table lists both the exact flag interpretation and the allowable flag interpretation.
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TABLE 7–27 ELF Segment Permissions

Flags Value Exact Allowable

None 0 All access denied All access denied

PF_X 1 Execute only Read, execute

PF_W 2 Write only Read, write, execute

PF_W + PF_X 3 Write, execute Read, write, execute

PF_R 4 Read only Read, execute

PF_R + PF_X 5 Read, execute Read, execute

PF_R + PF_W 6 Read, write Read, write, execute

PF_R + PF_W + PF_X 7 Read, write, execute Read, write, execute

For example, typical text segments have read and execute, but not write permissions. Data
segments normally have read, write, and execute permissions.

Segment Contents
An object file segment consists of one or more sections, though this fact is transparent to the
program header. Whether the file segment holds one section or many sections, is also
immaterial to program loading. Nonetheless, various data must be present for program
execution, dynamic linking, and so on. The following diagrams illustrate segment contents in
general terms. The order and membership of sections within a segment can vary.

Text segments contain read-only instructions and data. Data segments contain writable-data
and instructions. See Table 7–10 for a list of all special sections.

A PT_DYNAMIC program header element points at the .dynamic section. The .got and .plt

sections also hold information related to position-independent code and dynamic linking.

The .plt can reside in a text or a data segment, depending on the processor. See “Global Offset
Table (Processor-Specific)” on page 286 and “Procedure Linkage Table (Processor-Specific)” on
page 287 for details.

Sections of type SHT_NOBITS occupy no space in the file, but contribute to the segment's
memory image. Normally, these uninitialized data reside at the end of the segment, thereby
making p_memsz larger than p_filesz in the associated program header element.

Program Loading (Processor-Specific)
As the system creates or augments a process image, the system logically copies a file's segment to
a virtual memory segment. When, and if, the system physically reads the file depends on the
program's execution behavior, system load, and so forth.
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A process does not require a physical page unless the process references the logical page during
execution. Processes commonly leave many pages unreferenced. Therefore, delaying physical
reads can improve system performance. To obtain this efficiency in practice, executable files
and shared object files must have segment images whose file offsets and virtual addresses are
congruent, modulo the page size.

Virtual addresses and file offsets for 32–bit segments are congruent modulo 64K (0x10000).
Virtual addresses and file offsets for 64–bit segments are congruent modulo 1 megabyte
(0x100000). By aligning segments to the maximum page size, the files are suitable for paging
regardless of physical page size.

By default, 64–bit SPARC programs are linked with a starting address of 0x100000000. The
whole program is located above 4 gigabytes, including its text, data, heap, stack, and shared
object dependencies. This helps ensure that 64–bit programs are correct because the program
will fault in the least significant 4 gigabytes of its address space if the program truncates any of
its pointers. While 64–bit programs are linked above 4 gigabytes, you can still link programs
below 4 gigabytes by using a mapfile and the -M option to the link-editor. See
/usr/lib/ld/sparcv9/map.below4G.

The following figure presents the SPARC version of the executable file.

The following table defines the loadable segment elements for the previous figure.

. . .

Text segment

[ELF header]
[Program header]
[Other information]

. . .

0x3a82 bytes

Data segment

. . .

0x4f5 bytes

Other information

File offset File Virtual address

0x13a82

0x0 0x10000

0x24000

0x244f5

0x4000

0x44f5

FIGURE 7–8 SPARC: Executable File (64K alignment)
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TABLE 7–28 SPARC: ELF Program Header Segments (64K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x0 0x4000

p_vaddr 0x10000 0x24000

p_paddr Unspecified Unspecified

p_filesize 0x3a82 0x4f5

p_memsz 0x3a82 0x10a4

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x10000 0x10000

The following figure presents the x86 version of the executable file.

The following table defines the loadable segment elements for the previous figure.

. . .

Text segment

[ELF header]
[Program header]
[Other information]

. . .

0x32fd bytes

Data segment

. . .

0x3a0 bytes

Other information

File offset File Virtual address

0x80532fd

0x0 0x8050000

0x8064000

0x80643a0

0x4000

0x43a0

FIGURE 7–9 32-bit x86: Executable File (64K alignment)
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TABLE 7–29 32-bit x86: ELF Program Header Segments (64K alignment)

Member Text Data

p_type PT_LOAD PT_LOAD

p_offset 0x0 0x4000

p_vaddr 0x8050000 0x8064000

p_paddr Unspecified Unspecified

p_filesize 0x32fd 0x3a0

p_memsz 0x32fd 0xdc4

p_flags PF_R + PF_X PF_R + PF_W + PF_X

p_align 0x10000 0x10000

The example's file offsets and virtual addresses are congruent modulo the maximum page size
for both text and data. Up to four file pages hold impure text or data depending on page size and
file system block size.

■ The first text page contains the ELF header, the program header table, and other
information.

■ The last text page holds a copy of the beginning of data.
■ The first data page has a copy of the end of text.
■ The last data page can contain file information not relevant to the running process.

Logically, the system enforces the memory permissions as if each segment were complete
and separate The segments addresses are adjusted to ensure that each logical page in the
address space has a single set of permissions. In the previous examples, the region of the file
holding the end of text and the beginning of data is mapped twice: at one virtual address for
text and at a different virtual address for data.

Note – The previous examples reflect typical Solaris OS binaries that have their text segments
rounded.

The end of the data segment requires special handling for uninitialized data, which the system
defines to begin with zero values. If a file's last data page includes information not in the logical
memory page, the extraneous data must be set to zero, not the unknown contents of the
executable file.

Impurities in the other three pages are not logically part of the process image. Whether the
system expunges these impurities is unspecified. The memory image for this program is shown
in the following figures, assuming 4 Kbyte (0x1000) pages. For simplicity, these figures illustrate
only one page size.

Dynamic Linking

Chapter 7 • Object File Format 269



Text segment

. . .

0x3a82 bytes

Data padding
0x57e

Virtual address Contents Segment

Text

0x10000

0x13a82

Text padding
0x4000

Page padding
0xaf5c

Data segment

. . .

0x4f5 bytes

Uninitialized data
0xbaf

Data

0x24000

0x20000

0x244f5

0x250a4

FIGURE 7–10 32-bit SPARC: Process Image Segments
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One aspect of segment loading differs between executable files and shared objects. Executable
file segments typically contain absolute code. For the process to execute correctly, the segments
must reside at the virtual addresses used to create the executable file. The system uses the
p_vaddr values unchanged as virtual addresses.

On the other hand, shared object segments typically contain position-independent code. This
code enables a segment's virtual address change between different processes, without
invalidating execution behavior.

Though the system chooses virtual addresses for individual processes, it maintains the relative
positions of the segments. Because position-independent code uses relative addressing between
segments, the difference between virtual addresses in memory must match the difference
between virtual addresses in the file.

Text segment

. . .

0x32fd bytes

Data padding
0xd03

Virtual address Contents Segment

Text

0x8050000

0x80532fd

Text padding
0x4000

Page padding
0xb23c

Data segment

. . .

3a0 bytes

Uninitialized data
0xa24

Data

0x8064000

0x8060000

0x80643a0

0x8064dc4

FIGURE 7–11 x86: Process Image Segments
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The following tables show possible shared object virtual address assignments for several
processes, illustrating constant relative positioning. The tables also include the base address
computations.

TABLE 7–30 32-bit SPARC: ELF Example Shared Object Segment Addresses

Source Text Data Base Address

File 0x0 0x4000 0x0

Process 1 0xc0000000 0xc0024000 0xc0000000

Process 2 0xc0010000 0xc0034000 0xc0010000

Process 3 0xd0020000 0xd0024000 0xd0020000

Process 4 0xd0030000 0xd0034000 0xd0030000

TABLE 7–31 32-bit x86: ELF Example Shared Object Segment Addresses

Source Text Data Base Address

File 0x0 0x4000 0x0

Process 1 0x8000000 0x8004000 0x80000000

Process 2 0x80081000 0x80085000 0x80081000

Process 3 0x900c0000 0x900c4000 0x900c0000

Process 4 0x900c6000 0x900ca000 0x900c6000

Program Interpreter
A dynamic executable or shared object that initiates dynamic linking can have one PT_INTERP
program header element. During exec(2), the system retrieves a path name from the PT_INTERP
segment and creates the initial process image from the interpreter file's segments. The
interpreter is responsible for receiving control from the system and providing an environment
for the application program.

In the Solaris OS, the interpreter is known as the runtime linker, ld.so.1(1).

Runtime Linker
When creating a dynamic object that initiates dynamic linking, the link-editor adds a program
header element of type PT_INTERP to an executable file. This element instructing the system to
invoke the runtime linker as the program interpreter. exec(2) and the runtime linker cooperate
to create the process image for the program.
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The link-editor constructs various data for executable and shared object files that assist the
runtime linker. These data reside in loadable segments, thus making the data available during
execution. These segments include.
■ A .dynamic section with type SHT_DYNAMIC that holds various data. The structure residing at

the beginning of the section holds the addresses of other dynamic linking information.
■ The .got and .plt sections with type SHT_PROGBITS that hold two separate tables: the global

offset table and the procedure linkage table. Sections that follow, explain how the runtime
linker uses and changes the tables to create memory images for object files.

■ The .hash section with type SHT_HASH that holds a symbol hash table.

Shared objects can occupy virtual memory addresses that are different from the addresses that
are recorded in the file's program header table. The runtime linker relocates the memory image,
updating absolute addresses before the application gains control.

Dynamic Section
If an object file participates in dynamic linking, its program header table will have an element of
type PT_DYNAMIC. This segment contains the .dynamic section. A special symbol, _DYNAMIC,
labels the section, which contains an array of the following structures. See sys/link.h.

typedef struct {

Elf32_Sword d_tag;

union {

Elf32_Word d_val;

Elf32_Addr d_ptr;

Elf32_Off d_off;

} d_un;

} Elf32_Dyn;

typedef struct {

Elf64_Xword d_tag;

union {

Elf64_Xword d_val;

Elf64_Addr d_ptr;

} d_un;

} Elf64_Dyn;

For each object with this type, d_tag controls the interpretation of d_un.

d_val

These objects represent integer values with various interpretations.

d_ptr

These objects represent program virtual addresses. A file's virtual addresses might not match
the memory virtual addresses during execution. When interpreting addresses contained in
the dynamic structure, the runtime linker computes actual addresses, based on the original
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file value and the memory base address. For consistency, files do not contain relocation
entries to correct addresses in the dynamic structure.

The value of each dynamic tag, except for those tags in two special compatibility ranges,
determines the interpretation of the d_un union. This convention provides for simpler
interpretation of dynamic tags by external tools. A tag whose value is an even number indicates
a dynamic section entry that uses d_ptr. A tag whose value is an odd number indicates a
dynamic section entry that uses d_val, or that the tag uses neither d_ptr nor d_val. Tags whose
values are less than the special value DT_ENCODING and tags whose values fall between DT_HIOS

and DT_LOPROC do not follow these rules.

The following table summarizes the tag requirements for executable and shared object files. If a
tag is marked mandatory, then the dynamic linking array must have an entry of that type.
Likewise, optional means an entry for the tag can appear but is not required.

TABLE 7–32 ELF Dynamic Array Tags

Name Value d_un Executable Shared Object

DT_NULL 0 Ignored Mandatory Mandatory

DT_NEEDED 1 d_val Optional Optional

DT_PLTRELSZ 2 d_val Optional Optional

DT_PLTGOT 3 d_ptr Optional Optional

DT_HASH 4 d_ptr Mandatory Mandatory

DT_STRTAB 5 d_ptr Mandatory Mandatory

DT_SYMTAB 6 d_ptr Mandatory Mandatory

DT_RELA 7 d_ptr Mandatory Optional

DT_RELASZ 8 d_val Mandatory Optional

DT_RELAENT 9 d_val Mandatory Optional

DT_STRSZ 10 d_val Mandatory Mandatory

DT_SYMENT 11 d_val Mandatory Mandatory

DT_INIT 12 d_ptr Optional Optional

DT_FINI 13 d_ptr Optional Optional

DT_SONAME 14 d_val Ignored Optional

DT_RPATH 15 d_val Optional Optional

DT_SYMBOLIC 16 Ignored Ignored Optional
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TABLE 7–32 ELF Dynamic Array Tags (Continued)
Name Value d_un Executable Shared Object

DT_REL 17 d_ptr Mandatory Optional

DT_RELSZ 18 d_val Mandatory Optional

DT_RELENT 19 d_val Mandatory Optional

DT_PLTREL 20 d_val Optional Optional

DT_DEBUG 21 d_ptr Optional Ignored

DT_TEXTREL 22 Ignored Optional Optional

DT_JMPREL 23 d_ptr Optional Optional

DT_BIND_NOW 24 Ignored Optional Optional

DT_INIT_ARRAY 25 d_ptr Optional Optional

DT_FINI_ARRAY 26 d_ptr Optional Optional

DT_INIT_ARRAYSZ 27 d_val Optional Optional

DT_FINI_ARRAYSZ 28 d_val Optional Optional

DT_RUNPATH 29 d_val Optional Optional

DT_FLAGS 30 d_val Optional Optional

DT_ENCODING 32 Unspecified Unspecified Unspecified

DT_PREINIT_ARRAY 32 d_ptr Optional Ignored

DT_PREINIT_ARRAYSZ 33 d_val Optional Ignored

DT_MAXPOSTAGS 34 Unspecified Unspecified Unspecified

DT_LOOS 0x6000000d Unspecified Unspecified Unspecified

DT_SUNW_AUXILIARY 0x6000000d d_ptr Unspecified Optional

DT_SUNW_RTLDINF 0x6000000e d_ptr Optional Optional

DT_SUNW_FILTER 0x6000000e d_ptr Unspecified Optional

DT_SUNW_CAP 0x60000010 d_ptr Optional Optional

DT_HIOS 0x6ffff000 Unspecified Unspecified Unspecified

DT_VALRNGLO 0x6ffffd00 Unspecified Unspecified Unspecified

DT_CHECKSUM 0x6ffffdf8 d_val Optional Optional

DT_PLTPADSZ 0x6ffffdf9 d_val Optional Optional

DT_MOVEENT 0x6ffffdfa d_val Optional Optional
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TABLE 7–32 ELF Dynamic Array Tags (Continued)
Name Value d_un Executable Shared Object

DT_MOVESZ 0x6ffffdfb d_val Optional Optional

DT_FEATURE_1 0x6ffffdfc d_val Optional Optional

DT_POSFLAG_1 0x6ffffdfd d_val Optional Optional

DT_SYMINSZ 0x6ffffdfe d_val Optional Optional

DT_SYMINENT 0x6ffffdff d_val Optional Optional

DT_VALRNGHI 0x6ffffdff Unspecified Unspecified Unspecified

DT_ADDRRNGLO 0x6ffffe00 Unspecified Unspecified Unspecified

DT_CONFIG 0x6ffffefa d_ptr Optional Optional

DT_DEPAUDIT 0x6ffffefb d_ptr Optional Optional

DT_AUDIT 0x6ffffefc d_ptr Optional Optional

DT_PLTPAD 0x6ffffefd d_ptr Optional Optional

DT_MOVETAB 0x6ffffefe d_ptr Optional Optional

DT_SYMINFO 0x6ffffeff d_ptr Optional Optional

DT_ADDRRNGHI 0x6ffffeff Unspecified Unspecified Unspecified

DT_RELACOUNT 0x6ffffff9 d_val Optional Optional

DT_RELCOUNT 0x6ffffffa d_val Optional Optional

DT_FLAGS_1 0x6ffffffb d_val Optional Optional

DT_VERDEF 0x6ffffffc d_ptr Optional Optional

DT_VERDEFNUM 0x6ffffffd d_val Optional Optional

DT_VERNEED 0x6ffffffe d_ptr Optional Optional

DT_VERNEEDNUM 0x6fffffff d_val Optional Optional

DT_LOPROC 0x70000000 Unspecified Unspecified Unspecified

DT_SPARC_REGISTER 0x70000001 d_val Optional Optional

DT_AUXILIARY 0x7ffffffd d_val Unspecified Optional

DT_USED 0x7ffffffe d_val Optional Optional

DT_FILTER 0x7fffffff d_val Unspecified Optional

DT_HIPROC 0x7fffffff Unspecified Unspecified Unspecified

Dynamic Linking

Linker and Libraries Guide • September 2008276



DT_NULL

Marks the end of the _DYNAMIC array.

DT_NEEDED

The DT_STRTAB string table offset of a null-terminated string, giving the name of a needed
dependency. The dynamic array can contain multiple entries of this type. The relative order
of these entries is significant, though their relation to entries of other types is not. See
“Shared Object Dependencies” on page 72.

DT_PLTRELSZ

The total size, in bytes, of the relocation entries associated with the procedure linkage table.
See “Procedure Linkage Table (Processor-Specific)” on page 287.

DT_PLTGOT

An address associated with the procedure linkage table or the global offset table. See
“Procedure Linkage Table (Processor-Specific)” on page 287 and “Global Offset Table
(Processor-Specific)” on page 286.

DT_HASH

The address of the symbol hash table. This table refers to the symbol table indicated by the
DT_SYMTAB element. See “Hash Table Section” on page 227.

DT_STRTAB

The address of the string table. Symbol names, dependency names, and other strings
required by the runtime linker reside in this table. See “String Table Section” on page 245.

DT_SYMTAB

The address of the symbol table. See “Symbol Table Section” on page 246.

DT_RELA

The address of a relocation table. See “Relocation Sections” on page 233.

An object file can have multiple relocation sections. When creating the relocation table for
an executable or shared object file, the link-editor catenates those sections to form a single
table. Although the sections can remain independent in the object file, the runtime linker
sees a single table. When the runtime linker creates the process image for an executable file
or adds a shared object to the process image, the runtime linker reads the relocation table
and performs the associated actions.

This element requires the DT_RELASZ and DT_RELAENT elements also be present. When
relocation is mandatory for a file, either DT_RELA or DT_REL can occur.

DT_RELASZ

The total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT

The size, in bytes, of the DT_RELA relocation entry.

DT_STRSZ

The total size, in bytes, of the DT_STRTAB string table.
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DT_SYMENT

The size, in bytes, of the DT_SYMTAB symbol entry.

DT_INIT

The address of an initialization function. See “Initialization and Termination Sections” on
page 38.

DT_FINI

The address of a termination function. See “Initialization and Termination Sections” on
page 38.

DT_SONAME

The DT_STRTAB string table offset of a null-terminated string, identifying the name of the
shared object. See “Recording a Shared Object Name” on page 114.

DT_RPATH

The DT_STRTAB string table offset of a null-terminated library search path string. This
element's use has been superseded by DT_RUNPATH. See “Directories Searched by the Runtime
Linker” on page 72.

DT_SYMBOLIC

Indicates the object contains symbolic bindings that were applied during its link-edit. This
elements use has been superseded by the DF_SYMBOLIC flag. See “Using the -B symbolic
Option” on page 140.

DT_REL

Similar to DT_RELA, except its table has implicit addends. This element requires that the
DT_RELSZ and DT_RELENT elements also be present.

DT_RELSZ

The total size, in bytes, of the DT_REL relocation table.

DT_RELENT

The size, in bytes, of the DT_REL relocation entry.

DT_PLTREL

Indicates the type of relocation entry to which the procedure linkage table refers, either
DT_REL or DT_RELA. All relocations in a procedure linkage table must use the same
relocation. See “Procedure Linkage Table (Processor-Specific)” on page 287. This element
requires a DT_JMPREL element also be present.

DT_DEBUG

Used for debugging.

DT_TEXTREL

Indicates that one or more relocation entries might request modifications to a non-writable
segment, and the runtime linker can prepare accordingly. This element's use has been
superseded by the DF_TEXTREL flag. See “Position-Independent Code” on page 129.
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DT_JMPREL

The address of relocation entries that are associated solely with the procedure linkage table.
See “Procedure Linkage Table (Processor-Specific)” on page 287. The separation of these
relocation entries enables the runtime linker to ignore these entries when the object is loaded
with lazy binding enabled. This element requires the DT_PLTRELSZ and DT_PLTREL elements
also be present.

DT_POSFLAG_1

Various state flags which are applied to the DT_ element immediately following. See
Table 7–35.

DT_BIND_NOW

Indicates that all relocations for this object must be processed before returning control to the
program. The presence of this entry takes precedence over a directive to use lazy binding
when specified through the environment or by means of dlopen(3C). This element's use has
been superseded by the DF_BIND_NOW flag. See “When Relocations Are Performed” on
page 80.

DT_INIT_ARRAY

The address of an array of pointers to initialization functions. This element requires that a
DT_INIT_ARRAYSZ element also be present. See “Initialization and Termination Sections” on
page 38.

DT_FINI_ARRAY

The address of an array of pointers to termination functions. This element requires that a
DT_FINI_ARRAYSZ element also be present. See “Initialization and Termination Sections” on
page 38.

DT_INIT_ARRAYSZ

The total size, in bytes, of the DT_INIT_ARRAY array.

DT_FINI_ARRAYSZ

The total size, in bytes, of the DT_FINI_ARRAY array.

DT_RUNPATH

The DT_STRTAB string table offset of a null-terminated library search path string. See
“Directories Searched by the Runtime Linker” on page 72.

DT_FLAGS

Flag values specific to this object. See Table 7–33.

DT_ENCODING

Dynamic tag values that are greater than or equal to DT_ENCODING, and less than or equal to
DT_LOOS, follow the rules for the interpretation of the d_un union.

DT_PREINIT_ARRAY

The address of an array of pointers to pre-initialization functions. This element requires that
a DT_PREINIT_ARRAYSZ element also be present. This array is processed only in an executable
file. This array is ignored if contained in a shared object. See “Initialization and Termination
Sections” on page 38.
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DT_PREINIT_ARRAYSZ

The total size, in bytes, of the DT_PREINIT_ARRAY array.

DT_MAXPOSTAGS

The number of positive dynamic array tag values.

DT_LOOS - DT_HIOS
Values in this inclusive range are reserved for operating system-specific semantics. All such
values follow the rules for the interpretation of the d_un union.

DT_SUNW_AUXILIARY

The DT_STRTAB string table offset of a null-terminated string that names one or more
per-symbol, auxiliary filtees. See “Generating Auxiliary Filters” on page 123.

DT_SUNW_RTLDINF

Reserved for internal use by the runtime-linker.

DT_SUNW_FILTER

The DT_STRTAB string table offset of a null-terminated string that names one or more
per-symbol, standard filtees. See “Generating Standard Filters” on page 120.

