
PLRM 2nd Edition July 27, 1992

Adobe Systems Incorporated

PostScript Language
Reference Manual

®

SECOND EDITION

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts • Menlo Park, California • New York

Don Mills, Ontario • Wokingham, England • Amsterdam

Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

See also cross-references:
abcdefghijklmnopqrltuvw

This second edition of the PostScript Language Reference Manual is now obsolete, and is superseded by the third edition:http://partners.adobe.com/supportservice/devrelations/PDFS/TN/PLRM.pdf. This second edition is made available only for the purpose of providing on-line documentation for the Display PostScript extensions, which are not documented in the third edition.

PLRM 2nd Edition July 27, 1992

Library of Congress Cataloging-in-Publication Data

PostScript language reference manual / Adobe Systems. — 2nd ed.
 p. cm.
Includes index.
ISBN 0-201-18127-4
1. PostScript (Computer program language) I. Adobe Systems.
QA76.73.P67P67 1990
005.13’3—dc20 90-43535

Copyright © 1985, 1986, 1987, 1988, 1990 Adobe Systems Incorporated.

All Rights Reserved. Patents Pending. No part of this publication may be repro-
duced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior
written permission of Adobe Systems Incorporated and Addison-Wesley Publish-
ing Company, Inc.

Printed in the United States of America.
Published simultaneously in Canada.

The information in this book is furnished for informational use only, is subject
to change without notice, and should not be construed as a commitment by
Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsi-
bility or liability for any errors or inaccuracies that may appear in this book. The
software described in this book is furnished under license and may only be used
or copied in accordance with the terms of such license.

The name PostScript is a registered trademark of Adobe Systems Incorporated.
All instances of the name PostScript in the text are references to the PostScript
language as defined by Adobe Systems Incorporated unless otherwise stated. The
name PostScript also is used as a product trademark for Adobe Systems’ imple-
mentation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript
driver” refer to printers, files, and driver programs (respectively) which are writ-
ten in or support the PostScript language. The sentences in this book that use
“PostScript language” as an adjective phrase are so constructed to reinforce that
the name refers to the standard language definition as set forth by Adobe Systems
Incorporated.

PostScript, the PostScript logo, Display PostScript, Adobe, the Adobe logo, Adobe
Illustrator, TranScript, Carta, and Sonata are trademarks of Adobe Systems Incor-
porated registered in the U.S. Adobe Garamond and Lithos are trademarks of
Adobe Systems Incorporated. QuickDraw and LocalTalk are trademarks and Mac-
intosh and LaserWriter are registered trademarks of Apple Computer, Inc.
FrameMaker is a registered trademark of Frame Technology Corporation. ITC
Stone is a registered trademark of International Typeface Corporation. IBM is a
registered trademark of International Business Machines Corporation. Helvetica,
Times, and Palatino are trademarks of Linotype AG and/or its subsidiaries.
Microsoft and MS-DOS are registered trademarks and Windows is a trademark of
Microsoft Corporation. Times New Roman is a registered trademark of The
Monotype Corporation plc. NeXT is a trademark of NeXT, Inc. Sun-3 is a trade-
mark of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T
Information Systems. X Window System is a trademark of the Massachusetts
Institute of Technology. Other brand or product names are the trademarks or reg-
istered trademarks of their respective holders.

ABCDEFGHIJ-MW-90
First printing, December 1990

PLRM 2nd Edition January 27, 1994

i

Contents

 Preface vii

 Chapter 1: Introduction 1

1.1 About This Manual 3
1.2 Evolution of the PostScript Language 5
1.3 PostScript Level 2 Overview 7
1.4 Copyrights and Trademarks 9

 Chapter 2: Basic Ideas 11

2.1 Raster Output Devices 11
2.2 Scan Conversion 12
2.3 Page-Description Languages 13
2.4 Using the PostScript Language 16

 Chapter 3: Language 23

3.1 Interpreter 24
3.2 Syntax 25
3.3 Data Types and Objects 33
3.4 Stacks 43
3.5 Execution 45
3.6 Overview of Basic Operators 50
3.7 Memory Management 55
3.8 File Input and Output 71
3.9 Named Resources 85

3.10 Errors 99
3.11 Early Name Binding 101
3.12 Binary Encoding Details 105
3.13 Filtered Files Details 122

Unknown
This second edition of the PostScript Language Reference Manual is now obsolete, and is superseded by the third edition:http://partners.adobe.com/supportservice/devrelations/PDFS/TN/PLRM.pdf. This second edition is made available only for the purpose of providing on-line documentation for the Display PostScript extensions, which are not documented in the third edition.