DT_SUNW_CAP

The address of the hardware and software capabilities section. See “Hardware and Software
Capabilities Section” on page 226.

DT_SYMINFO

The address of the symbol information table. This element requires that the DT_SYMINENT
and DT_SYMINSZ elements also be present. See “Syminfo Table Section” on page 254.

DT_SYMINENT

The size, in bytes, of the DT_SYMINFO information entry.

DT_SYMINSZ

The total size, in bytes, of the DT_SYMINFO table.

DT_VERDEF

The address of the version definition table. Elements within this table contain indexes into
the string table DT_STRTAB. This element requires that the DT_VERDEFNUM element also be
present. See “Version Definition Section” on page 256.

DT_VERDEFNUM

The number of entries in the DT_VERDEF table.

DT_VERNEED

The address of the version dependency table. Elements within this table contain indexes into
the string table DT_STRTAB. This element requires that the DT_VERNEEDNUM element also be
present. See “Version Dependency Section” on page 259.

DT_VERNEEDNUM

The number of entries in the DT_VERNEEDNUM table.
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DT_RELACOUNT

Indicates the RELATIVE relocation count, which is produced from the concatenation of all
Elf32_Rela, or Elf64_Rela relocations. See “Combined Relocation Sections” on page 137.

DT_RELCOUNT

Indicates the RELATIVE relocation count, which is produced from the concatenation of all
Elf32_Rel relocations. See “Combined Relocation Sections” on page 137.

DT_AUXILIARY

The DT_STRTAB string table offset of a null-terminated string that names one or more
auxiliary filtees. See “Generating Auxiliary Filters” on page 123.

DT_FILTER

The DT_STRTAB string table offset of a null-terminated string that names one or more
standard filtees. See “Generating Standard Filters” on page 120.

DT_CHECKSUM

A simple checksum of selected sections of the object. See gelf_checksum(3ELF).

DT_MOVEENT

The size, in bytes, of the DT_MOVETAB move entries.

DT_MOVESZ

The total size, in bytes, of the DT_MOVETAB table.

DT_MOVETAB

The address of a move table. This element requires that the DT_MOVEENT and DT_MOVESZ

elements also be present. See “Move Section” on page 229.

DT_CONFIG

The DT_STRTAB string table offset of a null-terminated string defining a configuration file.
The configuration file is only meaningful in an executable, and is typically unique to this
object. See “Configuring the Default Search Paths” on page 75.

DT_DEPAUDIT

The DT_STRTAB string table offset of a null-terminated string defining one or more audit
libraries. See “Runtime Linker Auditing Interface” on page 171.

DT_AUDIT

The DT_STRTAB string table offset of a null-terminated string defining one or more audit
libraries. See “Runtime Linker Auditing Interface” on page 171.

DT_FLAGS_1

Flag values specific to this object. See Table 7–34.

DT_FEATURE_1

Feature values specific to this object. See Table 7–36.

DT_VALRNGLO - DT_VALRNGHI
Values in this inclusive range use the d_un.d_val field of the dynamic structure.

Dynamic Linking

Chapter 7 • Object File Format 281



DT_ADDRRNGLO - DT_ADDRRNGHI
Values in this inclusive range use the d_un.d_ptr field of the dynamic structure. If any
adjustment is made to the ELF object after the object has been built, these entries must be
updated accordingly.

DT_SPARC_REGISTER

The index of an STT_SPARC_REGISTER symbol within the DT_SYMTAB symbol table. One
dynamic entry exists for every STT_SPARC_REGISTER symbol in the symbol table. See
“Register Symbols” on page 254.

DT_LOPROC - DT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

Except for the DT_NULL element at the end of the dynamic array and the relative order of
DT_NEEDED and DT_POSFLAG_1 elements, entries can appear in any order. Tag values not
appearing in the table are reserved.

TABLE 7–33 ELF Dynamic Flags, DT_FLAGS

Name Value Meaning

DF_ORIGIN 0x1 $ORIGIN processing required

DF_SYMBOLIC 0x2 Symbolic symbol resolution required

DF_TEXTREL 0x4 Text relocations exist

DF_BIND_NOW 0x8 Non-lazy binding required

DF_STATIC_TLS 0x10 Object uses static thread-local storage scheme

DF_ORIGIN

Indicates that the object requires $ORIGIN processing. See “Locating Associated
Dependencies” on page 357.

DF_SYMBOLIC

Indicates that the object contains symbolic bindings that were applied during its link-edit.
See “Using the -B symbolic Option” on page 140.

DF_TEXTREL

Indicates that one or more relocation entries might request modifications to a non-writable
segment, and the runtime linker can prepare accordingly. See “Position-Independent Code”
on page 129.

DF_BIND_NOW

Indicates that all relocations for this object must be processed before returning control to the
program. The presence of this entry takes precedence over a directive to use lazy binding
when specified through the environment or by means of dlopen(3C). See “When
Relocations Are Performed” on page 80.
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DF_STATIC_TLS

Indicates that the object contains code using a static thread-local storage scheme. Static
thread-local storage should not be used in objects that are dynamically loaded, either using
dlopen(3C), or using lazy loading.

TABLE 7–34 ELF Dynamic Flags, DT_FLAGS_1

Name Value Meaning

DF_1_NOW 0x1 Perform complete relocation processing.

DF_1_GLOBAL 0x2 Unused.

DF_1_GROUP 0x4 Indicate object is a member of a group.

DF_1_NODELETE 0x8 Object cannot be deleted from a process.

DF_1_LOADFLTR 0x10 Ensure immediate loading of filtees.

DF_1_INITFIRST 0x20 Objects' initialization occurs first.

DF_1_NOOPEN 0x40 Object can not be used with dlopen(3C).

DF_1_ORIGIN 0x80 $ORIGIN processing required.

DF_1_DIRECT 0x100 Direct bindings enabled.

DF_1_INTERPOSE 0x400 Object is an interposer.

DF_1_NODEFLIB 0x800 Ignore the default library search path.

DF_1_NODUMP 0x1000 Object cannot be dumped with dldump(3C).

DF_1_CONFALT 0x2000 Object is a configuration alternative.

DF_1_ENDFILTEE 0x4000 Filtee terminates filter's search.

DF_1_DISPRELDNE 0x8000 Displacement relocation has been carried out.

DF_1_DISPRELPND 0x10000 Displacement relocation pending.

DF_1_NODIRECT 0x20000 Object contains non-direct bindings.

DF_1_IGNMULDEF 0x40000 Internal use.

DF_1_NOKSYMS 0x80000 Internal use.

DF_1_NOHDR 0x100000 Internal use.

DF_1_NORELOC 0x400000 Internal use.

DF_1_GLOBAUDIT 0x1000000 Establish global auditing.
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DF_1_NOW

Indicates that all relocations for this object must be processed before returning control to the
program. The presence of this flag takes precedence over a directive to use lazy binding when
specified through the environment or by means of dlopen(3C). See “When Relocations Are
Performed” on page 80.

DF_1_GROUP

Indicates that the object is a member of a group. This flag is recorded in the object using the
link-editor's -B group option. See “Object Hierarchies” on page 101.

DF_1_NODELETE

Indicates that the object cannot be deleted from a process. If the object is loaded in a process,
either directly or as a dependency, with dlopen(3C), the object cannot be unloaded with
dlclose(3C). This flag is recorded in the object using the link-editor -z nodelete option.

DF_1_LOADFLTR

Meaningful only for filters. Indicates that all associated filtees be processed immediately.
This flag is recorded in the object using the link-editor's -z loadfltr option. See “Filtee
Processing” on page 126.

DF_1_INITFIRST

Indicates that this object's initialization section be run before any other objects loaded. This
flag is intended for specialized system libraries only, and is recorded in the object using the
link-editor's -z initfirst option.

DF_1_NOOPEN

Indicates that the object cannot be added to a running process with dlopen(3C). This flag is
recorded in the object using the link-editor's -z nodlopen option.

DF_1_ORIGIN

Indicates that the object requires $ORIGIN processing. See “Locating Associated
Dependencies” on page 357.

DF_1_DIRECT

Indicates that the object should use direct binding information. See “Direct Bindings” on
page 78.

DF_1_INTERPOSE

Indicates that the objects symbol table is to interpose before all symbols except the primary
load object, which is typically the executable. This flag is recorded with the link-editor's
-z interpose option. See “Runtime Interposition” on page 78.

DF_1_NODEFLIB

Indicates that the search for dependencies of this object ignores any default library search
paths. This flag is recorded in the object using the link-editor's -z nodefaultlib option. See
“Directories Searched by the Runtime Linker” on page 37.
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DF_1_NODUMP

Indicates that this object is not dumped by dldump(3C). Candidates for this option include
objects with no relocations that might get included when generating alternative objects using
crle(1). This flag is recorded in the object using the link-editor's -z nodump option.

DF_1_CONFALT

Identifies this object as a configuration alternative object generated by crle(1). This flag
triggers the runtime linker to search for a configuration file $ORIGIN/ld.config.app-name.

DF_1_ENDFILTEE

Meaningful only for filtees. Terminates a filters search for any further filtees. This flag is
recorded in the object using the link-editor's -z endfiltee option. See “Reducing Filtee
Searches” on page 356.

DF_1_DISPRELDNE

Indicates that this object has displacement relocations applied. The displacement relocation
records no longer exist within the object as the records were discarded once the relocation
was applied. See “Displacement Relocations” on page 67.

DF_1_DISPRELPND

Indicates that this object has displacement relocations pending. The displacement
relocations exits within the object so the relocation can be completed at runtime. See
“Displacement Relocations” on page 67.

DF_1_NODIRECT

Indicates that this object contains symbols that can not be directly bound to. See “Defining
Additional Symbols with a mapfile” on page 50.

DF_1_IGNMULDEF

Reserved for internal use by the kernel runtime-linker.

DF_1_NOKSYMS

Reserved for internal use by the kernel runtime-linker.

DF_1_NOHDR

Reserved for internal use by the kernel runtime-linker.

DF_1_NORELOC

Reserved for internal use by the kernel runtime-linker.

DF_1_GLOBAUDIT

Indicates that the dynamic executable requires global auditing. See “Recording Global
Auditors” on page 174.

TABLE 7–35 ELF Dynamic Position Flags, DT_POSFLAG_1

Name Value Meaning

DF_P1_LAZYLOAD 0x1 Identify lazy loaded dependency.
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TABLE 7–35 ELF Dynamic Position Flags, DT_POSFLAG_1 (Continued)
Name Value Meaning

DF_P1_GROUPPERM 0x2 Identify group dependency.

DF_P1_LAZYLOAD

Identifies the following DT_NEEDED entry as an object to be lazy loaded. This flag is recorded
in the object using the link-editor's -z lazyload option. See “Lazy Loading of Dynamic
Dependencies” on page 83.

DF_P1_GROUPPERM

Identifies the following DT_NEEDED entry as an object to be loaded as a group. This flag is
recorded in the object using the link-editor's -z groupperm option. See “Isolating a Group”
on page 101.

TABLE 7–36 ELF Dynamic Feature Flags, DT_FEATURE_1

Name Value Meaning

DTF_1_PARINIT 0x1 Partial initialization is required.

DTF_1_CONFEXP 0x2 A Configuration file is expected.

DTF_1_PARINIT

Indicates that the object requires partial initialization. See “Move Section” on page 229.

DTF_1_CONFEXP

Identifies this object as a configuration alternative object generated by crle(1). This flag
triggers the runtime linker to search for a configuration file $ORIGIN/ld.config.app-name.
This flag has the same affect as DF_1_CONFALT.

Global Offset Table (Processor-Specific)
Position-independent code cannot, in general, contain absolute virtual addresses. Global offset
tables hold absolute addresses in private data. Addresses are therefore available without
compromising the position-independence and shareability of a program's text. A program
references its GOT using position-independent addressing and extracts absolute values. This
technique redirects position-independent references to absolute locations.

Initially, the GOT holds information as required by its relocation entries. After the system creates
memory segments for a loadable object file, the runtime linker processes the relocation entries.
Some relocations can be of type R_xxxx_GLOB_DAT, referring to the GOT.

The runtime linker determines the associated symbol values, calculates their absolute addresses,
and sets the appropriate memory table entries to the proper values. Although the absolute
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addresses are unknown when the link-editor creates an object file, the runtime linker knows the
addresses of all memory segments and can thus calculate the absolute addresses of the symbols
contained therein.

If a program requires direct access to the absolute address of a symbol, that symbol will have a
GOT entry. Because the executable file and shared objects have separate a GOT, a symbol's address
can appear in several tables. The runtime linker processes all the GOT relocations before giving
control to any code in the process image. This processing ensures that absolute addresses are
available during execution.

The table's entry zero is reserved to hold the address of the dynamic structure, referenced with
the symbol _DYNAMIC. This symbol enables a program, such as the runtime linker, to find its
own dynamic structure without having yet processed its relocation entries. This method is
especially important for the runtime linker, because it must initialize itself without relying on
other programs to relocate its memory image.

The system can choose different memory segment addresses for the same shared object in
different programs. The system can even choose different library addresses for different
executions of the same program. Nonetheless, memory segments do not change addresses once
the process image is established. As long as a process exists, its memory segments reside at fixed
virtual addresses.

A GOT format and interpretation are processor-specific. The symbol _GLOBAL_OFFSET_TABLE_
can be used to access the table. This symbol can reside in the middle of the .got section,
allowing both negative and nonnegative subscripts into the array of addresses. The symbol type
is an array of Elf32_Addr for 32–bit code, and an array of Elf64_Addr for 64–bit code.

extern Elf32_Addr _GLOBAL_OFFSET_TABLE_[];

extern Elf64_Addr _GLOBAL_OFFSET_TABLE_[];

Procedure Linkage Table (Processor-Specific)
The global offset table converts position-independent address calculations to absolute
locations. Similarly the procedure linkage table converts position-independent function calls to
absolute locations. The link-editor cannot resolve execution transfers such as function calls
between different dynamic objects. So, the link-editor arranges to have the program transfer
control to entries in the procedure linkage table. The runtime linker thus redirects the entries
without compromising the position-independence and shareability of the program's text.
Executable files and shared object files have separate procedure linkage tables.

32-bit SPARC: Procedure Linkage Table
For 32–bit SPARC dynamic objects, the procedure linkage table resides in private data. The
runtime linker determines the absolute addresses of the destinations and modifies the
procedure linkage table's memory image accordingly.
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The first four procedure linkage table entries are reserved. The original contents of these entries
are unspecified, despite the example that is shown in Table 7–37. Each entry in the table
occupies 3 words (12 bytes), and the last table entry is followed by a nop instruction.

A relocation table is associated with the procedure linkage table. The DT_JMP_REL entry in the
_DYNAMIC array gives the location of the first relocation entry. The relocation table has one
entry, in the same sequence, for each non-reserved procedure linkage table entry. The
relocation type of each of these entries is R_SPARC_JMP_SLOT. The relocation offset specifies the
address of the first byte of the associated procedure linkage table entry. The symbol table index
refers to the appropriate symbol.

To illustrate procedure linkage tables, Table 7–37 shows four entries. Two of the four are initial
reserved entries. The third entry is a call to name101. The fourth entry is a call to name102. The
example assumes that the entry for name102 is the table's last entry. A nop instruction follows
this last entry. The left column shows the instructions from the object file before dynamic
linking. The right column illustrates a possible instruction sequence that the runtime linker
might use to fix the procedure linkage table entries.

TABLE 7–37 32-bit SPARC: Procedure Linkage Table Example

Object File Memory Segment

.PLT0:

unimp

unimp

unimp

.PLT1:

unimp

unimp

unimp

.PLT0:

save %sp, -64, %sp

call runtime_linker

nop

.PLT1:

.word identification

unimp

unimp

.PLT101:

sethi (.-.PLT0), %g1

ba,a .PLT0

nop

.PLT102:

sethi (.-.PLT0), %g1

ba,a .PLT0

nop

nop

.PLT101:

nop

ba,a name101

nop

.PLT102:

sethi (.-.PLT0), %g1

sethi %hi(name102), %g1

jmpl %g1+%lo(name102), %g0

nop

The following steps describe how the runtime linker and program jointly resolve the symbolic
references through the procedure linkage table. The steps that are described are for explanation
only. The precise execution-time behavior of the runtime linker is not specified.
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1. When the memory image of the program is initially created, the runtime linker changes the
initial procedure linkage table entries. These entries are modified so that control can be
transferred to one of the runtime linker's own routines. The runtime linker also stores a
word of identification information in the second entry. When the runtime linker receives
control, this word is examined to identify the caller.

2. All other procedure linkage table entries initially transfer to the first entry. Thus, the
runtime linker gains control at the first execution of a table entry. For example, the program
calls name101, which transfers control to the label .PLT101.

3. The sethi instruction computes the distance between the current and the initial procedure
linkage table entries, .PLT101 and .PLT0, respectively. This value occupies the most
significant 22 bits of the %g1 register.

4. Next, the ba,a instruction jumps to .PLT0, establishing a stack frame, and calls the runtime
linker.

5. With the identification value, the runtime linker gets its data structures for the object,
including the relocation table.

6. By shifting the %g1 value and dividing by the size of the procedure linkage table entries, the
runtime linker calculates the index of the relocation entry for name101. Relocation entry 101
has type R_SPARC_JMP_SLOT. This relocation offset specifies the address of .PLT101, and its
symbol table index refers to name101. Thus, the runtime linker gets the symbol's real value,
unwinds the stack, modifies the procedure linkage table entry, and transfers control to the
desired destination.

The runtime linker does not have to create the instruction sequences under the memory
segment column. If the runtime linkers does, some points deserve more explanation.

■ To make the code re-entrant, the procedure linkage table's instructions are changed in a
particular sequence. If the runtime linker is fixing a function's procedure linkage table entry
and a signal arrives, the signal handling code must be able to call the original function with
predictable and correct results.

■ The runtime linker changes three words to convert an entry. The runtime linker can update
only a single word atomically with regard to instruction execution. Therefore, re-entrancy is
achieved by updating each word in reverse order. If a re-entrant function call occurs just
prior to the last patch, the runtime linker gains control a second time. Although both
invocations of the runtime linker modify the same procedure linkage table entry, their
changes do not interfere with each other.

■ The first sethi instruction of a procedure linkage table entry can fill the delay slot of the
previous entry's jmp1 instruction. Although the sethi changes the value of the %g1 register,
the previous contents can be safely discarded.

■ After conversion, the last procedure linkage table entry, .PLT102, needs a delay instruction
for its jmp1. The required, trailing nop fills this delay slot.
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Note – The different instruction sequences that are shown for .PLT101, and .PLT102

demonstrate how the update can be optimized for the associated destination.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its value is
non-null, the runtime linker processes R_SPARC_JMP_SLOT relocation entries before
transferring control to the program.

64-bit SPARC: Procedure Linkage Table
For 64–bit SPARC dynamic objects, the procedure linkage table resides in private data. The
runtime linker determines the absolute addresses of the destination and modifies the procedure
linkage table's memory image accordingly.

The first four procedure linkage table entries are reserved. The original contents of these entries
are unspecified, despite the example that is shown in Table 7–38. Each of the first 32,768 entries
in the table occupies 8 words (32 bytes), and must be aligned on a 32–byte boundary. The table
as a whole must be aligned on a 256–byte boundary. If more than 32,768 entries are required,
the remaining entries consist of 6 words (24 bytes) and 1 pointer (8 bytes). The instructions are
collected together in blocks of 160 entries followed by 160 pointers. The last group of entries
and pointers can contain less than 160 items. No padding is required.

Note – The numbers 32,768 and 160 are based on the limits of branch and load displacements
respectively with the second rounded down to make the divisions between code and data fall on
256–byte boundaries so as to improve cache performance.

A relocation table is associated with the procedure linkage table. The DT_JMP_REL entry in the
_DYNAMIC array gives the location of the first relocation entry. The relocation table has one
entry, in the same sequence, for each non-reserved procedure linkage table entry. The
relocation type of each of these entries is R_SPARC_JMP_SLOT. For the first 32,767 slots, the
relocation offset specifies the address of the first byte of the associated procedure linkage table
entry, the addend field is zero. The symbol table index refers to the appropriate symbol. For
slots 32,768 and beyond, the relocation offset specifies the address of the first byte of the
associated pointer. The addend field is the unrelocated value -(.PLTN + 4). The symbol table
index refers to the appropriate symbol.

To illustrate procedure linkage tables, Table 7–38 shows several entries. The first three show
initial reserved entries. The following three show examples of the initial 32,768 entries together
with possible resolved forms that might apply if the target address was +/- 2 Gbytes of the entry,
within the lower 4 Gbytes of the address space, or anywhere respectively. The final two show
examples of later entries, which consist of instruction and pointer pairs. The left column shows
the instructions from the object file before dynamic linking. The right column demonstrates a
possible instruction sequence that the runtime linker might use to fix the procedure linkage
table entries.
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TABLE 7–38 64-bit SPARC: Procedure Linkage Table Example

Object File Memory Segment

.PLT0:

unimp

unimp

unimp

unimp

unimp

unimp

unimp

unimp

.PLT1:

unimp

unimp

unimp

unimp

unimp

unimp

unimp

unimp

.PLT2:

unimp

.PLT0:

save %sp, -176, %sp

sethi %hh(runtime_linker_0), %l0

sethi %lm(runtime_linker_0), %l1

or %l0, %hm(runtime_linker_0), %l0

sllx %l0, 32, %l0

or %l0, %l1, %l0

jmpl %l0+%lo(runtime_linker_0), %o1

mov %g1, %o0

.PLT1:

save %sp, -176, %sp

sethi %hh(runtime_linker_1), %l0

sethi %lm(runtime_linker_1), %l1

or %l0, %hm(runtime_linker_1), %l0

sllx %l0, 32, %l0

or %l0, %l1, %l0

jmpl %l0+%lo(runtime_linker_0), %o1

mov %g1, %o0

.PLT2:

.xword identification

.PLT101:

sethi (.-.PLT0), %g1

ba,a %xcc, .PLT1

nop

nop

nop; nop

nop; nop

.PLT102:

sethi (.-.PLT0), %g1

ba,a %xcc, .PLT1

nop

nop

nop; nop

nop; nop

.PLT103:

sethi (.-.PLT0), %g1

ba,a %xcc, .PLT1

nop

nop

nop

nop

nop

nop

.PLT101:

nop

mov %o7, %g1

call name101

mov %g1, %o7

nop; nop

nop; nop

.PLT102:

nop

sethi %hi(name102), %g1

jmpl %g1+%lo(name102), %g0

nop

nop; nop

nop; nop

.PLT103:

nop

sethi %hh(name103), %g1

sethi %lm(name103), %g5

or %hm(name103), %g1

sllx %g1, 32, %g1

or %g1, %g5, %g5

jmpl %g5+%lo(name103), %g0

nop
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TABLE 7–38 64-bit SPARC: Procedure Linkage Table Example (Continued)
Object File Memory Segment

.PLT32768:

mov %o7, %g5

call .+8

nop

ldx [%o7+.PLTP32768 -

(.PLT32768+4)], %g1

jmpl %o7+%g1, %g1

mov %g5, %o7

...