Unknown

Unknown

PLRM 2nd Edition January 27, 1994

ii Contents

 Chapter 4: Graphics 143

4.1 Imaging Model 144
4.2 Graphics State 146
4.3 Coordinate Systems and Transformations 150
4.4 Path Construction 157
4.5 Painting 160
4.6 User Paths 164
4.7 Forms 172
4.8 Color Spaces 176
4.9 Patterns 200

4.10 Images 210
4.11 Device Setup 226

 Chapter 5: Fonts 257

5.1 Organization and Use of Fonts 257
5.2 Font Dictionaries 264
5.3 Character Encoding 269
5.4 Font Metric Information 271
5.5 Font Cache 274
5.6 Modifications to Existing Fonts 275
5.7 Type 3 Fonts 278
5.8 Unique ID Generation 283
5.9 Composite Fonts 285

 Chapter 6: Rendering 293

6.1 CIE-Based Color to Device Color 294
6.2 Conversions Among Device Color Spaces 303
6.3 Transfer Functions 307
6.4 Halftones 309
6.5 Scan Conversion Details 320

 Chapter 7: Display PostScript 325

7.1 Multiple Execution Contexts 326
7.2 Encoded User Names 332
7.3 Graphics and Window Systems 334
7.4 Bitmap Fonts 339

 Chapter 8: Operators 343

8.1 Operator Summary 346
8.2 Operator Details 360

PLRM 2nd Edition January 27, 1994

Contents iii

 Appendix A: Changes to Language and Implementation 555

A.1 Language Extensions 555
A.2 Language Changes Affecting Existing Operators 560
A.3 Implementation and Documentation Changes 562

 Appendix B: Implementation Limits 565

B.1 Typical Limits 566
B.2 Virtual Memory Use 569

 Appendix C: Interpreter Parameters 571

C.1 Defined User and System Parameters 572
C.2 General Properties of User and System Parameters 574
C.3 Parameter Details 576
C.4 Device Parameters 579

 Appendix D: Compatibility Strategies 581

D.1 The Level Approach 581
D.2 When To Provide Compatibility 582
D.3 Compatibility Techniques 585
D.4 Installing Emulations 588

 Appendix E: Standard Character Sets and Encoding Vectors 591

E.1 Times Family 592
E.2 Helvetica Family 593
E.3 Courier Family 594
E.4 Symbol 595
E.5 Standard Roman Character Set 596
E.6 StandardEncoding Encoding Vector 598
E.7 ISOLatin1Encoding Encoding Vector 599
E.8 Expert Character Set 600
E.9 Expert Encoding Vector 602

E.10 ExpertSubset Encoding Vector 603
E.11 Symbol Character Set 604
E.12 Symbol Encoding Vector 606

 Appendix F: System Name Encodings 607

PLRM 2nd Edition January 27, 1994

iv Contents

 Appendix G: Document Structuring Conventions—Version 3.0 611

G.1 Using the Document Structuring Conventions 613
G.2 Document Manager Services 614
G.3 DSC Conformance 620
G.4 Document Structure Rules 624
G.5 General Conventions 639
G.6 Requirement Conventions 658
G.7 Color Separation Conventions 685
G.8 Query Conventions 688
G.9 Open Structuring Conventions 696

G.10 Special Structuring Conventions 698
G.11 Changes Since Earlier Versions 699
G.12 DSC Version 3.0 Summary 706

 Appendix H: Encapsulated PostScript File Format—Version 3.0 709

H.1 Introduction 709
H.2 Guidelines for Creating EPS Files 712
H.3 Guidelines for Importing EPS Files 718
H.4 File Types and Naming 727
H.5 Device-Specific Screen Preview 728
H.6 Device-Independent Screen Preview 730
H.7 EPS Example 733
H.8 Changes Since Version 2.0 735

 Appendix I: Guidelines for Specific Operators 737

 Bibliography 745

 Index 747

PLRM 2nd Edition January 27, 1994 Preface

v

Preface

It has been only five years since the first PostScript Language Reference
Manual was published and the first products based on the PostScript
language were introduced. In 1985, we had no reason to anticipate the
far-reaching effects that the PostScript language would have on the
printing and publishing industry. At that time, there were no effective
page-description standards, popular typefaces were used only with spe-
cific typesetting equipment, producing high-quality visual materials
was restricted to specialists, and the cost of producing most corporate
communication pieces was prohibitive.

In its brief history, the PostScript language and the many corporations
and individuals working with PostScript products have changed all
that. Today all major computer, printer, and imagesetter vendors sup-
port the PostScript language as a standard. The major type libraries are
becoming available in PostScript-compatible formats. The cost of pro-
ducing high-quality, printed material has dropped substantially. As a
result, the PostScript language is becoming a part of the basic fabric of
the printing, publishing, and computing industries.

We at Adobe not only take great pride in this success, but more impor-
tantly, we feel a significant responsibility to those who have placed
their trust in us and in this technology. We are committed to enhancing
the PostScript language standard so that we can continue to earn that
trust.

In developing this language, we have tried to remember that PostScript
is only one advancement in the rich 500-year history of printing and
typography. We are constantly sensitive to the fact that we are working
with a delicate combination of art, tradition, and technology. Not only
must the technological effectiveness of the PostScript language be
improved, but our aspiration to provide the highest-quality printed
results must be preserved and enhanced in each implementation of a
PostScript product.

PLRM 2nd Edition January 27, 1994 Preface

vi Preface

Any standard, if it is to continue to serve the community in the face of
technological change, must grow and adapt; the PostScript language is
no exception. We hope that you, the users, will find that this second
edition of the PostScript Language Reference Manual incorporates many of
the ideas you have given us. We have tried to use good taste, sound
judgment, and some restraint in extending an already effective and use-
ful standard.

None of the success of the PostScript language would be possible with-
out the efforts of the many individuals and corporations that have sup-
ported PostScript. Successful standards are never the result of one
individual or group. We take this opportunity to thank all of the organi-
zations and individuals who have lent their support in the past, and
hope we can continue working together to enjoy the benefits of an
effective standard for communicating visual information.

John Warnock & Chuck Geschke
December 1990

PLRM 2nd Edition January 21, 1994 Introduction

1

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

CHAPTER 1

Introduction

The PostScript® language is a simple interpretive programming lan-
guage with powerful graphics capabilities. Its primary application is to
describe the appearance of text, graphical shapes, and sampled images
on printed or displayed pages. A program in this language can commu-
nicate a description of a document from a composition system to a
printing system or control the appearance of text and graphics on a dis-
play. The description is high level and device independent.

The page description and interactive graphics capabilities of the Post-
Script language include the following features, which can be used in
any combination:

• Arbitrary shapes made of straight lines, arcs, rectangles, and cubic
curves. Such shapes may self-intersect and have disconnected sec-
tions and holes.

• Painting operators that permit a shape to be outlined with lines of
any thickness, filled with any color, or used as a clipping path to
crop any other graphic. Colors can be specified in a variety of ways:
gray-level, RGB, CMYK, and CIE based. Certain other features are
also modelled as special kinds of colors: repeating patterns, color
mapping, and separations.

• Text fully integrated with graphics. In the PostScript language’s
graphics model, text characters in both standard and user-defined
fonts are treated as graphical shapes that may be operated on by any
of the normal graphics operators.

• Sampled images derived from natural sources (such as scanned pho-
tographs) or generated synthetically. The PostScript language can
describe images sampled at any resolution and according to a variety
of color models. It provides a number of ways to reproduce images
on an output device.

Example 1.0
Table 1.0
Figure 1.0

PLRM 2nd Edition January 21, 1994 Introduction

2 Chapter 1: Introduction

• A general coordinate system that supports all combinations of linear
transformations, including translation, scaling, rotation, reflection,
and skewing. These transformations apply uniformly to all elements
of a page, including text, graphical shapes, and sampled images.

A PostScript language page description can be rendered on a printer,
display, or other output device by presenting it to a PostScript inter-
preter controlling that device. As the interpreter executes commands to
paint characters, graphical shapes, and sampled images, it converts the
high-level PostScript language description into the low-level raster data
format for that particular device.

Normally, application programs such as document composition
systems, illustrators, and computer-aided design systems generate Post-
Script language page descriptions automatically. Programmers generally
write PostScript language programs only when creating new applica-
tions. However, in special situations a programmer can write PostScript
language programs to take advantage of capabilities of the PostScript
language that are not accessible through an application program.

The extensive graphical capabilities of the PostScript language are
embedded in the framework of a general-purpose programming lan-
guage. The language includes a conventional set of data types, such as
numbers, arrays, and strings; control primitives, such as conditionals,
loops, and procedures; and some unusual features, such as dictionaries.
These features enable application programmers to define higher-level
operations that closely match the needs of the application and then to
generate commands that invoke those higher-level operations. Such a
description is more compact and easier to generate than one written
entirely in terms of a fixed set of basic operations.

PostScript language programs can be created, transmitted, and inter-
preted in the form of ASCII source text as defined in this manual. The
entire language can be described in terms of printable characters and
white space. This representation is convenient for programmers to cre-
ate, manipulate, and understand. It also facilitates storage and transmis-
sion of files among diverse computers and operating systems,
enhancing machine independence.

There are also binary encoded forms of the language for use in suitably
controlled environments—for example, when the program is assured of
a fully transparent communications path such as in the Display Post-
Script® system. Adobe recommends strict adherence to the ASCII repre-
sentation of PostScript language programs for document interchange or
archival storage.

PLRM 2nd Edition January 21, 1994 Introduction

1.1 About This Manual 3

1.1 About This Manual

This is the programmer’s reference manual for the PostScript language.
It is the definitive documentation for the syntax and semantics of the
language, the imaging model, and the effects of the graphical operators.
Here is what the manual contains:

Chapter 2, “Basic Ideas,” is an informal presentation of some basic ideas
underlying the more formal descriptions and definitions in the manual.
These include the properties and capabilities of raster output devices,
requirements for a language that effectively uses those capabilities, and
some pragmatic information about the environments in which the
PostScript interpreter operates and the kinds of PostScript language pro-
grams it typically executes.

Chapter 3, “Language,” introduces the fundamentals of the PostScript
language: its syntax, semantics, data types, execution model, and inter-
actions with application programs. This chapter concentrates on the
conventional programming aspects of the language, ignoring its graph-
ical capabilities and use as a page-description language.

Chapter 4, “Graphics,” introduces the PostScript language imaging
model at a device-independent level. It describes how to define and
manipulate graphical entities—lines, curves, filled areas, sampled
images, and higher-level structures such as patterns and forms. It
includes complete information on the color models that the PostScript
language supports. Finally, it describes how a page description commu-
nicates its document processing requirements to the output device.