.PLT32927:

mov %o7, %g5

call .+8

nop

ldx [%o7+.PLTP32927 -

(.PLT32927+4)], %g1

jmpl %o7+%g1, %g1

mov %g5, %o7

.PLT32768:

<unchanged>

<unchanged>

<unchanged>

<unchanged>

<unchanged>

<unchanged>

...

.PLT32927:

<unchanged>

<unchanged>

<unchanged>

<unchanged>

<unchanged>

<unchanged>

.PLTP32768

.xword .PLT0 -

(.PLT32768+4)

...

.PLTP32927

.xword .PLT0 -

(.PLT32927+4)

.PLTP32768

.xword name32768 -

(.PLT32768+4)

...

.PLTP32927

.xword name32927 -

(.PLT32927+4)

The following steps describe how the runtime linker and program jointly resolve the symbolic
references through the procedure linkage table. The steps that are described are for explanation
only. The precise execution-time behavior of the runtime linker is not specified.

1. When the memory image of the program is initially created, the runtime linker changes the
initial procedure linkage table entries. These entries are modified so that control is transfer
to the runtime linker's own routines. The runtime linker also stores an extended word of
identification information in the third entry. When the runtime linker receives control, this
word is examined to identify the caller.

2. All other procedure linkage table entries initially transfer to the first or second entry. These
entries establish a stack frame and call the runtime linker.

3. With the identification value, the runtime linker gets its data structures for the object,
including the relocation table.

4. The runtime linker computes the index of the relocation entry for the table slot.
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5. With the index information, the runtime linker gets the symbol's real value, unwinds the
stack, modifies the procedure linkage table entry, and transfers control to the desired
destination.

The runtime linker does not have to create the instruction sequences under the memory
segment column. If the runtime linker does, some points deserve more explanation.

■ To make the code re-entrant, the procedure linkage table's instructions are changed in a
particular sequence. If the runtime linker is fixing a function's procedure linkage table entry
and a signal arrives, the signal handling code must be able to call the original function with
predictable and correct results.

■ The runtime linker can change up to eight words to convert an entry. The runtime linker
can update only a single word atomically with regard to instruction execution. Therefore,
re-entrancy is achieved by first overwriting the nop instructions with their replacement
instructions, and then patching the ba,a, and the sethi if using a 64–bit store. If a
re-entrant function call occurs just prior to the last patch, the runtime linker gains control a
second time. Although both invocations of the runtime linker modify the same procedure
linkage table entry, their changes do not interfere with each other.

■ If the initial sethi instruction is changed, the instruction can only be replaced by a nop.

Changing the pointer as done for the second form of entry is done using a single atomic 64–bit
store.

Note – The different instruction sequences that are shown for .PLT101, .PLT102, and .PLT103

demonstrate how the update can be optimized for the associated destination.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its value is
non-null, the runtime linker processes R_SPARC_JMP_SLOT relocation entries before
transferring control to the program.

32-bit x86: Procedure Linkage Table
For 32–bit x86 dynamic objects, the procedure linkage table resides in shared text but uses
addresses in the private global offset table. The runtime linker determines the absolute
addresses of the destinations and modifies the global offset table's memory image accordingly.
The runtime linker thus redirects the entries without compromising the position-independence
and shareability of the program's text. Executable files and shared object files have separate
procedure linkage tables.
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TABLE 7–39 32-bit x86: Absolute Procedure Linkage Table Example

.PLT0:

pushl got_plus_4

jmp *got_plus_8

nop; nop

nop; nop

.PLT1:

jmp *name1_in_GOT

pushl $offset

jmp .PLT0@PC

.PLT2:

jmp *name2_in_GOT

pushl $offset

jmp .PLT0@PC

TABLE 7–40 32-bit x86: Position-Independent Procedure Linkage Table Example

.PLT0:

pushl 4(%ebx)

jmp *8(%ebx)

nop; nop

nop; nop

.PLT1:

jmp *name1@GOT(%ebx)

pushl $offset

jmp .PLT0@PC

.PLT2:

jmp *name2@GOT(%ebx)

pushl $offset

jmp .PLT0@PC

Note – As the preceding examples show, the procedure linkage table instructions use different
operand addressing modes for absolute code and for position-independent code. Nonetheless,
their interfaces to the runtime linker are the same.

The following steps describe how the runtime linker and program cooperate to resolve the
symbolic references through the procedure linkage table and the global offset table.

1. When the memory image of the program is initially created, the runtime linker sets the
second and third entries in the global offset table to special values. The following steps
explain these values.
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2. If the procedure linkage table is position-independent, the address of the global offset table
must be in %ebx. Each shared object file in the process image has its own procedure linkage
table, and control transfers to a procedure linkage table entry only from within the same
object file. So, the calling function must set the global offset table base register before calling
the procedure linkage table entry.

3. For example, the program calls name1, which transfers control to the label .PLT1.

4. The first instruction jumps to the address in the global offset table entry for name1. Initially,
the global offset table holds the address of the following pushl instruction, not the real
address of name1.

5. The program pushes a relocation offset (offset) on the stack. The relocation offset is a
32–bit, nonnegative byte offset into the relocation table. The designated relocation entry has
the type R_386_JMP_SLOT, and its offset specifies the global offset table entry used in the
previous jmp instruction. The relocation entry also contains a symbol table index, which the
runtime linker uses to get the referenced symbol, name1.

6. After pushing the relocation offset, the program jumps to .PLT0, the first entry in the
procedure linkage table. The pushl instruction pushes the value of the second global offset
table entry (got_plus_4 or 4(%ebx)) on the stack, giving the runtime linker one word of
identifying information. The program then jumps to the address in the third global offset
table entry (got_plus_8 or 8(%ebx)), to jump to the runtime linker.

7. The runtime linker unwinds the stack, checks the designated relocation entry, gets the
symbol's value, stores the actual address of name1 in its global offset entry table, and jumps to
the destination.

8. Subsequent executions of the procedure linkage table entry transfer directly to name1,
without calling the runtime linker again. The jmp instruction at .PLT1 jumps to name1

instead of falling through to the pushl instruction.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its value is
non-null, the runtime linker processes R_386_JMP_SLOT relocation entries before transferring
control to the program.

x64: Procedure Linkage Table
For x64 dynamic objects, the procedure linkage table resides in shared text but uses addresses in
the private global offset table. The runtime linker determines the absolute addresses of the
destinations and modifies the global offset table's memory image accordingly. The runtime
linker thus redirects the entries without compromising the position-independence and
shareability of the program's text. Executable files and shared object files have separate
procedure linkage tables.
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TABLE 7–41 x64: Procedure Linkage Table Example

.PLT0:

pushq GOT+8(%rip) # GOT[1]

jmp *GOT+16(%rip) # GOT[2]

nop; nop

nop; nop

.PLT1:

jmp *name1@GOTPCREL(%rip) # 16 bytes from .PLT0

pushq $index1

jmp .PLT0

.PLT2:

jmp *name2@GOTPCREL(%rip) # 16 bytes from .PLT1

pushl $index2

jmp .PLT0

The following steps describe how the runtime linker and program cooperate to resolve the
symbolic references through the procedure linkage table and the global offset table.

1. When the memory image of the program is initially created, the runtime linker sets the
second and third entries in the global offset table to special values. The following steps
explain these values.

2. Each shared object file in the process image has its own procedure linkage table, and control
transfers to a procedure linkage table entry only from within the same object file.

3. For example, the program calls name1, which transfers control to the label .PLT1.
4. The first instruction jumps to the address in the global offset table entry for name1. Initially,

the global offset table holds the address of the following pushq instruction, not the real
address of name1.

5. The program pushes a relocation index (index1) on the stack. The relocation offset is a
32–bit, nonnegative index into the relocation table. The relocation table is identified by the
DT_JUMPREL dynamic section entry. The designated relocation entry has the type
R_AMD64_JMP_SLOT, and its offset specifies the global offset table entry used in the previous
jmp instruction. The relocation entry also contains a symbol table index, which the runtime
linker uses to get the referenced symbol, name1.

6. After pushing the relocation index, the program jumps to .PLT0, the first entry in the
procedure linkage table. The pushq instruction pushes the value of the second global offset
table entry (GOT+8) on the stack, giving the runtime linker one word of identifying
information. The program then jumps to the address in the third global offset table entry
(GOT+16), to jump to the runtime linker.

7. The runtime linker unwinds the stack, checks the designated relocation entry, gets the
symbol's value, stores the actual address of name1 in its global offset entry table, and jumps to
the destination.
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8. Subsequent executions of the procedure linkage table entry transfer directly to name1,
without calling the runtime linker again. The jmp instruction at .PLT1 jumps to name1

instead of falling through to the pushq instruction.

The LD_BIND_NOW environment variable changes dynamic linking behavior. If its value is
non-null, the runtime linker processes R_AMD64_JMP_SLOT relocation entries before
transferring control to the program.
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Thread-Local Storage

The compilation environment supports the declaration of thread-local data. This data is
sometimes referred to as thread-specific, or thread-private data, but more typically by the
acronym TLS. By declaring variables to be thread-local, the compiler automatically arranges for
these variables to be allocated on a per-thread basis.

The built-in support for this feature serves three purposes.
■ A foundation is provided upon which the POSIX interfaces for allocating thread specific

data are built.
■ A convenient, and efficient mechanism for direct use of thread local variables by

applications and libraries is provided.
■ Compilers can allocate TLS as necessary when performing loop-parallelizing optimizations.

C/C++ Programming Interface
Variables are declared thread-local using the __thread keyword, as in the following examples.

__thread int i;

__thread char *p;

__thread struct state s;

During loop optimizations, the compiler can choose to create thread-local temporaries as
needed.

Applicability
The __thread keyword can be applied to any global, file-scoped static, or function-scoped
static variable. It has no effect on automatic variables, which are always thread-local.

Initialization
In C++, a thread-local variable can not be initialized if the initialization requires a static
constructor. Otherwise, a thread-local variable can be initialized to any value that would be
legal for an ordinary static variable.

8C H A P T E R 8
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No variable, thread-local or otherwise, can be statically initialized to the address of a
thread-local variable.

Binding
Thread-local variables can be declared externally and referenced externally. Thread-local
variables are subject to the same interposition rules as normal symbols.

Dynamic loading restrictions
Various TLS access models are available. See “Thread-Local Storage Access Models” on
page 305. Shared object developers should be aware of the restrictions imposed by some of
these access models in relation to object loading. A shared object can be dynamically loaded
during process startup, or after process startup by means of lazy loading, filters, or
dlopen(3C). At the completion of process startup, the thread pointer for the main thread is
established. All static TLS storage requirements are calculated before the thread pointer is
established.

Shared objects that reference thread-local variables, should insure that every translation unit
containing the reference is compiled with a dynamic TLS model. This model of access
provides the greatest flexibility for loading shared objects. However, static TLS models can
generate faster code. Shared objects that use a static TLS model can be loaded as part of
process initialization. However, after process initialization, shared objects that use a static
TLS model can only be loaded if sufficient backup TLS storage is available. See “Program
Startup” on page 302.

Address-of operator
The address-of operator, &, can be applied to a thread-local variable. This operator is
evaluated at runtime, and returns the address of the variable within the current thread. The
address obtained by this operator can be used freely by any thread in the process as long as
the thread that evaluated the address remains in existence. When a thread terminates, any
pointers to thread-local variables in that thread become invalid.

When dlsym(3C) is used to obtain the address of a thread-local variable, the address that is
returned is the address of the instance of that variable in the thread that called dlsym().

Thread-Local Storage Section
Separate copies of thread-local data that have been allocated at compile-time, must be
associated with individual threads of execution. To provide this data, TLS sections are used to
specify the size and initial contents. The compilation environment allocates TLS in sections that
are identified with the SHF_TLS flag. These sections provide initialized TLS and uninitialized
TLS based on how the storage is declared.

■ An initialized thread-local variable is allocated in a .tdata, or .tdata1 section. This
initialization can require relocation.

■ An uninitialized thread-local variable is defined as a COMMON symbol. The resulting
allocation is made in a .tbss section.

Thread-Local Storage Section
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The uninitialized section is allocated immediately following any initialized sections, subject to
padding for proper alignment. Together, the combined sections form a TLS template that is
used to allocate TLS whenever a new thread is created. The initialized portion of this template is
called the TLS initialization image. All relocations that are generated as a result of initialized
thread-local variables are applied to this template. The relocated values are used when a new
thread requires the initial values.

TLS symbols have the symbol type STT_TLS. These symbols are assigned offsets relative to the
beginning of the TLS template. The actual virtual address that is associated with these symbols
is irrelevant. The address refers only to the template, and not to the per-thread copy of each data
item. In dynamic executables and shared objects, the st_value field of a STT_TLS symbol
contains the assigned TLS offset for defined symbols. This field contains zero for undefined
symbols.

Several relocations are defined to support access to TLS. See “SPARC: Thread-Local Storage
Relocation Types” on page 312, “32-bit x86: Thread-Local Storage Relocation Types” on
page 318 and “x64: Thread-Local Storage Relocation Types” on page 323. TLS relocations
typically reference symbols of type STT_TLS. TLS relocations can also reference local section
symbols in association with a GOT entry. In this case, the assigned TLS offset is stored in the
associated GOT entry.

In dynamic executables and shared objects, a PT_TLS program entry describes a TLS template.
This template has the following members.

TABLE 8–1 ELF PT_TLSProgram Header Entry

Member Value

p_offset File offset of the TLS initialization image

p_vaddr Virtual memory address of the TLS initialization image

p_paddr 0

p_filesz Size of the TLS initialization image

p_memsz Total size of the TLS template

p_flags PF_R

p_align Alignment of the TLS template
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Runtime Allocation of Thread-Local Storage
TLS is created at three occasions during the lifetime of a program.
■ At program startup.
■ When a new thread is created.
■ When a thread references a TLS block for the first time after a shared object is loaded

following program startup.

Thread-local data storage is laid out at runtime as illustrated in Figure 8–1.

Program Startup
At program startup, the runtime system creates TLS for the main thread.

First, the runtime linker logically combines the TLS templates for all loaded dynamic objects,
including the dynamic executable, into a single static template. Each dynamic objects's TLS
template is assigned an offset within the combined template, tlsoffsetm, as follows.
■ tlsoffset1 = round(tlssize1, align1 )
■ tlsoffsetm+1 = round(tlsoffsetm + tlssizem+1, alignm+1)

tlssizem+1 and alignm+1 are the size and alignment, respectively, for the allocation template
for dynamic object m. Where 1 <= m <= M, and M is the total number of loaded dynamic objects.
The round(offset, align) function returns an offset rounded up to the next multiple of align.

Next, the runtime linker computes the allocation size that is required for the startup TLS,
tlssizeS. This size is equal to tlsoffsetM, plus an additional 512 bytes. This addition provides
a backup reservation for static TLS references. Shared objects that make static TLS references,
and are loaded after process initialization, are assigned to this backup reservation. However,
this reservation is a fixed, limited size. In addition, this reservation is only capable of providing
storage for uninitialized TLS data items. For maximum flexibility, shared objects should
reference thread-local variables using a dynamic TLS model.

tlsoffset
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tlsoffset
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1

tp
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dtv
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gen
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TLS blocks for dynamically
loaded modules

FIGURE 8–1 Runtime Storage Layout of Thread-Local Storage

Runtime Allocation of Thread-Local Storage

Linker and Libraries Guide • September 2008302



The static TLS arena associated with the calculated TLS size tlssizeS, is placed immediately
preceding the thread pointer tpt. Accesses to this TLS data is based off of subtractions from tpt.

The static TLS arena is associated with a linked list of initialization records. Each record in this
list describes the TLS initialization image for one loaded dynamic object. Each record contains
the following fields.
■ A pointer to the TLS initialization image.
■ The size of the TLS initialization image.
■ The tlsoffsetm of the object.
■ A flag indicating whether the object uses a static TLS model.

The thread library uses this information to allocate storage for the initial thread. This storage is
initialized, and a dynamic TLS vector for the initial thread is created.

Thread Creation
For the initial thread, and for each new thread created, the thread library allocates a new TLS
block for each loaded dynamic object. Blocks can be allocated separately, or as a single
contiguous block.

Each thread t, has an associated thread pointer tpt, which points to the thread control block,
TCB. The thread pointer, tp, always contains the value of tpt for the current running thread.

The thread library then creates a vector of pointers, dtvt, for the current thread t. The first
element of each vector contains a generation number gent, which is used to determine when the
vector needs to be extended. See “Deferred Allocation of Thread-Local Storage Blocks” on
page 304.

Each element remaining in the vector dtvt,m, is a pointer to the block that is reserved for the
TLS belonging to the dynamic object m.

For dynamically loaded, post-startup objects, the thread library defers the allocation of TLS
blocks. Allocation occurs when the first reference is made to a TLS variable within the loaded
object. For blocks whose allocation has been deferred, the pointer dtvt,m is set to an
implementation-defined special value.

Note – The runtime linker can group TLS templates for all startup objects so as to share a single
element in the vector, dtv t,1. This grouping does not affect the offset calculations described
previously or the creation of the list of initialization records. For the following sections,
however, the value of M, the total number of objects, start with the value of 1.

The thread library then copies the initialization images to the corresponding locations within
the new block of storage.
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Post-Startup Dynamic Loading
A shared object containing only dynamic TLS can be loaded following process startup without
limitations. The runtime linker extends the list of initialization records to include the
initialization template of the new object. The new object is given an index of m = M + 1. The
counter M is incremented by 1. However, the allocation of new TLS blocks is deferred until the
blocks are actually referenced.

When a shared object that contains only dynamic TLS is unloaded, the TLS blocks used by that
shared object are freed.

A shared object containing static TLS can be loaded following process startup with limitations.
Static TLS references can only be satisfied from any remaining backup TLS reservation. See
“Program Startup” on page 302. This reservation is limited in size. In addition, this reservation
can only provide storage for uninitialized TLS data items.

A shared object that contains static TLS is never unloaded. The shared object is tagged as
non-deletable as a consequence of processing the static TLS.

Deferred Allocation of Thread-Local Storage Blocks
In a dynamic TLS model, when a thread t needs to access a TLS block for object m, the code
updates the dtvt and performs the initial allocation of the TLS block. The thread library provides
the following interface to provide for dynamic TLS allocation.

typedef struct {

unsigned long ti_moduleid;

unsigned long ti_tlsoffset;

} TLS_index;

extern void * __tls_get_addr(TLS_index * ti); (SPARC and x64)

extern void * ___tls_get_addr(TLS_index * ti); (32–bit x86)

Note – The SPARC and 64–bit x86 definitions of this function have the same function signature.
However, the 32–bit x86 version does not use the default calling convention of passing
arguments on the stack. Instead, the 32–bit x86 version passes its arguments by means of the
%eax register which is more efficient. To denote that this alternate calling method is used, the
32–bit x86 function name has three leading underscores in its name.

Both versions of tls_get_addr() check the per-thread generation counter, gent, to determine
whether the vector needs to be updated. If the vector dtvt is out of date, the routine updates the
vector, possibly reallocating the vector to make room for more entries. The routine then checks
to see if the TLS block corresponding to dtvt,m has been allocated. If the vector has not been
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allocated, the routine allocates and initializes the block. The routine uses the information in the
list of initialization records provided by the runtime linker. The pointer dtv t,m is set to point to
the allocated block. The routine returns a pointer to the given offset within the block.

Thread-Local Storage Access Models
Each TLS reference follows one of the following access models. These models are listed from the
most general, but least optimized, to the fastest, but most restrictive.

General Dynamic (GD) - dynamic TLS
This model allows reference of all TLS variables, from either a shared object or a dynamic
executable. This model also supports the deferred allocation of a TLS block when the block is
first referenced from a specific thread.

Local Dynamic (LD) - dynamic TLS of local symbols
This model is a optimization of the GD model. The compiler might determine that a variable
is bound locally, or protected, within the object being built. In this case, the compiler
instructs the link-editor to statically bind the dynamic tlsoffset and use this model. This
model provides a performance benefit over the GD model. Only one call to tls_get_addr()

is required per function, to determine the address of dtv0,m. The dynamic TLS offset, bound
at link-edit time, is added to the dtv0,m address for each reference.

Initial Executable (IE) - static TLS with assigned offsets
This model can only reference TLS variables which are available as part of the initial static
TLS template. This template is composed of all TLS blocks that are available at process
startup, plus a small backup reservation. See “Program Startup” on page 302. In this model,
the thread pointer-relative offset for a given variable x is stored in the GOT entry for x.

This model can reference a limited number of TLS variables from shared libraries loaded
after initial process startup, such as by means of lazy loading, filters, or dlopen(3C). This
access is satisfied from a fixed backup reservation. This reservation can only provide storage
for uninitialized TLS data items. For maximum flexibility, shared objects should reference
thread-local variables using a dynamic TLS model.

Note – Filters can be employed to dynamically select the use of static TLS. A shared object can
be built to use dynamic TLS, and act as an auxiliary filter upon a counterpart built to use
static TLS. If resourses allow the static TLS object to be loaded, the object is used. Otherwise,
a fall back to the dynamic TLS object insures that the functionality provided by the shared
object is always available. For more information on filters see “Shared Objects as Filters” on
page 119.

Local Executable (LE) - static TLS
This model can only reference TLS variables which are part of the TLS block of the dynamic
executable. The link-editor calculates the thread pointer-relative offsets statically, without
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the need for dynamic relocations, or the extra reference to the GOT. This model can not be
used to reference variables outside of the dynamic executable.

The link-editor can transition code from the more general access models to the more optimized
models, if the transition is determined appropriate. This transitioning is achievable through the
use of unique TLS relocations. These relocations, not only request updates be performed, but
identify which TLS access model is being used.

Knowledge of the TLS access model, together with the type of object being created, allows the
link-editor to perform translations. An example is if a relocatable object using the GD access
model is being linked into a dynamic executable. In this case, the link-editor can transition the
references using the IE or LE access models, as appropriate. The relocations that are required
for the model are then performed.