Chapter 5, “Fonts,” describes how the PostScript language deals with
text. Characters are defined as graphical shapes, whose behavior con-
forms to the graphical model presented in Chapter 4. Because of the
importance of text in most applications, the PostScript language pro-
vides special capabilities for organizing sets of characters as fonts and
for painting characters efficiently.

Chapter 6, “Rendering,” details the device-dependent aspects of render-
ing PostScript language page descriptions on printers and displays.
These include color rendering, transfer functions, halftoning, and scan
conversion, each of which is device dependent in some way.

Chapter 7, “Display PostScript,” explains the concepts and PostScript
language operators specific to interactive display applications.

PLRM 2nd Edition January 21, 1994 Introduction

4 Chapter 1: Introduction

Chapter 8, “Operators,” describes all PostScript language operators and
procedures. The chapter begins by categorizing operators into func-
tional groups. Then the operators appear in alphabetical order, with
complete descriptions of their operands, results, side effects, and possi-
ble errors.

The manual concludes with several appendices containing useful infor-
mation that is not a formal part of the PostScript language.

Appendix A, “Changes to Language and Implementation,” lists the
changes that have been made to the PostScript language since the first
edition of this manual.

Appendix B, “Implementation Limits,” describes typical limits imposed
by implementations of the PostScript interpreter—for example, maxi-
mum integer value and maximum stack depth.

Appendix C, “Interpreter Parameters,” specifies various parameters to
control the operation and behavior of the PostScript interpreter. Most
of these parameters have to do with allocation of memory and other
resources for specific purposes.

Appendix D, “Compatibility Strategies,” helps PostScript language pro-
grammers take advantage of PostScript Level 2 features while maintain-
ing compatibility with the installed base of Level 1 interpreter products.

Appendix E, “Standard Character Sets and Encoding Vectors,” describes
the organization of most common fonts that are built into interpreters
or are available as separate software products.

Appendix F, “System Name Encodings,” assigns numeric codes to stan-
dard names, for use in binary-encoded PostScript language programs.

Appendix G, “Document Structuring Conventions—Version 3.0,”
describes a convention for structuring PostScript language page descrip-
tions to facilitate their handling and processing by other programs.

Appendix H, “Encapsulated PostScript File Format—Version 3.0,”
describes a format that enables applications to treat each others’ output
as included illustrations.

Appendix I, “Guidelines for Specific Operators,” provides guidelines for
PostScript language operators whose use can cause unintended side
effects, make a document device dependent, or inhibit post-processing
of a document by other programs.

PLRM 2nd Edition January 21, 1994 Introduction

1.2 Evolution of the PostScript Language 5

“ Bibliography ” is a list of sources for many of the concepts in the Post-
Script language.

Since this is a reference manual and not a tutorial, it provides relatively
few guidelines on how to use the PostScript language effectively . As
with any programming language, certain techniques yield the best solu-
tions to particular programming problems; there are issues of style that
in fluence the performance, quality , and consistency of the results.
These matters are the main topics of two companion books.

• PostScript Language Tutorial and Cookbook introduces the PostScript
language at a basic level. It includes a large number of techniques
and recipes for obtaining results from the mundane to the exotic.
This book emphasizes examples, not ef ficient programming strate-
gies, to illustrate in a clear way many of the capabilities of the Post-
Script language.

• PostScript Language Program Design is for programmers interested in
the effective and ef ficient design of PostScript language programs
and printer drivers. It includes many programming examples that
are recommended for direct use in applications.

An additional book, Adobe Type 1 Font Format, speci fies the internal
organization of a T ype 1 font program. That speci fication is logically
part of the PostScript language, but it is published separately because it
is highly specialized and is of interest to a different user community .

A great deal of additional technical documentation is available through
the Adobe Systems Developers ’ Association. Registered software devel-
opers receive regular mailings of technical papers, telephone support,
and discounts on PostScript hardware and software products. For infor-
mation about the Developers ’ Association, please write to this address:

Adobe Developer Technologies
Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110 USA

1.2 Evolution of the PostScript Language

Since its introduction in 1985, the PostScript language has been consid-
erably extended for greater programming power , ef ficiency, and flexibil-
ity . Typically , these language extensions have been designed to adapt

PLRM 2nd Edition January 21, 1994 Introduction

6 Chapter 1: Introduction

the PostScript language to new imaging technologies or system envi-
ronments. While these extensions have introduced significant new
functionality and flexibility to the language, the basic imaging model
remains unchanged. The principal extensions are:

• Color. The color extensions provide a cyan-magenta-yellow-black
(CMYK) color model for specifying colors and a colorimage operator
for painting color sampled images. They also include additional ren-
dering controls for color output devices.

• Composite fonts. The composite font extensions enhance the basic
font facility to support character sets that are very large or have com-
plex requirements for encoding or character positioning.

• Display PostScript. The Display PostScript system enables workstation
applications to use the PostScript language and imaging model for
managing the appearance of the display. Some of the extensions are
specialized to interactive display applications, such as concurrent
execution and support for windowing systems. Other extensions are
more general and are intended to improve performance or program-
ming convenience.

In addition to the language extensions above, there have been other
minor additions to the language, such as file system extensions to sup-
port products that include disks or cartridges. See Appendix A for com-
plete details.

This manual documents the entire PostScript language, which consists
of three distinct groups of operators: Level 1, Level 2, and Display Post-
Script operators. Level 1 operators are the ones documented in the first
edition of the PostScript Language Reference Manual. Level 2 operators
include all operators from the language extensions described above and
new operators introduced into the language for PostScript Level 2. Dis-
play PostScript operators are those operators present only in Display
PostScript systems. Chapter 8 clearly identifies Level 2 and Display Post-
Script operators with the following icons:

Level 2 operator

 Display PostScript operator

LEVEL 2

DPS

PLRM 2nd Edition January 21, 1994 Introduction

1.3 PostScript Level 2 Overview 7

While the Postscript language is a well-defined standard, not all Post-
Script interpreters include all language features. Products that contain
PostScript software from Adobe Systems can be categorized as follows:

• Level 1 implementations include all Level 1 operators. Some Level 1
implementations include one or more language extensions. For
example, PostScript color printers support Level 1 operators plus the
color extensions.

• Level 2 implementations include all Level 1 and Level 2 operators.

• Display PostScript systems include the Display PostScript operators
and can be based on either Level 1 or Level 2 implementations. Dis-
play PostScript systems based on Level 1 include the Display Post-
Script and color extensions mentioned above and sometimes other
extensions as well. Display PostScript systems based on Level 2
include all Level 2 operators.

Appendix D describes strategies for writing PostScript language pro-
grams that can run compatibly on interpreters based on either Level 1
or Level 2 implementations of the language.

1.3 PostScript Level 2 Overview

In addition to unifying all previous language extensions, PostScript
Level 2 introduces a number of new language features. This section
summarizes both new language features and ones from previous lan-
guage extensions, which are now part of PostScript Level 2.

• Dictionaries. Many Level 2 operators expect a dictionary operand that
contains key-value pairs specifying parameters to the operator. Lan-
guage features controlled in this way include halftones, images,
forms, patterns, and device setup. This organization allows for
optional parameters and future extensibility. For convenience in
using such operators, the PostScript language syntax includes new
tokens, << and >>, to construct a dictionary containing the brack-
eted key-value pairs.

• Memory management. It is now possible to remove individual entries
from dictionaries and to remove font definitions in an order unre-
lated to the order in which they were created. Virtual memory (VM)
is reclaimed automatically for composite objects that are no longer
accessible. In general, memory is more efficiently shared among dif-
ferent uses and arbitrary memory restrictions have been eliminated.

PLRM 2nd Edition January 21, 1994 Introduction

8 Chapter 1: Introduction

• Resources. A resource is a collection of named objects that either
reside in VM or can be located and brought into VM on demand.
There are separate categories of resources with independent name
spaces—for example, fonts and forms are distinct resource categories.
The language includes convenient facilities for locating and manag-
ing resources.

• Filters. A filter transforms data as it is being read from or written to a
file. The language supports filters for ASCII encoding of binary data,
compression and decompression, and embedded subfiles. Properly
used, these filters reduce the storage and transmission costs of page
descriptions, especially ones containing sampled images.

• Binary encoding. In addition to the standard ASCII encoding, the lan-
guage syntax includes two binary-encoded representations. These
binary encodings improve efficiency of generation, representation,
and interpretation. However, they are less portable than the ASCII
encoding and are suitable for use only in controlled environments.

• User paths. A user path is a self-contained procedure that consists
entirely of path construction operators and their coordinate oper-
ands. User path operators perform path construction and painting as
a single operation; this is both convenient and efficient. There is a
user path cache to optimize interpretation of user paths that are
invoked repeatedly. There are also some convenience operators for
painting rectangles.

• Forms. A form is a self-contained description of any arbitrary graph-
ics, text, and sampled images that are to be painted multiple times—
on each of several pages or several times at different locations on a
single page. There is a form cache to optimize repeated uses of the
same form.

• Color spaces. Colors can be specified according to a variety of color
systems, including gray-scale, RGB, CMYK, and CIE based. Patterns,
color mapping, and separations are also modelled as color spaces.
The color space is now an explicit parameter of the graphics state.

• CIE-based color spaces. The language supports several device-indepen-
dent color spaces based on the CIE 1931 (XYZ)-space, a system for
specifying color values in a way that is related to human visual per-
ception. A given CIE-based color specification can be expected to
produce consistent results on different color output devices, inde-
pendent of variations in marking technology, ink colorants, or
screen phosphors.

PLRM 2nd Edition January 21, 1994 Introduction

1.4 Copyrights and Trademarks 9

• Patterns. It is possible to paint with patterns as well as with solid col-
ors. When the current color is a pattern, painting operators apply
“paint” that is produced by replicating (or tiling) a small graphical
figure, called a pattern cell, at fixed intervals in x and y to cover the
areas being painted. The appearance of a pattern cell is defined by an
arbitrary PostScript language procedure, which can include graphics,
text, and sampled images. There is a pattern cache to optimize
repeated uses of the same pattern.