The following diagram illustrates the different access models, together with the transition of
one model to another model.
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SPARC: Thread-Local Variable Access
On SPARC, the following code sequence models are available for accessing thread-local
variables.

SPARC: General Dynamic (GD)
This code sequence implements the GD model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–2 SPARC: General Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

General
dynamic

Intitial
exec

General
dynamic

Local
dynamic

Intitial
exec

Local
exec

General
dynamic

Local
dynamic

Intitial
exec

Local
exec

General
dynamic

Local
dynamic

Intitial
exec

Local
exec

_thread int j;

Default

Optimization

Backend 
command-line

Backend known 
local optimization

Linker known 
exec optimization

Linker known 
local optimization

FIGURE 8–2 Thread-Local Storage Access Models and Transitions
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TABLE 8–2 SPARC: General Dynamic Thread-Local Variable Access Codes (Continued)
# %l7 - initialized to GOT pointer

0x00 sethi %hi(@dtlndx(x)), %o0

0x04 add %o0, %lo(@dtlndx(x)), %o0

0x08 add %l7, %o0, %o0

0x0c call x@TLSPLT

# %o0 - contains address of TLS variable

R_SPARC_TLS_GD_HI22

R_SPARC_TLS_GD_LO10

R_SPARC_TLS_GD_ADD

R_SPARC_TLS_GD_CALL

x

x

x

x

Outstanding Relocations: 32–bit Symbol

GOT[n]

GOT[n + 1]

R_SPARC_TLS_DTPMOD32

R_SPARC_TLS_DTPOFF32

x

x

Outstanding Relocations: 64–bit Symbol

GOT[n]

GOT[n + 1]

R_SPARC_TLS_DTPMOD64

R_SPARC_TLS_DTPOFF64

x

x

The sethi, and add instructions generate R_SPARC_TLS_GD_HI22 and R_SPARC_TLS_GD_LO10

relocations respectively. These relocations instruct the link-editor to allocate space in the GOT to
hold a TLS_index structure for variable x. The link-editor processes this relocation by
substituting the GOT-relative offset for the new GOT entry.

The load object index and TLS block index for x are not known until runtime. Therefore, the
link-editor places the R_SPARC_TLS_DTPMOD32 and R_SPARC_TLS_DPTOFF32 relocations against
the GOT for processing by the runtime linker.

The second add instruction causes the generation of the R_SPARC_TLS_GD_ADD relocation. This
relocation is used only if the GD code sequence is changed to another sequence by the
link-editor.

The call instruction uses the special syntax, x@TLSPLT. This call references the TLS variable
and generates the R_SPARC_TLS_GD_CALL relocation. This relocation instructs the link-editor to
bind the call to the __tls_get_addr() function, and associates the call instruction with the
GD code sequence.

Note – The add instruction must appear before the call instruction. The add instruction can not
be placed into the delay slot for the call. This requirement is necessary as the
code-transformations that can occur later require a known order.

The register used as the GOT-pointer for the add instruction tagged by the R_SPARC_TLS_GD_ADD
relocation, must be the first register in the add instruction. This requirement permits the
link-editor to identify the GOT-pointer register during a code transformation.
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SPARC: Local Dynamic (LD)
This code sequence implements the LD model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–3 SPARC: Local Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

# %l7 - initialized to GOT pointer

0x00 sethi %hi(@tmndx(x1)), %o0

0x04 add %o0, %lo(@tmndx(x1)), %o0

0x08 add %l7, %o0, %o0

0x0c call x@TLSPLT

# %o0 - contains address of TLS block of current object

0x10 sethi %hi(@dtpoff(x1)), %l1

0x14 xor %l1, %lo(@dtpoff(x1)), %l1

0x18 add %o0, %l1, %l1

# %l1 - contains address of local TLS variable x1

0x20 sethi %hi(@dtpoff(x2)), %l2

0x24 xor %l2, %lo(@dtpoff(x2)), %l2

0x28 add %o0, %l2, %l2

# %l2 - contains address of local TLS variable x2

R_SPARC_TLS_LDM_HI22

R_SPARC_TLS_LDM_LO10

R_SPARC_TLS_LDM_ADD

R_SPARC_TLS_LDM_CALL

R_SPARC_TLS_LDO_HIX22

R_SPARC_TLS_LDO_LOX10

R_SPARC_TLS_LDO_ADD

R_SPARC_TLS_LDO_HIX22

R_SPARC_TLS_LDO_LOX10

R_SPARC_TLS_LDO_ADD

x1

x1

x1

x1

x1

x1

x1

x2

x2

x2

Outstanding Relocations: 32–bit Symbol

GOT[n]

GOT[n + 1]

R_SPARC_TLS_DTPMOD32

<none>

x1

Outstanding Relocations: 64–bit Symbol

GOT[n]

GOT[n + 1]

R_SPARC_TLS_DTPMOD64

<none>

x1

The first sethi instruction and add instruction generate R_SPARC_TLS_LDM_HI22 and
R_SPARC_TLS_LDM_LO10 relocations respectively. These relocations instruct the link-editor to
allocate space in the GOT to hold a TLS_index structure for the current object. The link-editor
processes this relocation by substituting the GOT -relative offset for the new GOT entry.

The load object index is not known until runtime. Therefore, a R_SPARC_TLS_DTPMOD32
relocation is created, and the ti_tlsoffset field of the TLS_index structure is zero filled.

The second add and the call instruction are tagged with the R_SPARC_TLS_LDM_ADD and
R_SPARC_TLS_LDM_CALL relocations respectively.
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The following sethi instruction and xor instruction generate the R_SPARC_LDO_HIX22 and
R_SPARC_TLS_LDO_LOX10 relocations, respectively. The TLS offset for each local symbol is
known at link-edit time, therefore these values are filled in directly. The add instruction is
tagged with the R_SPARC_TLS_LDO_ADD relocation.

When a procedure references more than one local symbol, the compiler generates code to
obtain the base address of the TLS block once. This base address is then used to calculate the
address of each symbol without a separate library call.

Note – The register containing the TLS object address in the add instruction tagged by the
R_SPARC_TLS_LDO_ADD must be the first register in the instruction sequence. This requirement
permits the link-editor to identify the register during a code transformation.

32-bit SPARC: Initial Executable (IE)
This code sequence implements the IE model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–4 32-bit SPARC: Initial Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

# %l7 - initialized to GOT pointer, %g7 - thread pointer

0x00 sethi %hi(@tpoff(x)), %o0

0x04 or %o0, %lo(@tpoff(x)), %o0

0x08 ld [%l7 + %o0], %o0

0x0c add %g7, %o0, %o0

# %o0 - contains address of TLS variable

R_SPARC_TLS_IE_HI22

R_SPARC_TLS_IE_LO10

R_SPARC_TLS_IE_LD

R_SPARC_TLS_IE_ADD

x

x

x

x

Outstanding Relocations Symbol

GOT[n] R_SPARC_TLS_TPOFF32 x

The sethi instruction and or instruction generate R_SPARC_TLS_IE_HI22 and
R_SPARC_TLS_IE_LO10 relocations, respectively. These relocations instruct the link-editor to
create space in the GOT to store the static TLS offset for symbol x. An R_SPARC_TLS_TPOFF32

relocation is left outstanding against the GOT for the runtime linker to fill in with the negative
static TLS offset for symbol x. The ld and the add instructions are tagged with the
R_SPARC_TLS_IE_LD and R_SPARC_TLS_IE_ADD relocations respectively.
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Note – The register used as the GOT-pointer for the add instruction tagged by the
R_SPARC_TLS_IE_ADD relocation must be the first register in the instruction. This requirement
permits the link-editor to identify the GOT-pointer register during a code transformation.

64-bit SPARC: Initial Executable (IE)
This code sequence implements the IE model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–5 64-bit SPARC: Initial Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

# %l7 - initialized to GOT pointer, %g7 - thread pointer

0x00 sethi %hi(@tpoff(x)), %o0

0x04 or %o0, %lo(@tpoff(x)), %o0

0x08 ldx [%l7 + %o0], %o0

0x0c add %g7, %o0, %o0

# %o0 - contains address of TLS variable

R_SPARC_TLS_IE_HI22

R_SPARC_TLS_IE_LO10

R_SPARC_TLS_IE_LD

R_SPARC_TLS_IE_ADD

x

x

x

x

Outstanding Relocations Symbol

GOT[n] R_SPARC_TLS_TPOFF64 x

SPARC: Local Executable (LE)
This code sequence implements the LE model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–6 SPARC: Local Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

# %g7 - thread pointer

0x00 sethi %hix(@tpoff(x)), %o0

0x04 xor %o0,%lo(@tpoff(x)),%o0

0x08 add %g7, %o0, %o0

# %o0 - contains address of TLS variable

R_SPARC_TLS_LE_HIX22

R_SPARC_TLS_LE_LOX10

<none>

x

x

The sethi and xor instructions generate R_SPARC_TLS_LE_HIX22 and R_SPARC_TLS_LE_LOX10

relocations respectively. The link-editor binds these relocations directly to the static TLS offset
for the symbol defined in the executable. No relocation processing is required at runtime.
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SPARC: Thread-Local Storage Relocation Types
The TLS relocations that are listed in the following table are defined for SPARC. Descriptions in
the table use the following notation.

@dtlndx(x)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This information
is passed to __tls_get_addr(). The instruction referencing this entry is bound to the
address of the first of the two GOT entries.

@tmndx(x)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This information
is passed to __tls_get_addr(). The ti_tlsoffset field of this structure is set to 0, and the
ti_moduleid is filled in at runtime. The call to __tls_get_addr() returns the starting offset
of the dynamic TLS block.

@dtpoff(x)

Calculates the tlsoffset relative to the TLS block.

@tpoff(x)

Calculates the negative tlsoffset relative to the static TLS block. This value is added to the
thread-pointer to calculate the TLS address.

@dtpmod(x)

Calculates the object identifier of the object containing a TLS symbol.

TABLE 8–7 SPARC: Thread-Local Storage Relocation Types

Name Value Field Calculation

R_SPARC_TLS_GD_HI22 56 T-simm22 @dtlndx(S + A) >> 10

R_SPARC_TLS_GD_LO10 57 T-simm13 @dtlndx(S + A) & 0x3ff

R_SPARC_TLS_GD_ADD 58 None Refer to the explanation following this table.

R_SPARC_TLS_GD_CALL 59 V-disp30 Refer to the explanation following this table.

R_SPARC_TLS_LDM_HI22 60 T-simm22 @tmndx(S + A) >> 10

R_SPARC_TLS_LDM_LO10 61 T-simm13 @tmndx(S + A) & 0x3ff

R_SPARC_TLS_LDM_ADD 62 None Refer to the explanation following this table.

R_SPARC_TLS_LDM_CALL 63 V-disp30 Refer to the explanation following this table.

R_SPARC_TLS_LDO_HIX22 64 T-simm22 @dtpoff(S + A) >> 10

R_SPARC_TLS_LDO_LOX10 65 T-simm13 @dtpoff(S + A) & 0x3ff

R_SPARC_TLS_LDO_ADD 66 None Refer to the explanation following this table.
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TABLE 8–7 SPARC: Thread-Local Storage Relocation Types (Continued)
Name Value Field Calculation

R_SPARC_TLS_IE_HI22 67 T-simm22 @got(@tpoff(S + A)) >> 10

R_SPARC_TLS_IE_LO10 68 T-simm13 @got(@tpoff(S + A)) & 0x3ff

R_SPARC_TLS_IE_LD 69 None Refer to the explanation following this table.

R_SPARC_TLS_IE_LDX 70 None Refer to the explanation following this table.

R_SPARC_TLS_IE_ADD 71 None Refer to the explanation following this table.

R_SPARC_TLS_LE_HIX22 72 T-imm22 (@tpoff(S + A) ^0xffffffffffffffff) >> 10

R_SPARC_TLS_LE_LOX10 73 T-simm13 (@tpoff(S + A) & 0x3ff) | 0x1c00

R_SPARC_TLS_DTPMOD32 74 V-word32 @dtpmod(S + A)

R_SPARC_TLS_DTPMOD64 75 V-word64 @dtpmod(S + A)

R_SPARC_TLS_DTPOFF32 76 V-word32 @dtpoff(S + A)

R_SPARC_TLS_DTPOFF64 77 V-word64 @dtpoff(S + A)

R_SPARC_TLS_TPOFF32 78 V-word32 @tpoff(S + A)

R_SPARC_TLS_TPOFF64 79 V-word64 @tpoff(S + A)

Some relocation types have semantics beyond simple calculations.

R_SPARC_TLS_GD_ADD

This relocation tags the add instruction of a GD code sequence. The register used for the
GOT-pointer is the first register in the sequence. The instruction tagged by this relocation
comes before the call instruction tagged by the R_SPARC_TLS_GD_CALL relocation. This
relocation is used to transition between TLS models at link-edit time.

R_SPARC_TLS_GD_CALL

This relocation is handled as if it were a R_SPARC_WPLT30 relocation referencing the
__tls_get_addr() function. This relocation is part of a GD code sequence.

R_SPARC_LDM_ADD

This relocation tags the first add instruction of a LD code sequence. The register used for the
GOT-pointer is the first register in the sequence. The instruction tagged by this relocation
comes before the call instruction tagged by the R_SPARC_TLS_GD_CALL relocation. This
relocation is used to transition between TLS models at link-edit time.

R_SPARC_LDM_CALL

This relocation is handled as if it were a R_SPARC_WPLT30 relocation referencing the
__tls_get_addr() function. This relocation is part of a LD code sequence.
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R_SPARC_LDO_ADD

This relocation tags the final add instruction in a LD code sequence. The register which
contains the object address that is computed in the initial part of the code sequence is the
first register in this instruction. This relocation permits the link-editor to identify this
register for code transformations.

R_SPARC_TLS_IE_LD

This relocation tags the ld instruction in the 32–bit IE code sequence. This relocation is used
to transition between TLS models at link-edit time.

R_SPARC_TLS_IE_LDX

This relocation tags the ldx instruction in the 64–bit IE code sequence. This relocation is
used to transition between TLS models at link-edit time.

R_SPARC_TLS_IE_ADD

This relocation tags the add instruction in the IE code sequence. The register that is used for
the GOT-pointer is the first register in the sequence.

32-bit x86: Thread-Local Variable Access
On x86, the following code sequence models are available for accessing TLS.

32-bit x86: General Dynamic (GD)
This code sequence implements the GD model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–8 32-bit x86: General Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 leal x@tlsgd(,%ebx,1), %eax

0x07 call x@tlsgdplt

# %eax - contains address of TLS variable

R_386_TLS_GD

R_386_TLS_GD_PLT

x

x

Outstanding Relocations Symbol

GOT[n]

GOT[n + 1]

R_386_TLS_DTPMOD32

R_386_TLS_DTPOFF32

x

The leal instruction generates a R_386_TLS_GD relocation which instructs the link-editor to
allocate space in the GOT to hold a TLS_index structure for variable x. The link-editor processes
this relocation by substituting the GOT-relative offset for the new GOT entry.

Since the load object index and TLS block index for x are not known until runtime, the
link-editor places the R_386_TLS_DTPMOD32 and R_386_TLS_DTPOFF32 relocations against the
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GOT for processing by the runtime linker. The address of the generated GOT entry is loaded into
register %eax for the call to ___tls_get_addr().

The call instruction causes the generation of the R_386_TLS_GD_PLT relocation. This instructs
the link-editor to bind the call to the ___tls_get_addr() function and associates the call
instruction with the GD code sequence.

The call instruction must immediately follow the leal instruction. This requirement is
necessary to permit the code transformations.

x86: Local Dynamic (LD)
This code sequence implements the LD model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–9 32-bit x86: Local Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 leal x1@tlsldm(%ebx), %eax

0x06 call x1@tlsldmplt

# %eax - contains address of TLS block of current object

0x10 leal x1@dtpoff(%eax), %edx

# %edx - contains address of local TLS variable x1

0x20 leal x2@dtpoff(%eax), %edx

# %edx - contains address of local TLS variable x2

R_386_TLS_LDM

R_386_TLS_LDM_PLT

R_386_TLS_LDO_32

R_386_TLS_LDO_32

x1

x1

x1

x2

Outstanding Relocations Symbol

GOT[n]

GOT[n + 1]

R_386_TLS_DTPMOD32

<none>

x

The first leal instruction generates a R_386_TLS_LDM relocation. This relocation instructs the
link-editor to allocate space in the GOT to hold a TLS_index structure for the current object. The
link-editor process this relocation by substituting the GOT -relative offset for the new linkage
table entry.

The load object index is not known until runtime. Therefore, a R_386_TLS_DTPMOD32 relocation
is created, and the ti_tlsoffset field of the structure is zero filled. The call instruction is
tagged with the R_386_TLS_LDM_PLT relocation.

The TLS offset for each local symbol is known at link-edit time so the link-editor fills these
values in directly.
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When a procedure references more than one local symbol, the compiler generates code to
obtain the base address of the TLS block once. This base address is then used to calculate the
address of each symbol without a separate library call.

32-bit x86: Initial Executable (IE)
This code sequence implements the IE model described in “Thread-Local Storage Access
Models” on page 305.

Two code-sequences for the IE model exist. One sequence is for position independent code
which uses a GOT-pointer. The other sequence is for position dependent code which does not
use a GOT-pointer.

TABLE 8–10 32-bit x86: Initial Executable, Position Independent, Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl %gs:0, %eax

0x06 addl x@gotntpoff(%ebx), %eax

# %eax - contains address of TLS variable

<none>

R_386_TLS_GOTIE x

Outstanding Relocations Symbol

GOT[n] R_386_TLS_TPOFF x

The addl instruction generates a R_386_TLS_GOTIE relocation. This relocation instructs the
link–editor to create space in the GOT to store the static TLS offset for symbol x. A
R_386_TLS_TPOFF relocation is left outstanding against the GOT table for the runtime linker to
fill in with the static TLS offset for symbol x.

TABLE 8–11 32-bit x86: Initial Executable, Position Dependent, Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl %gs:0, %eax

0x06 addl x@indntpoff, %eax

# %eax - contains address of TLS variable

<none>

R_386_TLS_IE x

Outstanding Relocations Symbol

GOT[n] R_386_TLS_TPOFF x

The addl instruction generates a R_386_TLS_IE relocation. This relocation instructs the
link-editor to create space in the GOT to store the static TLS offset for symbol x. The main

Thread-Local Storage Access Models

Linker and Libraries Guide • September 2008316



difference between this sequence and the position independent form, is that the instruction is
bound directly to the GOT entry created, instead of using an offset off of the GOT-pointer register.
A R_386_TLS_TPOFF relocation is left outstanding against the GOT for the runtime linker to fill in
with the static TLS offset for symbol x.

The contents of variable x, rather than the address, can be loaded by embedding the offset
directly into the memory reference as shown in the next two sequences.

TABLE 8–12 32-bit x86: Initial Executable, Position Independent, Dynamic Thread-Local Variable Access
Codes

Code Sequence Initial Relocations Symbol

0x00 movl x@gotntpoff(%ebx), %eax

0x06 movl %gs:(%eax), %eax

# %eax - contains address of TLS variable

R_386_TLS_GOTIE

<none>

x

Outstanding Relocations Symbol

GOT[n] R_386_TLS_TPOFF x

TABLE 8–13 32-bit x86: Initial Executable, Position Independent, Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl x@indntpoff, %ecx

0x06 movl %gs:(%ecx), %eax

# %eax - contains address of TLS variable

R_386_TLS_IE

<none>

x

Outstanding Relocations Symbol

GOT[n] R_386_TLS_TPOFF x

In the last sequence, if the %eax register is used instead of the %ecx register, the first instruction
can be either 5 or 6 bytes long.

32-bit x86: Local Executable (LE)
This code sequence implements the LE model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–14 32-bit x86: Local Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol
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TABLE 8–14 32-bit x86: Local Executable Thread-Local Variable Access Codes (Continued)
0x00 movl %gs:0, %eax

0x06 leal x@ntpoff(%eax), %eax

# %eax - contains address of TLS variable

<none>

R_386_TLS_LE x

The movl instruction generates a R_386_TLS_LE_32 relocation. The link-editor binds this
relocation directly to the static TLS offset for the symbol defined in the executable. No
processing is required at runtime.

The contents of variable x, rather then the address, can be accessed with the same relocation by
using the following instruction sequence.

TABLE 8–15 32-bit x86: Local Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl %gs:0, %eax

0x06 movl x@ntpoff(%eax), %eax

# %eax - contains address of TLS variable

<none>

R_386_TLS_LE x

Rather than computing the address of the variable, a load from the variable or store to the
variable can be accomplished using the following sequence. Note, the x@ntpoff expression is
not used as an immediate value, but as an absolute address.

TABLE 8–16 32-bit x86: Local Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movl %gs:x@ntpoff, %eax

# %eax - contains address of TLS variable

R_386_TLS_LE x

32-bit x86: Thread-Local Storage Relocation Types
The TLS relocations that are listed in the following table are defined for x86. Descriptions in the
table use the following notation.

@tlsgd(x)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This structure is
passed to ___tls_get_addr(). The instruction referencing this entry will be bound to the
first of the two GOT entries.

@tlsgdplt(x)

This relocation is handled as if it were a R_386_PLT32 relocation referencing the
___tls_get_addr() function.
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@tlsldm(x)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This structure is
passed to the ___tls_get_addr(). The ti_tlsoffset field of the TLS_index is set to 0, and
the ti_moduleid is filled in at runtime. The call to ___tls_get_addr() returns the starting
offset of the dynamic TLS block.

@gotntpoff(x)

Allocates a entry in the GOT, and initializes the entry with the negative tlsoffset relative to
the static TLS block. This sequence is performed at runtime using the R_386_TLS_TPOFF
relocation.

@indntpoff(x)

This expression is similar to @gotntpoff, but is used in position dependent code.
@gotntpoff resolves to a GOT slot address relative to the start of the GOT in the movl or addl
instructions. @indntpoff resolves to the absolute GOT slot address.

@ntpoff(x)

Calculates the negative tlsoffset relative to the static TLS block.

@dtpoff(x)

Calculates the tlsoffset relative to the TLS block. The value is used as an immediate value
of an addend and is not associated with a specific register.

@dtpmod(x)

Calculates the object identifier of the object containing a TLS symbol.