• Images. There are several enhancements to the facilities for painting
sampled images: use of any color space, 12-bit component values,
direct use of files as data sources, and additional decoding and ren-
dering options.

• Other text and graphics operators. There are several other new opera-
tors optimized for performance. Graphics state objects allow fast
switching among arbitrary graphics states. Automatic stroke adjust-
ment efficiently compensates for rasterization effects to produce
strokes of uniform thickness when rendering thin lines at low resolu-
tions. New variants of show provide a natural way for applications to
deal with individual character positioning and enable simultaneous
pair kerning, track kerning, and justification. The selectfont operator
optimizes switching among fonts.

• Device setup. The setpagedevice operator provides a device-indepen-
dent framework for specifying the requirements of a page descrip-
tion and for controlling both standard features, such as the number
of copies, and optional features of a device, such as duplex printing.

• Interpreter parameters. Administrative operations, such as system con-
figuration and changing input-output device parameters, are now
organized in a more systematic way. Allocation of memory and other
resources for specific purposes is under software control. For exam-
ple, there are parameters controlling the maximum amount of mem-
ory to be used for VM, font cache, form cache, pattern cache, and
halftone screens.

1.4 Copyrights and Trademarks

The general idea of utilizing a page-description language is in the public
domain. Anyone is free to devise his own set of unique commands that
constitute a page-description language. However, Adobe Systems Incor-
porated owns the copyright in the list of operators and the written spec-
ification for Adobe’s PostScript language. Thus, these elements of the

PLRM 2nd Edition January 21, 1994 Introduction

10 Chapter 1: Introduction

PostScript language may not be copied without Adobe’s permission.
Additionally, Adobe owns the trademark “PostScript,” which is used to
identify both the PostScript language and Adobe’s PostScript software.

Adobe will enforce its copyright and trademark rights. Adobe’s inten-
tions are to:

• Maintain the integrity of the PostScript language standard. This
enables the public to distinguish between the PostScript language
and other page-description languages.

• Maintain the integrity of “PostScript” as a trademark. This enables
the public to distinguish between Adobe’s PostScript interpreter and
other interpreters that can execute PostScript language programs.

However, Adobe desires to promote use of the PostScript language for
information interchange among diverse products and applications.
Accordingly, Adobe gives permission to anyone to:

• Write programs in the PostScript language.

• Write drivers to generate output consisting of PostScript language
commands.

• Write software to interpret programs written in the PostScript lan-
guage.

• Copy Adobe’s copyrighted list of commands to the extent necessary
to use the PostScript language for the above purposes.

The only condition of such permission is that anyone who uses the
copyrighted list of commands in this way must include an appropriate
copyright notice.

This limited right to use the copyrighted list of commands does not
include a right to copy the PostScript Language Reference Manual, other
copyrighted publications from Adobe, or the software in Adobe’s Post-
Script interpreter, in whole or in part. The trademark “PostScript” may
not be used to identify any product not originating from or licensed by
Adobe.

PLRM 2nd Edition January 21, 1994 Basic Ideas

11

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

CHAPTER 2

Basic Ideas

To obtain a complete understanding of the PostScript language, one
must consider it from several points of view:

• As a general-purpose programming language with powerful built-in
graphics primitives.

• As a page-description language that includes programming features.

• As an interactive system for controlling raster output devices (dis-
plays and printers).

• As an interchange format.

This chapter contains some basic ideas that are essential to understand-
ing the problems the PostScript language is designed to solve and the
environments in which it is designed to operate. Terminology intro-
duced here appears throughout the manual.

2.1 Raster Output Devices

Much of the power of the PostScript language derives from its ability to
deal with the general class of raster output devices. This class encom-
passes such technology as laser, dot-matrix, and ink-jet printers, digital
phototypesetters, and raster scan displays.

The defining property of a raster output device is that a printed or dis-
played image consists of a rectangular array of dots, called pixels (pic-
ture elements), that can be addressed individually. On a typical black
and white output device, each pixel can be made either black or white.
On certain devices, each pixel can be set to an intermediate shade of

Example 2.0
Table 2.0
Figure 2.0

PLRM 2nd Edition January 21, 1994 Basic Ideas

12 Chapter 2: Basic Ideas

gray or to some color. By individually setting the colors of many pixels,
one can generate printed or displayed output that includes text, arbi-
trary graphical shapes, and reproductions of sampled images.

The resolution of a raster output device is a measure of the number of
pixels per unit of distance along the two linear dimensions. Resolution
is typically—but not necessarily—the same horizontally and vertically.

Manufacturers’ decisions on device technology and price/performance
trade-offs create characteristic ranges of resolution:

• Displays in computer terminals have relatively low resolution, typi-
cally 50 to 110 pixels per inch.

• Dot-matrix printers generally range from 100 to 250 pixels per inch.

• Laser scanning coupled to xerographic printing technology is capa-
ble of medium resolution output of 300 to 600 pixels per inch.

• Photographic technology permits high resolutions of 1,000 pixels
per inch or more.

Higher resolution yields better quality and fidelity of the resulting out-
put, but is achieved at greater cost.