TABLE 8–17 32-bit x86: Thread-Local Storage Relocation Types

Name Value Field Calculation

R_386_TLS_GD_PLT 12 Word32 @tlsgdplt

R_386_TLS_LDM_PLT 13 Word32 @tlsldmplt

R_386_TLS_TPOFF 14 Word32 @ntpoff(S)

R_386_TLS_IE 15 Word32 @indntpoff(S)

R_386_TLS_GOTIE 16 Word32 @gotntpoff(S)

R_386_TLS_LE 17 Word32 @ntpoff(S)

R_386_TLS_GD 18 Word32 @tlsgd(S)

R_386_TLS_LDM 19 Word32 @tlsldm(S)

R_386_TLS_LDO_32 32 Word32 @dtpoff(S)

R_386_TLS_DTPMOD32 35 Word32 @dtpmod(S)

R_386_TLS_DTPOFF32 36 Word32 @dtpoff(S)
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x64: Thread-Local Variable Access
On x64, the following code sequence models are available for accessing TLS

x64: General Dynamic (GD)
This code sequence implements the GD model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–18 x64: General Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 .byte 0x66

0x01 leaq x@tlsgd(%rip), %rdi

0x08 .word 0x666

0x0a rex64

0x0b call __tls_get_addr@plt

# %iax - contains address of TLS variable

<none>

R_AMD64_TLSGD

<none>

<none>

R_AMD64_PLT32

x

__tls_get_addr

Outstanding
Relocations

Symbol

GOT[n]

GOT[n + 1]

R_AMD64_DTPMOD64

R_AMD64_DTPOFF64

x

x

The __tls_get_addr() function takes a single parameter, the address of the tls_index
structure. The R_AMD64_TLSGD relocation that is associated with the x@tlsgd(%rip) expression,
instructs the link-editor to allocate a tls_index structure within the GOT. The two elements
required for the tls_index structure are maintained in consecutive GOT entries, GOT[n] and
GOT[n+1]. These GOT entries are associated to the R_AMD64_DTPMOD64 and R_AMD64_DTPOFF64

relocations.

The instruction at address 0x00 computes the address of the first GOT entry. This computation
adds the PC relative address of the beginning of the GOT, which is known at link-edit time, to the
current instruction pointer. The result is passed using the %rdi register to the
__tls_get_addr() function.

Note – The leaq instruction computes the address of the first GOT entry. This computation is
carried out by adding the PC-relative address of the GOT, which was determined at link-edit
time, to the current instruction pointer. The .byte, .word, and .rex64 prefixes insure that the
whole instruction sequence occupies 16 bytes. Prefixes are employed, as prefixes have no
negative inpact on the code.
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x64: Local Dynamic (LD)
This code sequence implements the LD model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–19 x64: Local Dynamic Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 leaq x1@tlsld(%rip), %rdi

0x07 call __tls_get_addr@plt

# %rax - contains address of TLS block

0x10 leaq x1@dtpoff(%rax), %rcx

# %rcx - contains address of TLS variable x1

0x20 leaq x2@dtpoff(%rax), %r9

# %rcx - contains address of TLS variable x2

R_AMD64_TLSLD

R_AMD64_PLT32

R_AMD64_DTOFF32

R_AMD64_DTOFF32

x1

__tls_get_addr

x1

x2

Outstanding
Relocations

Symbol

GOT[n] R_AMD64_DTMOD64 x1

The first two instructions are equivalent to the code sequence used for the general dynamic
model, although without any padding. The two instructions must be consecutive. The
x1@tlsld(%rip) sequence generates a the tls_index entry for symbol x1. This index refers to
the current module that contains x1 with an offset of zero. The link-editor creates one
relocation for the object, R_AMD64_DTMOD64.

The R_AMD64_DTOFF32 relocation is unnecessary, because offsets are loaded separately. The
x1@dtpoff expression is used to access the offset of the symbol x1. Using the instruction as
address 0x10, the complete offset is loaded and added to the result of the __tls_get_addr() call
in %rax to produce the result in %rcx. The x1@dtpoff expression creates the R_AMD64_DTPOFF32
relocation.

Instead of computing the address of the variable, the value of the variable can be loaded using
the following instruction. This instruction creates the same relocation as the original leaq
instruction.

movq x1@dtpoff(%rax), %r11

Provided the base address of a TLS block is maintained within a register, loading, storing or
computing the address of a protected thread-local variable requires one instruction.
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Benefits exist in using the local dynamic model over the general dynamic model. Every
additional thread-local variable access only requires three new instructions. In addition, no
additional GOT entries, or runtime relocations are required.

x64: Initial Executable (IE)
This code sequence implements the IE model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–20 x64: Initial Executable, Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movq %fs:0, %rax

0x09 addq x@gottpoff(%rip), %rax

# %rax - contains address of TLS variable

<none>

R_AMD64_GOTTPOFF x

Outstanding Relocations Symbol

GOT[n] R_AMD64_TPOFF64 x

The R_AMD64_GOTTPOFF relocation for the symbol x requests the link-editor to generate a GOT
entry and an associated R_AMD64_TPOFF64 relocation. The offset of the GOT entry relative to the
end of the x@gottpoff(%rip) instruction, is then used by the instruction. The
R_AMD64_TPOFF64 relocation uses the value of the symbol x that is determined from the
presently loaded modules. The offset is written in the GOT entry and later loaded by the addq
instruction.

To load the contents of x, rather than the address of x, the following sequence is available.

TABLE 8–21 x64: Initial Executable, Thread-Local Variable Access Codes II

Code Sequence Initial Relocations Symbol

0x00 movq x@gottpoff(%rip), %rax

0x06 movq %fs:(%rax), %rax

# %rax - contains contents of TLS variable

R_AMD64_GOTTPOFF

<none>

x

Outstanding Relocations Symbol

GOT[n] R_AMD64_TPOFF64 x

Thread-Local Storage Access Models

Linker and Libraries Guide • September 2008322



x64: Local Executable (LE)
This code sequence implements the LE model described in “Thread-Local Storage Access
Models” on page 305.

TABLE 8–22 x64: Local Executable Thread-Local Variable Access Codes

Code Sequence Initial Relocations Symbol

0x00 movq %fs:0, %rax

0x06 leaq x@tpoff(%rax), %rax

# %rax - contains address of TLS variable

<none>

R_AMD64_TPOFF32

x

To load the contents of a TLS variable instead of the address of a TLS variable, the following
sequence can be used.

TABLE 8–23 x64: Local Executable Thread-Local Variable Access Codes II

Code Sequence Initial Relocations Symbol

0x00 movq %fs:0, %rax

0x06 movq x@tpoff(%rax), %rax

# %rax - contains contents of TLS variable

<none>

R_AMD64_TPOFF32

x

The following sequence is even shorter.

TABLE 8–24 x64: Local Executable Thread-Local Variable Access Codes III

Code Sequence Initial Relocations Symbol

0x00 movq %fs:x@tpoff, %rax

# %rax - contains contents of TLS variable

R_AMD64_TPOFF32 x

x64: Thread-Local Storage Relocation Types
The TLS relocations that are listed in the following table are defined for x64. Descriptions in the
table use the following notation.

@tlsgd(%rip)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This structure is
passed to __tls_get_addr(). This instruction can only be used in the exact general dynamic
code sequence.
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@tlsld(%rip)

Allocates two contiguous entries in the GOT to hold a TLS_index structure. This structure is
passed to __tls_get_addr(). At runtime, the ti_offset offset field of the object is set to
zero, and the ti_module offset is initialized. A call to the __tls_get_addr() function
returns the starting offset if the dynamic TLS block. This instruction can be used in the exact
code sequence.

@dtpoff

Calculates the offset of the variable relative to the start of the TLS block which contains the
variable. The computed value is used as an immediate value of an addend, and is not
associated with a specific register.

@dtpmod(x)

Calculates the object identifier of the object containing a TLS symbol.

@gottpoff(%rip)

Allocates a entry in the GOT, to hold a variable offset in the initial TLS block. This offset is
relative to the TLS blocks end, %fs:0. The operator can only be used with a movq or addq
instruction.

@tpoff(x)

Calculates the offset of a variable relative to the TLS block end, %fs:0. No GOT entry is
created.

TABLE 8–25 x64: Thread-Local Storage Relocation Types

Name Value Field Calculation

R_AMD64_DPTMOD64 16 Word64 @dtpmod(s)

R_AMD64_DTPOFF64 17 Word64 @dtpoff(s)

R_AMD64_TPOFF64 18 Word64 @tpoff(s)

R_AMD64_TLSGD 19 Word32 @tlsgd(s)

R_AMD64_TLSLD 20 Word32 @tlsld(s)

R_AMD64_DTPOFF32 21 Word32 @dtpoff(s)

R_AMD64_GOTTPOFF 22 Word32 @gottpoff(s)

R_AMD64_TPOFF32 23 Word32 @gottpoff(s)
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Mapfile Option

The link-editor automatically and intelligently maps input sections from relocatable objects to
segments in the output file being created. The -M option with an associated mapfile enables you
to change the default mapping provided by the link-editor. In addition, new segments can be
created, attributes modified, and symbol versioning information can be supplied with the
mapfile.

Note – When using a mapfile option, you can easily create an output file that does not execute.
The link-editor knows how to produce a correct output file without the use of the mapfile
option.

Sample mapfiles provided on the system reside in the /usr/lib/ld directory.

Mapfile Structure and Syntax
You can enter the following basic types of directives into a mapfile.

■ Segment declarations.
■ Mapping directives.
■ Section-to-segment ordering.
■ Size-symbol declarations.
■ File control directives.

Each directive can span more than one line and can have any amount of white space, including
new lines, as long as that white space is followed by a semicolon.

Typically, segment declarations are followed by mapping directives. You declare a segment and
then define the criteria by which a section becomes part of that segment. If you enter a mapping
directive or size-symbol declaration without first declaring the segment to which you are
mapping, except for built-in segments, the segment is given default attributes. Such segment is
an implicitly declared segment.
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Size-symbol declarations and file control directives can appear anywhere in a mapfile.

The following sections describe each directive type. For all syntax discussions, the following
notations apply.

■ All entries in constant width, all colons, semicolons, equal signs, and at (@) signs are typed
in literally.

■ All entries in italics are substitutable.
■ { ... }* means “zero or more.”
■ { ... }+ means “one or more.”
■ [ ... ] means “optional.”
■ section_names and segment_names follow the same rules as C identifiers, where a period (.)

is treated as a letter. For example, .bss is a legal name.
■ section_names, segment_names, file_names, and symbol_names are case sensitive.

Everything else is not case sensitive.
■ Spaces, or new-lines, can appear anywhere except before a number or in the middle of a

name or value.
■ Comments beginning with # and ending at a newline can appear anywhere that a space can

appear.

Segment Declarations
A segment declaration creates a new segment in the output file, or changes the attribute values
of an existing segment. An existing segment is one that you previously defined or one of the four
built-in segments described immediately following.

A segment declaration has the following syntax.

segment_name = {segment_attribute_value}*;

For each segment_name, you can specify any number of segment_attribute_values in any
order, each separated by a space. Only one attribute value is allowed for each segment attribute.
The segment attributes and their valid values are as shown in the following table.

TABLE 9–1 Mapfile Segment Attributes

Attribute Value

segment_type LOAD | NOTE STACK

segment_flags ? [E] [N] [O] [R] [W] [X]
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TABLE 9–1 Mapfile Segment Attributes (Continued)
Attribute Value

virtual_address Vnumber

physical_address Pnumber

length Lnumber

rounding Rnumber

alignment Anumber

Four built-in segments exist with the following default attribute values.

■ text – LOAD, ?RX, no virtual_address, physical_address, or length specified. alignment
values are set to defaults per CPU type.

■ data – LOAD, ?RWX, no virtual_address, physical_address, or length specified.
alignment values are set to defaults per CPU type.

■ bss – disabled, LOAD, ?RWX, no virtual_address, physical_address, or length specified.
alignment values are set to defaults per CPU type.

■ note – NOTE.

By default, the bss segment is disabled. Any sections of type SHT_NOBITS, which are its sole
input, are captured in the data segment. See Table 7–5 for a full description of SHT_NOBITS
sections. The simplest bss declaration is sufficient to enable the creation of a bss segment.

bss =;

Any SHT_NOBITS sections is captured by this segment, rather than captured in the data
segment. In its simplest form, this segment is aligned using the same defaults as applied to any
other segment. The declaration can also provide additional segment attributes that both enable
the segment creation, and assign the specified attributes.

The link-editor behaves as if these segments are declared before your mapfile is read in. See
“Mapfile Option Defaults” on page 334.

Note the following when entering segment declarations.

■ A number can be hexadecimal, decimal, or octal, following the same rules as in the C
language.

■ No space is allowed between the V, P, L, R, or A and the number.
■ The segment_type value can be either LOAD, NOTEor STACK. If unspecified, the segment type

defaults to LOAD.
■ The segment_flags values are R for readable, W for writable, X for executable, and O for

order. No spaces are allowed between the question mark (?) and the individual flags that
make up the segment_flags value.
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■ The segment_flags value for a LOAD segment defaults to RWX.
■ NOTE segments cannot be assigned any segment attribute value other than a segment_type.
■ One segment_type of value STACK is permitted. Only the access requirements of the

segment, selected from the segment_flags, can be specified.
■ Implicitly declared segments default to segment_type value LOAD, segment_flags value

RWX, a default virtual_address, physical_address, and alignment value, and have no
length limit.

Note – The link-editor calculates the addresses and length of the current segment based on
the previous segment's attribute values.

■ LOAD segments can have an explicitly specified virtual_address value or
physical_address value, as well as a maximum segment length value.

■ If a segment has a segment_flags value of ? with nothing following, the value defaults to
not readable, not writable, and not executable.

■ The alignment value is used in calculating the virtual address of the beginning of the
segment. This alignment only affects the segment for which the alignment is specified.
Other segments still have the default alignment unless their alignment values are also
changed.

■ If any of the virtual_address, physical_address, or length attribute values are not set,
the link-editor calculates these values as the output file is created.

■ If an alignment value is not specified for a segment, the alignment is set to the built-in
default. This default differs from one CPU to another and might even differ between
software revisions.

■ If both a virtual_address and an alignment value are specified for a segment, the
virtual_address value takes priority.

■ If a virtual_address value is specified for a segment, the alignment field in the program
header contains the default alignment value.

■ If the rounding value is set for a segment, that segment's virtual address is rounded to the
next address that conforms to the value that is given. This value only effects the segments
that the value is specified for. If no value is given, no rounding is performed.

Note – If a virtual_address value is specified, the segment is placed at that virtual address. For
the system kernel, this method creates a correct result. For files that start through exec(2), this
method creates an incorrect output file because the segments do not have correct offsets relative
to their page boundaries.

The ?E flag allows the creation of an empty segment. This empty segment has no sections
associated with the segment. This segment can be a LOAD segment. Empty LOAD segments can
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only be specified for executables. These segments must have a specified size and alignment.
These segments result in the creation of memory reservations at process startup. Multiple
definitions for LOAD segments are permitted.

The ?N flag enables you to control whether the ELF header, and any program headers are
included as part of the first loadable segment. By default, the ELF header and program headers
are included with the first segment. The information in these headers is used within the mapped
image, typically by the runtime linker. The use of the ?N option causes the virtual address
calculations for the image to start at the first section of the first segment.

The ?O flag enables you control the order of sections in the output file. This flag is intended for
use in conjunction with the -xF option to the compilers. When a file is compiled with the -xF
option, each function in that file is placed in a separate section with the same attributes as the
.text section. These sections are called .text%function_name.

For example, a file containing three functions, main(), foo() and bar(), when compiled with
the -xF option, yields a relocatable object file with text for the three functions being placed in
sections called .text%main, .text%foo, and .text%bar. Because the -xF option forces one
function per section, the use of the ?O flag to control the order of sections in effect controls the
order of functions.

Consider the following user-defined mapfile.

text = LOAD ?RXO;

text: .text%foo;

text: .text%bar;

text: .text%main;

The first declaration associates the ?O flag with the default text segment.

If the order of function definitions in the source file is main, foo, and bar, then the final
executable contains functions in the order foo, bar, and main.

For static functions with the same name, the file names must also be used. The ?O flag forces the
ordering of sections as requested in the mapfile. For example, if a static function bar() exists in
files a.o and b.o, and function bar() from file a.o is to be placed before function bar() from
file b.o, then the mapfile entries should read as follows.

text: .text%bar: a.o;

text: .text%bar: b.o;

The syntax allows for the following entry.

text: .text%bar: a.o b.o;

However, tthis entry does not guarantee that function bar() from file a.o is placed before
function bar() from file b.o. The second format is not recommended as the results are not
reliable.
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Mapping Directives
A mapping directive instructs the link-editor how to map input sections to output segments.
Basically, you name the segment that you are mapping to and indicate what the attributes of a
section must be in order to map into the named segment. The set of
section_attribute_values that a section must have to map into a specific segment is called
the entrance criteria for that segment. In order to be placed in a specified segment of the output
file, a section must meet the entrance criteria for a segment exactly.

A mapping directive has the following syntax.

segment_name : {section_attribute_value}* [: {file_name}+];

For a segment_name, you specify any number of section_attribute_values in any order, each
separated by a space. At most, one section attribute value is allowed for each section attribute.
You can also specify that the section must come from a certain .o file through a file_name
declaration. The section attributes and their valid values are shown in the following table.

TABLE 9–2 Section Attributes

Section Attribute Value

section_name Any valid section name

section_type $PROGBITS

$SYMTAB

$STRTAB

$REL

$RELA

$NOTE

$NOBITS

section_flags ? [[!]A] [[!]W] [[!]X]

Note the following points when entering mapping directives.

■ You must choose at most one section_type from the section_types listed previously. The
section_types listed previously are built-in types. For more information on
section_types, see “Sections” on page 205.

■ The section_flags values are A for allocatable, W for writable, or X for executable. If an
individual flag is preceded by an exclamation mark (!), the link-editor checks that the flag is
not set. No spaces are allowed between the question mark, exclamation marks, and the
individual flags that make up the section_flags value.
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■ file_name can be any legal file name, of the form *filename, or of the form
archive_name(component_name), for example, /lib/libc.a(printf.o). The link-editor
does not check the syntax of file names.

■ If a file_name is of the form *filename, the link-editor determines the basename(1) of the
file from the command line. This base name is used to match against the specified file

name. In other words, the filename from the mapfile only needs to match the last part of
the file name from the command line. See “Mapping Example” on page 332.

■ If you use the -l option during a link-edit, and the library after the -l option is in the
current directory, you must precede the library with ./, or the entire path name, in the
mapfile in order to create a match.

■ More than one directive line can appear for a particular output segment. For example, the
following set of directives is legal.

S1 : $PROGBITS;

S1 : $NOBITS;

Entering more than one mapping directive line for a segment is the only way to specify
multiple values of a section attribute.

■ A section can match more than one entrance criteria. In this case, the first segment
encountered in the mapfile with that entrance criteria is used. For example, if a mapfile
reads as follows.

S1 : $PROGBITS;

S2 : $PROGBITS;

the $PROGBITS sections are mapped to segment S1.

Section-Within-Segment Ordering
By using the following notation you can specify the order that sections are placed within a
segment.

segment_name | section_name1;

segment_name | section_name2;

segment_name | section_name3;

The sections that are named in the above form are placed before any unnamed sections, and in
the order they are listed in the mapfile.
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Size-Symbol Declarations
Size-symbol declarations enable you to define a new global-absolute symbol that represents the
size, in bytes, of the specified segment. This symbol can be referenced in your object files. A
size-symbol declaration has the following syntax.

segment_name @ symbol_name;

symbol_name can be any legal C identifier. The link-editor does not check the syntax of the
symbol_name.

File Control Directives
File control directives enable you to specify which version definitions within shared objects are
to be made available during a link-edit. The file control definition has the following syntax.

shared_object_name - version_name [ version_name ... ];

version_name is a version definition name contained within the specified
shared_object_name.

Mapping Example
The following example is a user-defined mapfile. The numbers on the left are included in the
example for tutorial purposes. Only the information to the right of the numbers actually
appears in the mapfile.

EXAMPLE 9–1 User-Defined Mapfile

1. elephant : .data : peanuts.o *popcorn.o;

2. monkey : $PROGBITS ?AX;

3. monkey : .data;

4. monkey = LOAD V0x80000000 L0x4000;

5. donkey : .data;

6. donkey = ?RX A0x1000;

7. text = V0x80008000;

Four separate segments are manipulated in this example. The implicitly declared segment
elephant (line 1) receives all of the .data sections from the files peanuts.o and popcorn.o.
Notice that *popcorn.o matches any popcorn.o file that can be supplied to the link-edit. The
file need not be in the current directory. On the other hand, if /var/tmp/peanuts.o was
supplied to the link-edit, it does not match peanuts.o because it is not preceded by an *.
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The implicitly declared segment monkey (line 2) receives all sections that are both $PROGBITS

and allocatable-executable (?AX), as well as all sections not already in the segment elephant
with the name .data (line 3). The .data sections entering the monkey segment need not be
$PROGBITS or allocatable-executable because the section_type and section_flags values are
entered on a separate line from the section_name value.

An “and” relationship exists between attributes on the same line as illustrated by $PROGBITS
“and” ?AX on line 2. An “or” relationship exists between attributes for the same segment that
span more than one line, as illustrated by $PROGBITS ?AX on line 2 “or” .data on line 3.

The monkey segment is implicitly declared in line 2 with segment_type value LOAD,
segment_flags value RWX, and no virtual_address, physical_address, length or alignment
values specified (defaults are used). In line 4 the segment_type value of monkey is set to LOAD.
Because the segment_type attribute value does not change, no warning is issued. The
virtual_address value is set to 0x80000000 and the maximum length value to 0x4000.

Line 5 implicitly declares the donkey segment. The entrance criteria are designed to route all
.data sections to this segment. Actually, no sections fall into this segment because the entrance
criteria for monkey in line 3 capture all of these sections. In line 6, the segment_flags value is set
to ?RX and the alignment value is set to 0x1000. Because both of these attribute values changed,
a warning is issued.

Line 7 sets the virtual_address value of the text segment to 0x80008000.

The example of a user-defined mapfile is designed to cause warnings for illustration purposes.
If you want to change the order of the directives to avoid warnings, use the following example.

1. elephant : .data : peanuts.o *popcorn.o;

4. monkey = LOAD V0x80000000 L0x4000;

2. monkey : $PROGBITS ?AX;

3. monkey : .data;

6. donkey = ?RX A0x1000;

5. donkey : .data;

7. text = V0x80008000;

The following mapfile example uses the segment-within-section ordering.

1. text = LOAD ?RXN V0xf0004000;

2. text | .text;

3. text | .rodata;

4. text : $PROGBITS ?A!W;

5. data = LOAD ?RWX R0x1000;

The text and data segments are manipulated in this example. Line 1 declares the text segment
to have a virtual_address of 0xf0004000 and to not include the ELF header or any program
headers as part of this segment's address calculations. Lines 2 and 3 turn on
section-within-segment ordering and specify that the .text and .rodata sections are the first
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two sections in this segment. The result is that the .text section have a virtual address of
0xf0004000, and the .rodata section immediately follows that address.

Any other $PROGBITS section that makes up the text segment follows the .rodata section. Line
5 declares the data segment and specifies that its virtual address must begin on a 0x1000 byte
boundary. The first section that constitutes the data segment also resides on a 0x1000 byte
boundary within the file image.

Mapfile Option Defaults
The link-editor defines four built-in segments (text, data, bss and note) with default
segment_attribute_values and corresponding default mapping directives. Even though the
link-editor does not use an actual mapfile to provide the defaults, the model of a default
mapfile helps illustrate what happens when the link-editor encounters your mapfile.

The following example shows how a mapfile would appear for the link-editor defaults. The
link-editor begins execution behaving as if the mapfile has already been read in. Then the
link-editor reads your mapfile and either augments or makes changes to the defaults.

text = LOAD ?RX;

text : ?A!W;

data = LOAD ?RWX;

data : ?AW;

note = NOTE;

note : $NOTE;

As each segment declaration in your mapfile is read in, it is compared to the existing list of
segment declarations as follows.

1. If the segment does not already exist in the mapfile but another with the same segment-type
value exists, the segment is added before all of the existing segments of the same
segment_type.

2. If none of the segments in the existing mapfile has the same segment_type value as the
segment just read in, then the segment is added by segment_type value to maintain the
following order.
INTERP

LOAD

DYNAMIC

NOTE

3. If the segment is of segment_type LOAD and you have defined a virtual_address value for
this LOADable segment, the segment is placed before any LOADable segments without a
defined virtual_address value or with a higher virtual_address value, but after any
segments with a virtual_address value that is lower.
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As each mapping directive in a mapfile is read in, the directive is added after any other
mapping directives that you already specified for the same segment but before the default
mapping directives for that segment.

Internal Map Structure
One of the most important data structures in the ELF-based link-editor is the map structure. A
default map structure, corresponding to the model default mapfile, is used by the link-editor.
Any user mapfile augments or overrides certain values in the default map structure.

A typical although somewhat simplified map structure is illustrated in Figure 9–1. The
“Entrance Criteria” boxes correspond to the information in the default mapping directives. The
“Segment Attribute Descriptors” boxes correspond to the information in the default segment
declarations. The “Output Section Descriptors” boxes give the detailed attributes of the sections
that fall under each segment. The sections themselves are shown in circles.

Internal Map Structure

Chapter 9 • Mapfile Option 335



The link-editor performs the following steps when mapping sections to segments.

1. When a section is read in, the link-editor checks the list of Entrance Criteria looking for a
match. All specified criteria must be matched.
In Figure 9–1, a section that falls into the text segment must have a section_type value of
$PROGBITS and have a section_flags value of ?A!W. It need not have the name .text since
no name is specified in the Entrance Criteria. The section can be either X or !X in the
section_flags value because nothing was specified for the execute bit in the Entrance
Criteria.
If no Entrance Criteria match is found, the section is placed at the end of the output file after
all other segments. No program header entry is created for this information.

2. When the section falls into a segment, the link-editor checks the list of existing Output
Section Descriptors in that segment as follows.
If the section attribute values match those of an existing Output Section Descriptor exactly,
the section is placed at the end of the list of sections associated with that Output Section
Descriptor.

Output
 section

descriptors

Sections
placed in
segments

NO MATCH –
appended to
end of a.out

$PROGBITS
?A!W

Entrance
criteria

$PROGBITS
?AW

$NOGBITS
?AW

$NOTE

text
LOAD
?RX

note
NOTE

Segment
attribute

descriptors

data
LOAD
?RWX

.data
$PROGBITS

?AWX

.data1
$PROBITS

?AWX

.data2
$PROGBITS

?AWX

.bss
$NOBITS

?AWX

.data
from
fido.o

.data1
from
fido.o

.data1
from

rover.o

.data1
from

sam.o

.data2
from
fido.o

.bss
from

rover.o

FIGURE 9–1 Simple Map Structure
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For instance, a section with a section_name value of .data1, a section_type value of
$PROGBITS, and a section_flags value of ?AWX falls into the second Entrance Criteria box
in Figure 9–1, placing it in the data segment. The section matches the second Output
Section Descriptor box exactly (.data1, $PROGBITS, ?AWX) and is added to the end of the list
associated with that box. The .data1 sections from fido.o, rover.o, and sam.o illustrate
this point.
If no matching Output Section Descriptor is found but other Output Section Descriptors of
the same section_type exist, a new Output Section Descriptor is created with the same
attribute values as the section and that section is associated with the new Output Section
Descriptor. The Output Section Descriptor and the section are placed after the last Output
Section Descriptor of the same section type. The .data2 section in Figure 9–1 was placed in
this manner.
If no other Output Section Descriptors of the indicated section type exist, a new Output
Section Descriptor is created and the section is placed in that section.

Note – If the input section has a user-defined section type value between SHT_LOUSER and
SHT_HIUSER, it is treated as a $PROGBITS section. No method exists for naming this
section_type value in the mapfile, but these sections can be redirected using the other
attribute value specifications (section_flags, section_name) in the entrance criteria.

3. If a segment contains no sections after all of the command line object files and libraries are
read in, no program header entry is produced for that segment.

Note – Input sections of type $SYMTAB, $STRTAB, $REL, and $RELA are used internally by the
link-editor. Directives that refer to these section types can only map output sections produced
by the link-editor to segments.
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Link-Editor Quick Reference

The following sections provide a simple overview, or cheat sheet, of the most commonly used
link-editor scenarios. See “Link-Editing” on page 22 for an introduction to the kinds of output
modules generated by the link-editor.

The examples provided show the link-editor options as supplied to a compiler driver, this being
the most common mechanism of invoking the link-editor. In these examples cc(1) is used. See
“Using a Compiler Driver” on page 29.

The link-editor places no meaning on the name of any input file. Each file is opened and
inspected to determine the type of processing it requires. See “Input File Processing” on page 31.

Shared objects that follow a naming convention of libx.so, and archive libraries that follow a
naming convention of libx.a, can be input using the -l option. See “Library Naming
Conventions” on page 33. This provides additional flexibility in allowing search paths to be
specified using the -L option. See “Directories Searched by the Link-Editor” on page 35.

The link-editor basically operates in one of two modes, static or dynamic.

Static Mode
Static mode is selected when the -d n option is used, and enables you to create relocatable
objects and static executables. Under this mode, only relocatable objects and archive libraries
are acceptable forms of input. Use of the -l option results in a search for archive libraries.

Creating a Relocatable Object
■ To create a relocatable object use the -d n and -r options:

$ cc -dn -r -o temp.o file1.o file2.o file3.o .....
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Creating a Static Executable
The use of static executables is limited. See “Static Executables” on page 23. Static executables
usually contain platform-specific implementation details that restricts the ability of the
executable to be run on an alternative platform. Many implementations of Solaris OS libraries
depend on dynamic linking capabilities, such as dlopen(3C) and dlsym(3C). See “Loading
Additional Objects” on page 82. These capabilities are not available to static executables.

■ To create a static executable use the -d n option without the -r option:

$ cc -dn -o prog file1.o file2.o file3.o .....

The -a option is available to indicate the creation of a static executable. The use of -d n without
a -r implies -a.

Dynamic Mode
Dynamic mode is the default mode of operation for the link-editor. It can be enforced by
specifying the -d y option, but is implied when not using the -d n option.

Under this mode, relocatable objects, shared objects and archive libraries are acceptable forms
of input. Use of the -l option results in a directory search, where each directory is searched for a
shared object. If no shared object is found, the same directory is then searched for an archive
library. A search only for archive libraries can be enforced by using the -B static option. See
“Linking With a Mix of Shared Objects and Archives” on page 34.

Creating a Shared Object
■ To create a shared object use the -G option. -d y is optional as it is implied by default.

■ Input relocatable objects should be built from position-independent code. For example, the
C compiler generates position-independent code under the -K pic option. See
“Position-Independent Code” on page 129. Use the -z text option to enforce this
requirement.

■ Avoid including unused relocatable objects. Or, use the -z ignore option, which instructs
the link-editor to eliminate unreferenced ELF sections. See “Remove Unused Material” on
page 132.

■ If the shared object is intended for external use, make sure it uses no application registers.
Not using application registers provides the external user freedom to use these registers
without fear of compromising the shared object's implementation. For example, the SPARC
C compiler does not use application registers under the -xregs=no%appl option.
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■ Establish the shared objects public interface by defining the global symbols that should be
visible from the shared object, and reducing any other global symbols to local scope. This
definition is provided by the -M option together with an associated mapfile. See
Appendix B, “Versioning Quick Reference.”

■ Use a versioned name for the shared object to allow for future upgrades. See “Coordination
of Versioned Filenames” on page 160.

■ Self-contained shared objects offer maximum flexibility. They are produced when the object
expresses all dependency needs. Use the -z defs to enforce this self containment. See
“Generating a Shared Object Output File” on page 47.

■ Avoid unneeded dependencies. Use ldd with the -u option to detect and remove unneeded
dependencies. See “Shared Object Processing” on page 32. Or, use the -z ignore option,
which instructs the link-editor to record dependencies only to objects that are referenced.

■ If the shared object being generated has dependencies on other shared objects, indicate they
should be lazily loaded using the -z lazyload option. See “Lazy Loading of Dynamic
Dependencies” on page 83.

■ If the shared object being generated has dependencies on other shared objects, and these
dependencies do not reside in the default search locations, record their path name in the
output file using the -R option. See “Shared Objects With Dependencies” on page 117.

■ Optimize relocation processing by combining relocation sections into a single .SUNW_reloc
section. Use the -z combreloc option.

■ If interposing symbols are not used on this object or its dependencies, establish direct
binding information with -B direct. See “Direct Bindings” on page 78.

The following example combines the above points:

$ cc -c -o foo.o -K pic -xregs=no%appl foo.c

$ cc -M mapfile -G -o libfoo.so.1 -z text -z defs -B direct -z lazyload \

-z combreloc -z ignore -R /home/lib foo.o -L. -lbar -lc

■ If the shared object being generated is used as input to another link-edit, record within it the
shared object's runtime name using the -h option. See “Recording a Shared Object Name”
on page 114.

■ Make the shared object available to the compilation environment by creating a file system
link to a non-versioned shared object name. See “Coordination of Versioned Filenames” on
page 160.

The following example combines the above points:

$ cc -M mapfile -G -o libfoo.so.1 -z text -z defs -B direct -z lazyload \

-z combreloc -z ignore -R /home/lib -h libfoo.so.1 foo.o -L. -lbar -lc

$ ln -s libfoo.so.1 libfoo.so
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■ Consider the performance implications of the shared object: Maximize shareability, as
described in “Maximizing Shareability” on page 133: Minimize paging activity, as described
in “Minimizing Paging Activity” on page 135: Reduce relocation overhead, especially by
minimizing symbolic relocations, as described in “Reducing Symbol Scope” on page 57:
Allow access to data through functional interfaces, as described in “Copy Relocations” on
page 137.

Creating a Dynamic Executable
■ To create a dynamic executable don't use the -G, or -d n options.
■ Indicate that the dependencies of the dynamic executable should be lazily loaded using the

-z lazyload option. See “Lazy Loading of Dynamic Dependencies” on page 83.
■ Avoid unneeded dependencies. Use ldd with the -u option to detect and remove unneeded

dependencies. See “Shared Object Processing” on page 32. Or, use the -z ignore option,
which instructs the link-editor to record dependencies only to objects that are referenced.

■ If the dependencies of the dynamic executable do not reside in the default search locations,
record their path name in the output file using the -R option. See “Directories Searched by
the Runtime Linker” on page 37.

■ Establish direct binding information using -B direct. See “Direct Bindings” on page 78.

The following example combines the above points:

$ cc -o prog -R /home/lib -z ignore -z lazyload -B direct -L. \

-lfoo file1.o file2.o file3.o .....
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Versioning Quick Reference

ELF objects make available global symbols to which other objects can bind. Some of these global
symbols can be identified as providing the object's public interface. Other symbols are part of
the object's internal implementation and are not intended for external use. An object's interface
can evolve from one software release to another release. The ability to identify this evolution is
desirable.

In addition, identifying the internal implementation changes of an object from one software
release to another release might be desirable.

Both interface and implementation identifications can be recorded within an object by
establishing internal version definitions. See Chapter 5, “Application Binary Interfaces and
Versioning,” for a more complete introduction to the concept of internal versioning.

Shared objects are prime candidates for internal versioning. This technique defines their
evolution, provides for interface validation during runtime processing (see “Binding to a
Version Definition” on page 151), and provides for the selective binding of applications (see
“Specifying a Version Binding” on page 155). Shared objects are used as the examples
throughout this appendix.

The following sections provide a simple overview, or cheat sheet, of the internal versioning
mechanism provided by the link-editors as applied to shared objects. The examples recommend
conventions and mechanisms for versioning shared objects, from their initial construction
through several common update scenarios.

Naming Conventions
A shared object follows a naming convention that includes a major number file suffix. See
“Naming Conventions” on page 114. Within this shared object, one or more version definitions
can be created. Each version definition corresponds to one of the following categories.

■ It defines an industry-standard interface (for example, the System V Application Binary
Interface).

BA P P E N D I X B

343



■ It defines a vendor-specific public interface.
■ It defines a vendor-specific private interface.
■ It defines a vendor-specific change to the internal implementation of the object.

The following version definition naming conventions help indicate which of these categories
the definition represents.

The first three of these categories indicate interface definitions. These definitions consist of an
association of the global symbol names that make up the interface, with a version definition
name. See “Creating a Version Definition” on page 145. Interface changes within a shared
object are often referred to as minor revisions. Therefore, version definitions of this type are
suffixed with a minor version number, which is based on the file names major version number
suffix.

The last category indicates a change having occurred within the object. This definition consists
of a version definition acting as a label and has no symbol name associated with it. This
definition is referred to as being a weak version definition. See “Creating a Weak Version
Definition” on page 148. Implementation changes within a shared object are often referred to as
micro revisions. Therefore, version definitions of this type are suffixed with a micro version
number based on the previous minor number to which the internal changes have been applied.

Any industry standard interface should use a version definition name that reflects the standard.
Any vendor interfaces should use a version definition name unique to that vendor. The
company's stock symbol is often appropriate.

Private version definitions indicate symbols that have restricted or uncommitted use, and
should have the word “private” clearly visible.

All version definitions result in the creation of associated version symbol names. The use of
unique names and the minor/micro suffix convention reduces the chance of symbol collision
within the object being built.

The following version definition examples show the possible use of these naming conventions.

SVABI.1

Defines the System V Application Binary Interface standards interface.

SUNW_1.1

Defines a Solaris OS public interface.

SUNWprivate_1.1

Defines a Solaris OS private interface.

SUNW_1.1.1

Defines a Solaris OS internal implementation change.

Naming Conventions
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Defining a Shared Object's Interface
When establishing a shared object's interface, you should first determine which global symbols
provided by the shared object can be associated to one of the three interface version definition
categories.
■ Industry standard interface symbols conventionally are defined in publicly available header

files and associated manual pages supplied by the vendor, and are also documented in
recognized standards literature.

■ Vendor public interface symbols conventionally are defined in publicly available header files
and associated manual pages supplied by the vendor.

■ Vendor private interface symbols can have little or no public definition.

By defining these interfaces, a vendor is indicating the commitment level of each interface of the
shared object. Industry standard and vendor public interfaces remain stable from release to
release. You are free to bind to these interfaces safe in the knowledge that your application will
continue to function correctly from release to release.

Industry-standard interfaces might be available on systems provided by other vendors. You can
achieve a higher level of binary compatibility by restricting your applications to use these
interfaces.

Vendor public interfaces might not be available on systems provided by other vendors.
However, these interfaces remain stable during the evolution of the system on which they are
provided.

Vendor private interfaces are very unstable, and can change, or even be deleted, from release to
release. These interfaces provide for uncommitted or experimental functionality, or are
intended to provide access for vendor-specific applications only. If you want to achieve any
level of binary compatibility, you should avoid using these interfaces.

Any global symbols that do not fall into one of the above categories should be reduced to local
scope so that they are no longer visible for binding. See “Reducing Symbol Scope” on page 57.

Versioning a Shared Object
Having determined a shared object's available interfaces, the associated version definitions are
created using a mapfile and the link-editor's -M option. See “Defining Additional Symbols with
a mapfile” on page 50 for an introduction to this mapfile syntax.

The following example defines a vendor public interface in the shared object libfoo.so.1.

$ cat mapfile

SUNW_1.1 { # Release X.

global:
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foo2;

foo1;

local:

*;

};

$ cc -G -o libfoo.so.1 -h libfoo.so.1 -z text -M mapfile foo.c

The global symbols foo1 and foo2 are assigned to the shared object's public interface SUNW_1.1.
Any other global symbols supplied from the input files are reduced to local by the
auto-reduction directive “*”. See “Reducing Symbol Scope” on page 57.

Note – Each version definition mapfile entry should be accompanied by a comment reflecting
the release or date of the update. This information helps coordinate multiple updates of a
shared object, possibly by different developers, into one version definition suitable for delivery
of the shared object as part of a software release.

Versioning an Existing (Non-versioned) Shared Object
Versioning an existing, non-versioned shared object requires extra care. The shared object
delivered in a previous software release has made available all its global symbols for others to
bind with. Although you can determine the shared object's intended interfaces, others might
have discovered and bound to other symbols. Therefore, the removal of any symbols might
result in an application's failure on delivery of the new versioned shared object.

The internal versioning of an existing, non-versioned shared object can be achieved if the
interfaces can be determined, and applied, without breaking any existing applications. The
runtime linker's debugging capabilities can be useful to help verify the binding requirements of
various applications. See “Debugging Library” on page 105. However, this determination of
existing binding requirements assumes that all users of the shared object are known.

If the binding requirements of an existing, non-versioned shared object cannot be determined,
then you should create a new shared object file using a new versioned name. See “Coordination
of Versioned Filenames” on page 160. In addition to this new shared object, the original shared
object must also be delivered so as to satisfy the dependencies of any existing applications.

If the implementation of the original shared object is to be frozen, then maintaining and
delivering the shared object binary might be sufficient. If, however, the original shared object
might require updating then an alternative source tree from which to generate the shared object
can be more applicable. Updating might be necessary through patches, or because its
implementation must evolve to remain compatible with new platforms.
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Updating a Versioned Shared Object
The only changes that can be made to a shared object that can be absorbed by internal
versioning are compatible changes. See “Interface Compatibility” on page 144. Any
incompatible changes require producing a new shared object with a new external versioned
name. See “Coordination of Versioned Filenames” on page 160.

Compatible updates that can be accommodated by internal versioning fall into three basic
categories.

■ Adding new symbols
■ Creating new interfaces from existing symbols
■ Internal implementation changes

The first two categories are achieved by associating an interface version definition with the
appropriate symbols. The latter is achieved by creating a weak version definition that has no
associated symbols.

Adding New Symbols
Any compatible new release of a shared object that contains new global symbols should assign
these symbols to a new version definition. This new version definition should inherit the
previous version definition.

The following mapfile example assigns the new symbol foo3 to the new interface version
definition SUNW_1.2. This new interface inherits the original interface SUNW_1.1.

$ cat mapfile

SUNW_1.2 { # Release X+1.

global:

foo3;

} SUNW_1.1;

SUNW_1.1 { # Release X.

global:

foo2;

foo1;

local:

*;

};

The inheritance of version definitions reduces the amount of version information that must be
recorded in any user of the shared object.
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Internal Implementation Changes
Any compatible new release of the shared object that consists of an update to the
implementation of the object, for example, a bug fix or performance improvement, should be
accompanied by a weak version definition. This new version definition should inherit the latest
version definition present at the time the update occurred.

The following mapfile example generates a weak version definition SUNW_1.1.1. This new
interface indicates that the internal changes were made to the implementation offered by the
previous interface SUNW_1.1.

$ cat mapfile

SUNW_1.1.1 { } SUNW_1.1; # Release X+1.

SUNW_1.1 { # Release X.

global:

foo2;

foo1;

local:

*;

};

New Symbols and Internal Implementation Changes
If both internal changes and the addition of a new interface have occurred during the same
release, both a weak version and an interface version definition should be created. The
following example shows the addition of a version definition SUNW_1.2 and an interface change
SUNW_1.1.1, which are added during the same release cycle. Both interfaces inherit the original
interface SUNW_1.1.

$ cat mapfile

SUNW_1.2 { # Release X+1.

global:

foo3;

} SUNW_1.1;

SUNW_1.1.1 { } SUNW_1.1; # Release X+1.

SUNW_1.1 { # Release X.

global:

foo2;

foo1;

local:

*;

};
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Note – The comments for the SUNW_1.1 and SUNW_1.1.1 version definitions indicate that they
have both been applied to the same release.

Migrating Symbols to a Standard Interface
Occasionally, symbols offered by a vendor's interface become absorbed into a new industry
standard. When creating a new standard interface, make sure to maintain the original interface
definitions provided by the shared object. Create intermediate version definitions on which the
new standard, and original interface definitions, can be built.

The following mapfile example shows the addition of a new industry standard interface
STAND.1. This interface contains the new symbol foo4 and the existing symbols foo3 and foo1,
which were originally offered through the interfaces SUNW_1.2 and SUNW_1.1 respectively.

$ cat mapfile

STAND.1 { # Release X+2.

global:

foo4;

} STAND.0.1 STAND.0.2;

SUNW_1.2 { # Release X+1.

global:

SUNW_1.2;

} STAND.0.1 SUNW_1.1;

SUNW_1.1.1 { } SUNW_1.1; # Release X+1.

SUNW_1.1 { # Release X.

global:

foo2;

local:

*;

} STAND.0.2;

# Subversion - providing for

STAND.0.1 { # SUNW_1.2 and STAND.1 interfaces.

global:

foo3;

};

# Subversion - providing for

STAND.0.2 { # SUNW_1.1 and STAND.1 interfaces.

global:

foo1;

};

The symbols foo3 and foo1 are pulled into their own intermediate interface definitions, which
are used to create the original and new interface definitions.
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The new definition of the SUNW_1.2 interface has referenced its own version definition symbol.
Without this reference, the SUNW_1.2 interface would have contained no immediate symbol
references and hence would be categorized as a weak version definition.