2.2 Scan Conversion

An abstract graphical entity (for example, a line, a circle, a text charac-
ter, or a sampled image) is rendered on a raster output device by a pro-
cess known as scan conversion. Given a PostScript language description
of the graphical entity, this process determines which pixels to adjust
and what values to assign those pixels to achieve the most faithful ren-
dition possible at the device resolution.

The pixels on the page can be represented by a two-dimensional array
of pixel values in computer memory. For an output device whose pixels
can be only black or white, a single bit suffices to represent each pixel.
For a device whose pixels can reproduce gray shades or colors, multiple
bits per pixel are required.

Note Although the ultimate representation of a printed or displayed page is
logically a complete array of pixels, its actual representation in computer
memory need not consist of one memory cell per pixel. Some implementations

PLRM 2nd Edition January 21, 1994 Basic Ideas

2.3 Page-Description Languages 13

use other representations, such as display lists. The PostScript language’s
imaging model has been carefully designed so as not to depend on any
particular representation of raster memory.

For each graphical entity that is to appear on the page, the scan con-
verter sets the values of the corresponding pixels. When the interpreta-
tion of the page description is complete, the pixel values in memory
represent the appearance of the page. At this point, a raster output pro-
cess can make this representation visible on a printed page or a display.

Scan converting a graphical shape, such as a rectangle or a circle,
involves determining which device pixels lie “inside” the shape and set-
ting their values appropriately (for example, by setting them to black).
Because the edges of a shape do not always fall precisely on the bound-
aries between pixels, some policy is required for deciding which pixels
along the edges are considered to be “inside.” Scan converting a text
character is conceptually the same as scan converting an arbitrary
graphical shape; however, characters are much more sensitive to legibil-
ity requirements, and must meet more rigid objective and subjective
measures of quality.

Rendering gray-scale images on a device whose pixels can be only black
or white is accomplished by a technique known as halftoning. The array
of pixels is divided into small clusters according to some pattern (called
the halftone screen). Within each cluster, some pixels are set to black and
some to white in proportion to the level of gray desired at that point in
the image. When viewed from a sufficient distance, the individual dots
become unnoticeable and the result is a shade of gray. This enables a
black-and-white raster output device to reproduce shades of gray and to
approximate natural images, such as photographs. Some color devices
use a similar technique.

2.3 Page-Description Languages

Theoretically, an application program could describe any page as a full-
page pixel array. But this would be unsatisfactory because the descrip-
tion would be bulky, the pixel array would be device dependent, and
memory requirements would be beyond the capacity of many personal
computers.

A page-description language should produce files that are relatively
compact for storage and transmission, and independent of any one out-
put device.

PLRM 2nd Edition January 21, 1994 Basic Ideas

14 Chapter 2: Basic Ideas

2.3.1 Levels of Description

In today’s computer printing industry, raster output devices with differ-
ent properties are proliferating, as are the applications that generate
output for those devices. Meanwhile, expectations are also rising; type-
writer emulation (text-only output in a single typeface) is no longer
adequate. Users want to create, display, and print documents that com-
bine sophisticated typography and graphics.

A high-level, device-independent page-description language that can
take advantage of the capabilities of different output devices answers
the need for high-quality output on many different printers and dis-
plays. Ideally, such a language should be able to describe the appear-
ance of pages containing text and graphics in terms of high-level,
abstract graphical entities rather than in terms of device pixels. Such a
description is economical and device independent.

Producing printed output from an application program then becomes a
two-stage process:

1. The application generates a device-independent description of the
desired output in the page-description language.

2. A program controlling a specific raster output device interprets the
description and renders it on that device.

The two stages may be executed in different places and at different
times; the page-description language serves as an interchange standard
for transmission and storage of printable or displayable documents.

2.3.2 Static versus Dynamic Formats

Today’s page-description languages may be considered on the basis of
their intrinsic capabilities and on whether they are static or dynamic.
Intrinsic capabilities include the built-in operations of the language,
such as the ability to deal with various sorts of text and graphics. Also,
the degree to which the built-in operations interact harmoniously is
important. A page-description language that treats text, graphical
shapes, and sampled images consistently facilitates applications that
must combine elements of all three on a single page.

• A static format provides some fixed set of operations (sometimes
called “control codes”) and a syntax for specifying the operations
and their arguments. Static formats have been in existence since
computers first used printers; classic examples are format control

PLRM 2nd Edition January 21, 1994 Basic Ideas

2.3 Page-Description Languages 15

codes for line printers and “format effector” codes in standard char-
acter sets. Historically, static formats have been designed to capture
the capabilities of a specific class of printing device and have evolved
to include new features as needed.

• A dynamic format allows much more flexibility than a static format.
The operator set may be extensible and the exact meaning of an
operator may not be known until it is actually encountered. A page
described in a dynamic format is a program to be executed rather
than data to be consumed. Dynamic page-description languages con-
tain elements of programming languages, such as procedures, vari-
ables, and control constructs.

A print or display format that is primarily static but that purports to
cover a lot of graphic and text capabilities tends to have many special-
purpose operators. A dynamic format that allows primitive operations
to be combined according to the needs of the application will always be
superior to a static format that tries to anticipate all possible needs.