When migrating symbol definitions to a standards interface, any original interface definitions
must continue to represent the same symbol list. This requirement can be validated using
pvs(1). The following example shows the symbol list of the SUNW_1.2 interface as it existed in
the software release X+1.

$ pvs -ds -N SUNW_1.2 libfoo.so.1

SUNW_1.2:

foo3;

SUNW_1.1:

foo2;

foo1;

Although the introduction of the new standards interface in software release X+2 has changed
the interface version definitions available, the list of symbols provided by each of the original
interfaces remains constant. The following example shows that interface SUNW_1.2 still provides
symbols foo1, foo2 and foo3.

$ pvs -ds -N SUNW_1.2 libfoo.so.1

SUNW_1.2:

STAND.0.1:

foo3;

SUNW_1.1:

foo2;

STAND.0.2:

foo1;

An application might only reference one of the new subversions. In this case, any attempt to run
the application on a previous release results in a runtime versioning error. See “Binding to a
Version Definition” on page 151.

An application's version binding can be promoted by directly referencing an existing version
name. See “Binding to Additional Version Definitions” on page 156. For example, if an
application only references the symbol foo1 from the shared object libfoo.so.1, then its
version reference is to STAND.0.2. To enable this application to be run on previous releases, the
version binding can be promoted to SUNW_1.1 using a version control mapfile directive.

$ cat prog.c

extern void foo1();

main()

{

foo1();

}
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$ cc -o prog prog.c -L. -R. -lfoo

$ pvs -r prog

libfoo.so.1 (STAND.0.2);

$ cat mapfile

libfoo.so - SUNW_1.1 $ADDVERS=SUNW_1.1;

$ cc -M mapfile -o prog prog.c -L. -R. -lfoo

$ pvs -r prog

libfoo.so.1 (SUNW_1.1);

In practice, you rarely have to promote a version binding in this manner. The introduction of
new standards binary interfaces is rare, and most applications reference many symbols from an
interface family.
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Establishing Dependencies with Dynamic
String Tokens

A dynamic object can establish dependencies explicitly or through filters. Each of these
mechanisms can be augmented with a runpath, which directs the runtime linker to search for
and load the required dependency. String names used to record filters, dependencies and
runpath information can be augmented with the following reserved dynamic string tokens.

■ $HWCAP

■ $ISALIST

■ $OSNAME, $OSREL and $PLATFORM

■ $ORIGIN

The following sections provide examples of how each of these tokens can be employed.

Hardware Capability Specific Shared Objects
The dynamic token $HWCAP can be used to specify a directory in which hardware capability
specific shared objects exist. This token is available for filters and dependencies. As this token
can expand to multiple objects, its use with dependencies is controlled. Dependencies obtained
with dlopen(3C), can use this token with the mode RTLD_FIRST. Explicit dependencies that use
this token will load the first appropriate dependency found.

The path name specification must consist of a full path name terminated with the $HWCAP token.
Shared objects that exist in the directory that is specified with the $HWCAP token are inspected at
runtime. These objects should indicate their hardware capability requirements. See “Identifying
Hardware and Software Capabilities” on page 63. Each object is validated against the hardware
capabilities that are available to the process. Those objects that are applicable for use with the
process, are sorted in descending order of their hardware capability values. These sorted filtees
are used to resolve symbols that are defined within the filter.

Filtees within the hardware capabilities directory have no naming restrictions. The following
example shows how the auxiliary filter libfoo.so.1 can be designed to access hardware
capability filtees.
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$ LD_OPTIONS=’-f /opt/ISV/lib/hwcap/$HWCAP’ \

cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c

$ dump -Lv libfoo.so.1 | egrep "SONAME|AUXILIARY"

[1] SONAME libfoo.so.1

[2] AUXILIARY /opt/ISV/lib/hwcap/$HWCAP

$ elfdump -H /opt/ISV/lib/hwcap/*

/opt/ISV/lib/hwcap/filtee.so.3:

Hardware/Software Capabilities Section: .SUNW_cap

index tag value

[0] CA_SUNW_HW_1 0x1000 [ SSE2 ]

/opt/ISV/lib/hwcap/filtee.so.1:

Hardware/Software Capabilities Section: .SUNW_cap

index tag value

[0] CA_SUNW_HW_1 0x40 [ MMX ]

/opt/ISV/lib/hwcap/filtee.so.2:

Hardware/Software Capabilities Section: .SUNW_cap

index tag value

[0] CA_SUNW_HW_1 0x800 [ SSE ]

If the filter libfoo.so.1 is processed on a platform where the MMX and SSE capabilities are
available, the following filtee search order occurs.

$ cc -o prog prog.c -R. -lfoo

$ LD_DEBUG=symbols prog

.....

01233: symbol=foo; lookup in file=libfoo.so.1 [ ELF ]

01233: symbol=foo; lookup in file=hwcap/filtee.so.2 [ ELF ]

01233: symbol=foo; lookup in file=hwcap/filtee.so.1 [ ELF ]

.....

Note that the capability value for filtee.so.2 is greater than the capability value for
filtee.so.1. filtee.so.3 is not a candidate for inclusion in the symbol search, as the SSE2
capability is not available.

Reducing Filtee Searches
The use of $HWCAP within a filter enables one or more filtees to provide implementations of
interfaces that are defined within the filter.

All shared objects within the specified $HWCAP directory are inspected to validate their
availability, and to sort those found appropriate for the process. Once sorted, all objects are
loaded in preparation for use.
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A filtee can be built with the link-editor's -z endfiltee option to indicate that it is the last of
the available filtees. A filtee identified with this option, terminates the sorted list of filtees for
that filter. No objects sorted after this filtee are loaded for the filter. From the previous example,
if the filter.so.2 filtee was tagged with -z endfiltee, the filtee search would be as follows.

$ LD_DEBUG=symbols prog

.....

01424: symbol=foo; lookup in file=libfoo.so.1 [ ELF ]

01424: symbol=foo; lookup in file=hwcap/filtee.so.2 [ ELF ]

.....

Instruction Set Specific Shared Objects
The dynamic token $ISALIST is expanded at runtime to reflect the native instruction sets
executable on this platform, as displayed by the utility isalist(1). This token is available for
filters, runpath definitions, and dependencies. As this token can expand to multiple objects, its
use with dependencies is controlled. Dependencies obtained with dlopen(3C), can use this
token with the mode RTLD_FIRST. Explicit dependencies that use this token will load the first
appropriate dependency found.

Note – This token is obsolete, and might be removed in a future release of Solaris. See “Hardware
Capability Specific Shared Objects” on page 353 for the recommended technique for handling
instruction set extensions.

Any string name that incorporates the $ISALIST token is effectively duplicated into multiple
strings. Each string is assigned one of the available instruction sets.

The following example shows how the auxiliary filter libfoo.so.1 can be designed to access an
instruction set specific filtee libbar.so.1.

$ LD_OPTIONS=’-f /opt/ISV/lib/$ISALIST/libbar.so.1’ \

cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c

$ dump -Lv libfoo.so.1 | egrep "SONAME|AUXILIARY"

[1] SONAME libfoo.so.1

[2] AUXILIARY /opt/ISV/lib/$ISALIST/libbar.so.1

Or alternatively the runpath can be used.

$ LD_OPTIONS=’-f libbar.so.1’ \

cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R’/opt/ISV/lib/$ISALIST’ foo.c

$ dump -Lv libfoo.so.1 | egrep "RUNPATH|AUXILIARY"

[1] RUNPATH /opt/ISV/lib/$ISALIST

[2] AUXILIARY libbar.so.1
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In either case the runtime linker uses the platform available instruction list to construct
multiple search paths. For example, the following application is dependent on libfoo.so.1 and
executed on a SUNW,Ultra-2.

$ ldd -ls prog

.....

find object=libbar.so.1; required by ./libfoo.so.1

search path=/opt/ISV/lib/$ISALIST (RPATH from file ./libfoo.so.1)

trying path=/opt/ISV/lib/sparcv9+vis/libbar.so.1

trying path=/opt/ISV/lib/sparcv9/libbar.so.1

trying path=/opt/ISV/lib/sparcv8plus+vis/libbar.so.1

trying path=/opt/ISV/lib/sparcv8plus/libbar.so.1

trying path=/opt/ISV/lib/sparcv8/libbar.so.1

trying path=/opt/ISV/lib/sparcv8-fsmuld/libbar.so.1

trying path=/opt/ISV/lib/sparcv7/libbar.so.1

trying path=/opt/ISV/lib/sparc/libbar.so.1

Or an application with similar dependencies is executed on an MMX configured Pentium Pro.

$ ldd -ls prog

.....

find object=libbar.so.1; required by ./libfoo.so.1

search path=/opt/ISV/lib/$ISALIST (RPATH from file ./libfoo.so.1)

trying path=/opt/ISV/lib/pentium_pro+mmx/libbar.so.1

trying path=/opt/ISV/lib/pentium_pro/libbar.so.1

trying path=/opt/ISV/lib/pentium+mmx/libbar.so.1

trying path=/opt/ISV/lib/pentium/libbar.so.1

trying path=/opt/ISV/lib/i486/libbar.so.1

trying path=/opt/ISV/lib/i386/libbar.so.1

trying path=/opt/ISV/lib/i86/libbar.so.1

Reducing Filtee Searches
The use of $ISALIST within a filter enables one or more filtees to provide implementations of
interfaces defined within the filter.

Any interface defined in a filter can result in an exhaustive search of all potential filtees in an
attempt to locate the required interface. If filtees are being employed to provide performance
critical functions, this exhaustive filtee searching can be counterproductive.

A filtee can be built with the link-editor's -z endfiltee option to indicate that it is the last of
the available filtees. This option terminates any further filtee searching for that filter. From the
previous SPARC example, if the SPARCV9 filtee existed, and was tagged with -z endfiltee,
the filtee searches would be as follows.
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$ ldd -ls prog

.....

find object=libbar.so.1; required by ./libfoo.so.1

search path=/opt/ISV/lib/$ISALIST (RPATH from file ./libfoo.so.1)

trying path=/opt/ISV/lib/sparcv9+vis/libbar.so.1

trying path=/opt/ISV/lib/sparcv9/libbar.so.1

System Specific Shared Objects
The dynamic tokens $OSNAME, $OSREL and $PLATFORM are expanded at runtime to provide
system specific information. These tokens are available for filters, runpath, or dependency
definitions.

$OSNAME expands to reflect the name of the operating system, as displayed by the utility
uname(1) with the -s option. $OSREL expands to reflect the operating system release level, as
displayed by uname -r. $PLATFORM expands to reflect the underlying hardware implementation,
as displayed by uname -i.

The following example shows how the auxiliary filter libfoo.so.1 can be designed to access a
platform specific filtee libbar.so.1.

$ LD_OPTIONS=’-f /platform/$PLATFORM/lib/libbar.so.1’ \

cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 -R. foo.c

$ dump -Lv libfoo.so.1 | egrep "SONAME|AUXILIARY"

[1] SONAME libfoo.so.1

[2] AUXILIARY /platform/$PLATFORM/lib/libbar.so.1

This mechanism is used in the Solaris OS to provide platform specific extensions to the shared
object /lib/libc.so.1.

Locating Associated Dependencies
Typically, an unbundled product is designed to be installed in a unique location. This product is
composed of binaries, shared object dependencies, and associated configuration files. For
example, the unbundled product ABC might have the layout shown in the following figure.
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Assume that the product is designed for installation under /opt. Normally, you would augment
the PATH with /opt/ABC/bin to locate the product's binaries. Each binary locates their
dependencies using a hard-coded runpath within the binary. For the application abc, this
runpath would be as follows.

$ cc -o abc abc.c -R/opt/ABC/lib -L/opt/ABC/lib -lA

$ dump -Lv abc

[1] NEEDED libA.so.1

[2] RUNPATH /opt/ABC/lib

Similarly, for the dependency libA.so.1 the runpath would be as fillows.

$ cc -o libA.so.1 -G -Kpic A.c -R/opt/ABC/lib -L/opt/ABC/lib -lB

$ dump -Lv libA.so.1

[1] NEEDED libB.so.1

[2] RUNPATH /opt/ABC/lib

This dependency representation works until the product is installed in some directory other
than the recommended default.

The dynamic token $ORIGIN expands to the directory in which an object originated. This token
is available for filters, runpath, or dependency definitions. Use this technology to redefine the
unbundled application to locate its dependencies in terms of $ORIGIN.

$ cc -o abc abc.c ’-R$ORIGIN/../lib’ -L/opt/ABC/lib -lA

$ dump -Lv abc

[1] NEEDED libA.so.1

[2] RUNPATH $ORIGIN/../lib

The dependency libA.so.1 can also be defined in terms of $ORIGIN.

$ cc -o libA.so.1 -G -Kpic A.c ’-R$ORIGIN’ -L/opt/ABC/lib -lB

$ dump -Lv libA.so.1

[1] NEEDED libB.so.1

[2] RUNPATH $ORIGIN

ABC

bin libetc

abc libA.so.1
libB.so.1
libC.so.1

abc.conf

FIGURE C–1 Unbundled Dependencies
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If this product is now installed under /usr/local/ABC and the user's PATH is augmented with
/usr/local/ABC/bin, invocation of the application abc result in a path name lookup for its
dependencies as follows.

$ ldd -s abc

.....

find object=libA.so.1; required by abc

search path=$ORIGIN/../lib (RUNPATH/RPATH from file abc)

trying path=/usr/local/ABC/lib/libA.so.1

libA.so.1 => /usr/local/ABC/lib/libA.so.1

find object=libB.so.1; required by /usr/local/ABC/lib/libA.so.1

search path=$ORIGIN (RUNPATH/RPATH from file /usr/local/ABC/lib/libA.so.1)

trying path=/usr/local/ABC/lib/libB.so.1

libB.so.1 => /usr/local/ABC/lib/libB.so.1

Dependencies Between Unbundled Products
Another issue related to dependency location is how to establish a model whereby unbundled
products express dependencies between themselves.

For example, the unbundled product XYZ might have dependencies on the product ABC. This
dependency can be established by a host package installation script. This script generates a
symbolic link to the installation point of the ABC product, as shown in the following figure.

XYZ

bin ABClib

abc libX.so.1
libY.so.1
libZ.so.1

ABC

bin libetc

abc libA.so.1
libB.so.1
libC.so.1

abc.conf

FIGURE C–2 Unbundled Co-Dependencies
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The binaries and shared objects of the XYZ product can represent their dependencies on the ABC
product using the symbolic link. This link is now a stable reference point. For the application
xyz, this runpath would be as follows.

$ cc -o xyz xyz.c ’-R$ORIGIN/../lib:$ORIGIN/../ABC/lib’ \

-L/opt/ABC/lib -lX -lA

$ dump -Lv xyz

[1] NEEDED libX.so.1

[2] NEEDED libA.so.1

[3] RUNPATH $ORIGIN/../lib:$ORIGIN/../ABC/lib

and similarly for the dependency libX.so.1 this runpath would be as follows.

$ cc -o libX.so.1 -G -Kpic X.c ’-R$ORIGIN:$ORIGIN/../ABC/lib’ \

-L/opt/ABC/lib -lY -lC

$ dump -Lv libX.so.1

[1] NEEDED libY.so.1

[2] NEEDED libC.so.1

[3] RUNPATH $ORIGIN:$ORIGIN/../ABC/lib

If this product is now installed under /usr/local/XYZ, its post-install script would be required
to establish a symbolic link of.

$ ln -s ../ABC /usr/local/XYZ/ABC

If the user's PATH is augmented with /usr/local/XYZ/bin, then invocation of the application
xyz result in a path name lookup for its dependencies as follows.

$ ldd -s xyz

.....

find object=libX.so.1; required by xyz

search path=$ORIGIN/../lib:$ORIGIN/../ABC/lib (RUNPATH/RPATH from file xyz)

trying path=/usr/local/XYZ/lib/libX.so.1

libX.so.1 => /usr/local/XYZ/lib/libX.so.1

find object=libA.so.1; required by xyz

search path=$ORIGIN/../lib:$ORIGIN/../ABC/lib (RUNPATH/RPATH from file xyz)

trying path=/usr/local/XYZ/lib/libA.so.1

trying path=/usr/local/ABC/lib/libA.so.1

libA.so.1 => /usr/local/ABC/lib/libA.so.1

find object=libY.so.1; required by /usr/local/XYZ/lib/libX.so.1

search path=$ORIGIN:$ORIGIN/../ABC/lib \

(RUNPATH/RPATH from file /usr/local/XYZ/lib/libX.so.1)

trying path=/usr/local/XYZ/lib/libY.so.1

libY.so.1 => /usr/local/XYZ/lib/libY.so.1

find object=libC.so.1; required by /usr/local/XYZ/lib/libX.so.1
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search path=$ORIGIN:$ORIGIN/../ABC/lib \

(RUNPATH/RPATH from file /usr/local/XYZ/lib/libX.so.1)

trying path=/usr/local/XYZ/lib/libC.so.1

trying path=/usr/local/ABC/lib/libC.so.1

libC.so.1 => /usr/local/ABC/lib/libC.so.1

find object=libB.so.1; required by /usr/local/ABC/lib/libA.so.1

search path=$ORIGIN (RUNPATH/RPATH from file /usr/local/ABC/lib/libA.so.1)

trying path=/usr/local/ABC/lib/libB.so.1

libB.so.1 => /usr/local/ABC/lib/libB.so.1

Security
In a secure process, the expansion of the $ORIGIN string is allowed only if it expands to a trusted
directory. The occurrence of other relative path names, poses a security risk.

A path like $ORIGIN/../lib apparently points to a fixed location, fixed by the location of the
executable. However, the location is not actually fixed. A writable directory in the same file
system could exploit a secure program that uses $ORIGIN.

The following example shows this possible security breach if $ORIGIN was arbitrarily expanded
within a secure process.

$ cd /worldwritable/dir/in/same/fs

$ mkdir bin lib

$ ln $ORIGIN/bin/program bin/program

$ cp ~/crooked-libc.so.1 lib/libc.so.1

$ bin/program

..... using crooked-libc.so.1

You can use the utility crle(1) to specify trusted directories that enable secure applications to
use $ORIGIN. Administrators who use this technique should ensure that the target directories
are suitably protected from malicious intrusion.
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Linker and Libraries Updates and New Features

This appendix provides an overview of the updates and new features that have been added to
releases of the Solaris OS.

Solaris 10 5/08 Release
■ Global auditing can now be enabled by recording an auditor within an application together

with the link-editor -z globalaudit option. See “Recording Global Auditors” on page 174.
■ Additional link-editor support interfaces, ld_open() and ld_open64() have been added.

See “Support Interface Functions” on page 165.

Solaris 10 8/07 Release
■ Greater flexibility in executing an alternative link-editor is provided with the link-editor

-z altexec64 option, and the LD_ALTEXEC environment variable. See “The 32–bit
link-editor and 64–bit link-editor” on page 29.

■ Symbol definitions that are generated using mapfiles can now be associated to ELF
sections. See “Defining Additional Symbols with a mapfile” on page 50.

■ The link-editors now provide for the creation of static TLS within shared objects. In
addition, a backup TLS reservation is established to provide for limited use of static TLS
within post-startup shared objects. See “Program Startup” on page 302.
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Solaris 10 1/06 Release
■ Support for the x64 medium code model is provided. See Table 7–4, Table 7–8, and

Table 7–10.
■ The command line arguments, environment variables, and auxiliary vector array of the

process, can be obtained using the dlinfo(3C) flag RTLD_DI_ARGSINFO.
■ Greater flexibility in prohibiting direct binding from external references is provided with

the link-editor -B nodirect option. See “Direct Bindings” on page 78.

Solaris 10 Release
■ x64 is now supported. See Table 7–5, “Special Sections” on page 219, “x64: Relocation

Types” on page 243, “x64: Thread-Local Variable Access” on page 320, and “x64:
Thread-Local Storage Relocation Types” on page 323.

■ A restructuring of the filesystem has moved many components from under /usr/lib to
/lib. Both the link-editor and runtime linkers default search paths have been changed
accordingly. See “Directories Searched by the Link-Editor” on page 35, “Directories
Searched by the Runtime Linker” on page 72, and “Security” on page 92.

■ System archive libraries are no longer provided. Therefore, the creation of a statically linked
executable is no longer possible. See “Static Executables” on page 23.

■ Greater flexibility for defining alternative dependencies is provided with the -A option of
crle(1).

■ The link-editors now process environment variables specified without a value. See
“Environment Variables” on page 25.

■ Path names used with dlopen(3C), and as explicit dependency definitions, can now use any
reserved tokens. See Appendix C, “Establishing Dependencies with Dynamic String
Tokens.” The evaluation of path names that use reserved tokens is provided with the new
utility moe(1).

■ An optimal means of testing for the existence of an interface is provide with dlsym(3C) and
the new handle RTLD_PROBE. See “Providing an Alternative to dlopen()” on page 85.

Solaris 9 9/04 Release
■ Greater flexibility in defining the hardware and software requirements of ELF objects is

provided with the link-editors. See “Hardware and Software Capabilities Section” on
page 226.

■ The runtime link auditing interface la_objfilter() has been added. See “Audit Interface
Functions” on page 174.

■ Shared object filtering has been extended to provide filtering on a per-symbol basis. See
“Shared Objects as Filters” on page 119.

Solaris 10 1/06 Release
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Solaris 9 4/04 Release
■ The new section types SHT_SUNW_ANNOTATE, SHT_SUNW_DEBUGSTR, SHT_SUNW_DEBUG, and

SHT_SPARC_GOTDATA are supported. See Table 7–5.
■ The analysis of runtime interfaces is simplified with the new utility lari(1).
■ Greater control of direct bindings is provided with the link-editor options -z direct and

-z nodirect, together with the DIRECT and NODIRECT mapfile directives. See “Defining
Additional Symbols with a mapfile” on page 50, and “Direct Bindings” on page 78.

Solaris 9 12/03 Release
■ Performance improvements within ld(1) can significantly reduce the link-edit time of very

large applications.

Solaris 9 8/03 Release
■ dlsym(3C) symbol processing can be reduced using a dlopen(3C) handle that is created with

the RTLD_FIRST flag. See “Obtaining New Symbols” on page 102.
■ The signal used by the runtime linker to terminate an erroneous process can be managed

using the dlinfo(3C) flags RTLD_DI_GETSIGNAL, and RTLD_DI_SETSIGNAL.

Solaris 9 12/02 Release
■ The link-editor provides string table compression, that can result in reduced .dynstr and

.strtab sections. This default processing can be disabled using the link-editor's
-z nocompstrtab option. See “String Table Compression” on page 62.

■ The -z ignore option has been extended to eliminate unreferenced sections during a
link-edit. See “Remove Unused Material” on page 132.

■ Unreferenced dependencies can be determined using ldd(1). See the -U option.
■ The link-editors support extended ELF sections. See “ELF Header” on page 198, Table 7–5,

“Sections” on page 205, Table 7–10 and “Symbol Table Section” on page 246.
■ Greater flexibility in defining a symbols visibility is provided with the protected mapfile

directive. See “Defining Additional Symbols with a mapfile” on page 50.

Solaris 9 12/02 Release
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Solaris 9 Release
■ Thread-Local Storage (TLS) support is provided. See Chapter 8, “Thread-Local Storage.”
■ The -z rescan option provides greater flexibility in specifying archive libraries to a

link-edit. See “Position of an Archive on the Command Line” on page 34.
■ The -z ld32 and -z ld64 options provide greater flexibility in using the link-editor support

interfaces. See “32–Bit Environments and 64–Bit Environments” on page 164.
■ Additional link-editor support interfaces, ld_input_done(), ld_input_section(),

ld_input_section64() and ld_version() have been added. See “Support Interface
Functions” on page 165.

■ Environment variables interpreted by the runtime linker can now be established for
multiple processes by specifying these variables within a configuration file. See the -e and -E

options of crle(1).
■ Support for more than 32,768 procedure linkage table entries within 64–bit SPARC objects

has been added. See “64-bit SPARC: Procedure Linkage Table” on page 290.
■ An mdb(1) debugger module enables you to inspect runtime linker data structures as part of

process debugging. See “Debugger Module” on page 108.
■ The bss segment declaration directive makes the creation of a bss segment easier. See

“Segment Declarations” on page 326.

Solaris 8 07/01 Release
■ Unused dependencies can be determined using ldd(1). See the -u option.
■ Various ELF ABI extensions have been added. See “Initialization and Termination Sections”

on page 38, “Initialization and Termination Routines” on page 87, Table 7–3, Table 7–8,
Table 7–9, “Group Section” on page 225, Table 7–10, Table 7–20, Table 7–32, Table 7–33,
and “Program Loading (Processor-Specific)” on page 266.

■ Greater flexibility in the use of link-editor environment variables has been provided with the
addition of _32 and _64 variants. See “Environment Variables” on page 25.

Solaris 8 01/01 Release
■ The symbolic information that is made available from dladdr(3C) has been enhanced with

the introduction of dladdr1().
■ The $ORIGIN of a dynamic object can be obtained from dlinfo(3C).
■ The maintenance of runtime configuration files that are created with crle(1) has been

simplified. Inspection of a configuration file displays the command-line options used to
create the file. An update capability is provided with the -u option.

Solaris 9 Release
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■ The runtime linker and its debugger interface have been extended to detect procedure
linkage table entry resolution. This update is identified by a new version number. See
rd_init() under “Agent Manipulation Interfaces” on page 184. This update extends the
rd_plt_info_t structure. See rd_plt_resolution() under “Procedure Linkage Table
Skipping” on page 189.

■ An application's stack can be defined non-executable by using the new mapfile segment
descriptor STACK. See “Segment Declarations” on page 326.

Solaris 8 10/00 Release
■ The environment variable LD_BREADTH is ignored by the runtime linker. See “Initialization

and Termination Routines” on page 87.
■ The runtime linker and its debugger interface have been extended for better runtime and

core file analysis. This update is identified by a new version number. See rd_init() under
“Agent Manipulation Interfaces” on page 184. This update extends the rd_loadobj_t
structure. See “Scanning Loadable Objects” on page 185.

■ You can now validate displacement relocated data in regard to its use, or possible use, with
copy relocations. See “Displacement Relocations” on page 67.

■ 64–bit filters can be built solely from a mapfile by using the link-editor's -64 option. See
“Generating Standard Filters” on page 120.

■ The search paths used to locate the dependencies of dynamic objects can be inspected using
dlinfo(3C).

■ dlsym(3C) and dlinfo(3C) lookup semantics have been expanded with a new handle
RTLD_SELF.

■ The runtime symbol lookup mechanism used to relocate dynamic objects can be
significantly reduced by establishing direct binding information within each dynamic
object. See “Direct Bindings” on page 78.

Solaris 8 Release
■ The secure directory from which files can be preloaded is now /usr/lib/secure for 32–bit

objects, and /usr/lib/secure/64 for 64–bit objects. See “Security” on page 92.
■ Greater flexibility in modifying the runtime linker's search paths can be achieved with the

link-editor's -z nodefaultlib option, and runtime configuration files created by the new
utility crle(1). See “Directories Searched by the Runtime Linker” on page 37 and
“Configuring the Default Search Paths” on page 75.

■ The new EXTERN mapfile directive enables you to use -z defs with externally defined
symbols. See “Defining Additional Symbols with a mapfile” on page 50.

Solaris 8 Release
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■ The new $ISALIST, $OSNAME, and $OSREL dynamic string tokens provide greater flexibility in
establishing instruction set specific, and system specific dependencies. See “Dynamic String
Tokens” on page 75.

■ The link-editor options -p and -P provide additional means of invoking runtime link
auditing libraries. See “Recording Local Auditors” on page 173. The runtime link auditing
interfaces la_activity() and la_objsearch() have been added. See “Audit Interface
Functions” on page 174.

■ A new dynamic section tag, DT_CHECKSUM, enables you to coordinate ELF files with core
images. See Table 7–32.

Solaris 8 Release
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security, 92

LD_LOADFLTR, 126
LD_NOAUDIT, 173
LD_NOAUXFLTR, 125
LD_NODIRECT, 79
LD_NOLAZYLOAD, 85
LD_NOVERSION, 156
LD_OPTIONS, 30, 68
LD_PRELOAD, 78, 82, 92
LD_PROFILE, 141
LD_PROFILE_OUTPUT, 141
LD_RUN_PATH, 38
LD_SIGNAL, 92
SGS_SUPPORT, 164
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link-editor
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incompatible options, 30
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multiply-defined symbols, 45
relocations against non-writable sections, 131
shared object name conflicts, 116-117
soname conflicts, 117
symbol not assigned to version, 59
symbol warnings, 44
undefined symbols, 45, 46
undefined symbols from an implicit

reference, 47
version unavailable, 156

runtime linker
copy relocation size differences, 68, 139
relocation errors, 81, 153
unable to find shared object, 74, 95
unable to find version definition, 153
unable to locate symbol, 103

exec(2), 27, 71, 196
executable and linking format, See ELF

F
filtee, 119
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filters (Continued)
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instruction set specific, 355-357
reducing filtee searches, 354-355, 356-357
standard, 119, 120-123
system specific, 357

G
generating a shared object, 47
generating an executable, 45-47
generating the output file image, 62-66
global offset table, 273, 286-287

dynamic reference, 277
_GLOBAL_OFFSET_TABLE_, 63
.got, 221
inspection, 76
position-independent code, 130
relocation, 236

combined with procedure linkage

table, 293-295, 295-297
SPARC, 237-241
x64, 243-245
x86, 241-243

global symbols, 143, 248
.got, See global offset table
GOT, See global offset table

I
initialization and termination, 28, 38-40, 87-91
input file processing, 31-40
interface

private, 143
public, 143, 343

interposition, 42, 78, 83, 104
inspection, 43
interface stability, 144

interpreter, See runtime linker
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link-editing, 22-23, 246, 269
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archive processing, 31-32
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dynamic, 233-245, 269
input file processing, 31-40
library input processing, 31
library linking options, 31
mixing shared objects and archives, 34
position of files on command line, 34-35
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shared object processing, 32-33
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debugging aids, 68-70
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See error messages
external bindings, 62
invoking directly, 28-30
invoking using compiler driver, 29
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specifying options, 30-31

link-editor options
-64, 29, 123
-a, 340
-B direct, 341, 342
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-B reduce, 53, 60, 160
-B static, 34, 340
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link-editor options (Continued)
-G, 113, 340, 342
-h, 73, 115, 162, 341
-i, 37
-L, 35-36, 339
-l, 31, 33-38, 114, 339
-M, 325

controlling binding requirements, 155
defining interfaces, 341
defining segments, 28
defining symbols, 49, 50
defining versions, 145, 345

-m, 33, 43
-P, 173
-p, 173
-R, 37, 117, 341, 342
-r, 29, 339
-S, 164
-s, 61, 62
-t, 44
-u, 49
-Y, 36
-z allextract, 32
-z altexec64, 29
-z combreloc, 137, 341
-z defs, 47, 53, 172, 341
-z defaultextract, 32
-z direct, 365
-z endfiltee, 285
-z finiarray, 39
-z globalaudit, 174, 363
-z groupperm, 286
-z ignore, 133

dependency elimination, 33, 341, 342
section elimination, 132, 340

-z initarray, 39
-z initfirst, 284
-z interpose, 78, 284
-z ld32, 164
-z ld64, 164
-z lazyload, 84, 286, 341, 342
-z loadfltr, 126, 284
-z muldefs, 45
-z now, 81, 90, 96

link-editor options (Continued)
-z nocompstrtab, 62, 365
-z nodefs, 46, 82
-z nodefaultlib, 37, 284
-z nodelete, 284
-z nodirect, 365
-z nodlopen, 284
-z nodump, 285
-z nolazyload, 84
-z nopartial, 231
-z noversion, 59, 146, 152
-z record, 133
-z redlocsym, 51, 253
-z rescan, 35
-z text, 131, 340
-z verbose, 67
-z weakextract, 32, 249

link-editor output
dynamic executables, 22
relocatable objects, 22
shared objects, 22
static executables, 22

link-editor support interface (ld-support), 163
ld_atexit(), 168
ld_atexit64(), 168
ld_file(), 166
ld_file64(), 166
ld_input_done(), 168
ld_input_section(), 167
ld_input_section64(), 167
ld_open(), 165
ld_open64(), 165
ld_section(), 168
ld_section64(), 168
ld_start(), 165
ld_start64(), 165
ld_version(), 165

linker-editor, direct binding, 78
local symbols, 248
lorder(1), 32, 69

Index

373



M
mapfile keywords

AUXILIARY, 52, 119, 125
DIRECT, 52, 79
ELIMINATE, 61, 253
EXTERN, 52
FILTER, 52, 119, 125
FUNCTION, 121
NODIRECT, 53, 80
OVERRIDE, 64, 66
PARENT, 53

mapfiles, 325
defaults, 334
example, 332
map structure, 335
mapping directives, 330
segment declarations, 326
size-symbol declarations, 332
structure, 325
syntax, 325

mdb(1), 366
mmap(2), 27, 62, 71, 127
moe(1), 364
multiply-defined data, 134, 224
multiply-defined symbols, 33, 42, 224

N
Namespace, 171-172
naming conventions

archives, 33-34
libraries, 33-34
shared objects, 33-34, 114

NEEDED, 73, 114
nm(1), 127

O
object files, 21

base address, 265
data representation, 197
global offset table

See global offset table

object files (Continued)
note section, 231-233
preloading at runtime, 82
procedure linkage table

See procedure linkage table
program header, 261-266, 265
program interpreter, 272
program loading, 266-272
relocation, 233-245
section alignment, 209
section attributes, 215, 224
section group flags, 225
section header, 205, 224
section names, 224
section types, 209, 224
segment contents, 266
segment permissions, 265, 266
segment types, 262, 265
string table, 245-246, 246
symbol table, 246, 253

P
packages

SUNWosdem, 180, 183, 195
SUNWtoo, 180

paging, 266-272
performance

allocating buffers dynamically, 135
collapsing multiple definitions, 134
improving locality of references, 135-140, 141-142
maximizing shareability, 133-135
minimizing data segment, 133-134
position-independent code

See position-dependent code
relocations, 135-140, 141-142
the underlying system, 128-129
using automatic variables, 135

PIC, See position-independent code
.plt, See procedure linkage table
position-independent code, 129-132, 278

global offset table, 286-287
preloading objects, See LD_PRELOAD
procedure linkage table, 222, 273
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procedure linkage table (Continued)
dynamic reference, 277, 278, 279
lazy reference, 80
position-independent code, 130
_PROCEDURE_LINKAGE_TABLE_, 63
relocation, 236, 287-297

64–bit SPARC, 290-293
SPARC, 237-241, 287-290
x64, 243-245, 295-297
x86, 241-243, 293-295

profil(2), 141
program interpreter, 272

See also runtime linker
pvs(1), 146, 148, 150, 151

R
relocatable objects, 22
relocation, 76-82, 135, 140, 233-245

copy, 67, 137
displacement, 67
immediate, 80
lazy, 80
non-symbolic, 76, 136
runtime linker

symbol lookup, 76, 80, 95, 107
symbolic, 76, 136

RPATH, See runpath
RTLD_DEFAULT, 48

See also dependency ordering
RTLD_FIRST, 102, 353, 355, 365
RTLD_GLOBAL, 95, 100, 102
RTLD_GROUP, 101
RTLD_LAZY, 96
RTLD_NEXT, 102
RTLD_NOLOAD, 171
RTLD_NOW, 81, 90, 96
RTLD_PARENT, 101, 102
RTLD_PROBE, 48

See also dependency ordering
runpath, 37, 73, 94, 117
RUNPATH, See runpath
runpath, security, 92
runtime environment, 24, 34, 113

runtime linker, 23-24, 71, 272-273
direct binding, 78, 136
initialization and termination routines, 87-91
lazy binding, 80, 95, 107
link-maps, 171
loading additional objects, 82-83
namespace, 171-172
programming interface

See also dladdr(3C), dlclose(3C), dldump(3C),
dlerror(3C), dlinfo(3C), dlopen(3C),
dlsym(3C)

relocation processing, 76-82
search paths, 37-38, 72-75
security, 92
shared object processing, 72
version definition verification, 152

runtime linker support interfaces (rtld-audit), 163,
171-181
la_activity(), 175
la_amd64_pltenter(), 178
la_i86_pltenter(), 178
la_objclose(), 179
la_objfilter(), 176
la_objopen(), 175
la_objseach(), 175
la_pltexit(), 178
la_preinit(), 176
la_sparcv8_pltenter(), 178
la_sparcv9_pltenter(), 178
la_symbind32(), 177
la_symbind64(), 177
la_version(), 174

runtime linker support interfaces (rtld-debugger), 163,
181-193
ps_global_sym(), 192
ps_pglobal_sym(), 193
ps_plog(), 193
ps_pread(), 192
ps_pwrite(), 192
rd_delete(), 185
rd_errstr(), 185
rd_event_addr(), 188
rd_event_enable(), 188
rd_event_getmsg(), 189
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runtime linker support interfaces (rtld-debugger)
(Continued)

rd_init(), 184
rd_loadobj_iter(), 187
rd_log(), 185
rd_new(), 184
rd_objpad_enable(), 191
rd_plt_resolution(), 190
rd_reset(), 184

runtime linking, 23-24

S
SCD, See Application Binary Interface
search paths

link-editing, 35-37
runtime linker, 37-38, 72-75

$HWCAP token, 353-355
$ISALIST token, 355-357
$ORIGIN token, 357-361
$OSNAME token, 357
$OSREL token, 357
$PLATFORM token, 357

section flags
SHF_ALLOC, 216, 223
SHF_EXCLUDE, 168, 218
SHF_EXECINSTR, 216
SHF_GROUP, 217, 225
SHF_INFO_LINK, 216
SHF_LINK_ORDER, 207, 216
SHF_MASKOS, 217
SHF_MASKPROC, 218
SHF_MERGE, 216
SHF_ORDERED, 218
SHF_OS_NONCONFORMING, 217
SHF_STRINGS, 216
SHF_TLS, 217, 300
SHF_WRITE, 216

section names
.bss, 27, 137
.data, 27, 133
.dynamic, 63, 71, 140
.dynstr, 62
.dynsym, 62

section names (Continued)
.fini, 38, 87
.finiarray, 38, 87
.got, 63, 76
.init, 38, 87
.initarray, 38, 87
.interp, 71
.picdata, 134
.plt, 63, 80, 141
.preinitarray, 38, 87
.rela.text, 27
.rodata, 133
.strtab, 27, 62
.SUNW_reloc, 137, 341
.SUNW_version, 256
.symtab, 27, 61, 62
.tbss, 301
.tdata, 301
.tdata1, 301
.text, 27

section numbers
SHN_ABS, 207, 250, 252
SHN_AFTER, 207, 216, 218
SHN_AMD64_LCOMMON, 207, 252
SHN_BEFORE, 207, 216, 218
SHN_COMMON, 207, 248, 252
SHN_HIOS, 206
SHN_HIPROC, 206
SHN_HIRESERVE, 207
SHN_LOOS, 206
SHN_LOPROC, 206
SHN_LORESERVE, 206
SHN_SUNW_IGNORE, 206
SHN_UNDEF, 206, 252
SHN_XINDEX, 207

section types
SHT_DYNAMIC, 211, 273
SHT_DYNSTR, 211
SHT_DYNSYM, 211
SHT_FINI_ARRAY, 212
SHT_GROUP, 212, 217, 225
SHT_HASH, 211, 227, 273
SHT_HIOS, 212
SHT_HIPROC, 213
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section types (Continued)
SHT_HISUNW, 212
SHT_HIUSER, 214, 337
SHT_INIT_ARRAY, 212
SHT_LOOS, 212
SHT_LOPROC, 213
SHT_LOSUNW, 212
SHT_LOUSER, 213, 337
SHT_NOBITS, 211

.bss, 221

.lbss, 222
p_memsz calculation, 266
sh_offset, 208
sh_size, 208
.SUNW_bss, 223
.tbss, 223

SHT_NOTE, 211, 231
SHT_NULL, 210
SHT_PREINIT_ARRAY, 212
SHT_PROGBITS, 211, 273
SHT_REL, 211
SHT_RELA, 211
SHT_SHLIB, 211
SHT_SPARC_GOTDATA, 213
SHT_STRTAB, 211
SHT_SUNW_ANNOTATE, 213
SHT_SUNW_cap, 212
SHT_SUNW_COMDAT, 168, 213, 224
SHT_SUNW_DEBUG, 213
SHT_SUNW_DEBUGSTR, 213
SHT_SUNW_dof, 212
SHT_SUNW_move, 213, 229
SHT_SUNW_SIGNATURE, 212
SHT_SUNW_syminfo, 213
SHT_SUNW_verdef, 213, 256, 258
SHT_SUNW_verneed, 213, 256, 259
SHT_SUNW_versym, 213, 256, 257, 258
SHT_SYMTAB, 211, 250
SHT_SYMTAB_SHNDX, 212

sections, 27, 127
See also section flags, section names, section

numbers and section types
security, 92, 361
segments, 27, 127

segments (Continued)
data, 127, 129
text, 127, 129

SGS_SUPPORT, 164
shared libraries, See shared objects
shared objects, 21, 22, 72, 113-142

as filters, 119-126
dependency ordering, 118
explicit definition, 47
implementation, 233-245, 269
implicit definition, 46
link-editor processing, 32-33
naming conventions, 33-34, 114
recording a runtime name, 114-117
with dependencies, 117

size(1), 126
Solaris ABI, See Application Binary Interface
Solaris Application Binary Interface, See Application

Binary Interface
SONAME, 115
SPARC Compliance Definition, See Application Binary

Interface
standard filters, 119, 120-123
static executables, 22
strings(1), 134
strip(1), 61, 62
SUNWosdem, 180, 183, 195
SUNWtoo, 180
support interfaces

link-editor (ld-support), 163
runtime linker (rtld-audit), 163, 171-181
runtime linker (rtld-debugger), 163, 181-193

symbol reserved names, 62
_DYNAMIC, 63
_edata, 63
_end, 63
_END_, 63
_etext, 63
_fini, 38
_GLOBAL_OFFSET_TABLE_, 63, 131, 287
_init, 38
main, 63
_PROCEDURE_LINKAGE_TABLE_, 63
_start, 63
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symbol reserved names (Continued)
_START_, 63

symbol resolution, 40-62, 62-66
complex, 43-44
fatal, 44-45
interposition, 78
multiple definitions, 33
search scope

group, 96
world, 96

simple, 42-43
SYMBOLIC, 140
symbols

absolute, 51, 206, 207
archive extraction, 31
auto-elimination, 61
auto-reduction, 51, 146, 346
COMMON, 41, 51, 207
defined, 41
definition, 31
elimination, 61
existence test, 48
global, 143, 248
LCOMMON, 207
local, 248
multiply-defined, 33, 42, 224
ordered, 207
private interface, 143
public interface, 143
reference, 31
registers, 240, 254
runtime lookup, 96, 105

deferred, 80, 95, 107
scope, 96, 100
tentative, 41, 51

COMMON, 207
LCOMMON, 207
ordering in the output file, 48-49
realignment, 55

type, 249
undefined, 31, 41, 45-48, 206
visibility, 247, 250

default, 50
eliminate, 51

symbols, visibility (Continued)
global, 96
hidden, 51
local, 96
protected, 51

weak, 47-48, 248
System V Application Binary Interface, 343

See Application Binary Interface

T
tentative symbols, 41
TEXTREL, 130
__thread, 299
thread-local storage, 299

access models, 305
runtime storage allocation, 302
section definition, 300

TLS, See thread-local storage
___tls_get_addr, 304
__tls_get_addr, 304
tsort(1), 32, 69

U
undefined symbols, 45-48
/usr/ccs/bin/ld, See link-editor
/usr/ccs/lib, 35
/usr/lib, 35, 37, 72, 94
/usr/lib/64, 35, 37, 72, 94
/usr/lib/64/ld.so.1, 71, 181
/usr/lib/ld.so.1, 71, 181
/usr/lib/secure, 92, 173
/usr/lib/secure/64, 92, 173

V
versioning, 143

base version definition, 146
binding to a definition, 151, 155

$ADDVERS, 155
defining a public interface, 59, 145
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versioning (Continued)
definitions, 145, 151
file control directive, 155
file name, 145, 347
generating definitions within an image, 50, 59,

145-160
normalization, 152
overview, 143-162
runtime verification, 152, 154

virtual addressing, 266-272

W
weak symbols, 248

undefined, 32, 47-48
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