The PostScript language design is dynamic. The language includes a set
of primitive graphic operators that can be combined to describe the
appearance of any printed or displayed page. It has variables and allows
arbitrary computations while interpreting the page description. It has a
rich set of programming language control structures for combining its
elements.

For very complicated page layouts, there may be times when a page
description must depend on information about the specific output
device in use. This information may be known only when the page
description is executed, not when it is composed. It is essential for a
page description to be able to read information from its execution envi-
ronment and to perform arbitrary computations based on that informa-
tion while generating the desired output.

These considerations have led to the design of the PostScript language,
a dynamic format whose page descriptions are programs to be executed
by an interpreter. PostScript language programs can be simplified to a
form that resembles a static format—in other words, an uninterrupted
sequence of basic commands to image text or graphics. Page descrip-
tions generated by applications with simple needs will often have this
simple nature. However, when the need arises, the power is there for
the knowledgeable application designer to exploit.

PLRM 2nd Edition January 21, 1994 Basic Ideas

16 Chapter 2: Basic Ideas

2.4 Using the PostScript Language

It is important to understand the PostScript interpreter and how it
interacts with applications using it.

A page description is a self-contained PostScript language description of a
document, which is generated at one time for execution at some arbi-
trarily later time. To facilitate document interchange, a page description
should conform to the structuring conventions discussed below.

An interactive session is a two-way interaction between an application
program and a PostScript interpreter. There is no notion that the infor-
mation being communicated represents a document to be preserved for
later execution. A session has no obvious overall structure; the structur-
ing conventions do not apply.

2.4.1 The Interpreter

The PostScript interpreter controls the actions of the output device
according to the instructions provided in the PostScript program gener-
ated by an application.

The interpreter executes the page description and produces output on a
printer, display, or other raster device. The PostScript interpreter and
the output device are bundled together and treated essentially as a
black box by the application; the interpreter has little or no direct inter-
action with the application’s end user.

There are three ways the PostScript interpreter and the application
interact (Figure 2.1 on page 17 illustrates these scenarios):

• In the traditional PostScript printer model, the application creates a
page description. The page description can be sent to the PostScript
interpreter immediately or stored for transmission at some other
time. The interpreter consumes a sequence of page descriptions as
“print jobs” and produces the requested output. The output device is
typically a printer, but it can be a preview window on a workstation’s
display. The PostScript interpreter is often implemented on a dedi-
cated processor that has direct control over the raster output device.

• In the display model, an application interacts with the PostScript
interpreter controlling a display or windowing system. The interac-
tion consists of a session instead of a one-way transmission of a page
description. In response to user actions, the application issues com-

PLRM 2nd Edition January 21, 1994 Basic Ideas

2.4 Using the PostScript Language 17

mands to the PostScript interpreter and sometimes reads informa-
tion back from it. This form of interaction is supported by the
Display PostScript system, described in Chapter 7.

• In the interactive programming language model, a programmer
interacts with the PostScript interpreter directly, issuing PostScript
language commands for immediate execution. Many PostScript
interpreters (for both printers and displays) have a rudimentary
interactive executive to support this mode of use; see section 2.4.4,
“Using the Interpreter Interactively.”

Figure 2.1 How the PostScript interpreter and an application interact

Even when a PostScript interpreter is being used non-interactively to
execute page descriptions prepared previously, there may be some
dynamic interactions between the print manager or spooler and the
PostScript interpreter. For example, the sender may ask the PostScript
interpreter if certain fonts referenced by a document are available. This
is accomplished by sending the interpreter a short program to read and
return the information. The PostScript interpreter makes no distinction
between a page description and a program that makes environmental
queries or performs other arbitrary computations. To ensure consistent
and reliable behavior in a variety of system environments, queries
should conform to the conventions described in Appendix G.

1) Traditional PostScript printer model

Application
page
description

PostScript
interpreter

Printer or
preview device

2) Display PostScript model

Application PostScript
interpreter

Interactive
display

3) Interactive programming language model

PostScript
interpreter

Any
device

Human
programmer

session

session

PLRM 2nd Edition January 21, 1994 Basic Ideas

18 Chapter 2: Basic Ideas

2.4.2 Program Structure

A well-structured PostScript language page description generally con-
sists of two parts: a prolog followed by a script. There is nothing in the
PostScript language that formally distinguishes the prolog from the
script or imposes any overall document structure. Such structuring is
merely a convention, but one that is quite useful and is recommended
for most applications.

• The prolog is a set of application-specific procedure definitions that
an application may use in the execution of its script. It is included as
the first part of every PostScript language file generated by the appli-
cation. It contains definitions that match the output functions of
the application with the capabilities supported by the PostScript lan-
guage.

• The script is generated automatically by the application program to
describe the specific elements of the pages being produced. It con-
sists of references to PostScript operators and to procedure defini-
tions in the prolog, together with operands and data. The script,
unlike the prolog, is usually very stylized, repetitive, and simple.

Dividing a PostScript language program into a prolog and a script
reduces the size of each page description and minimizes data communi-
cation and disk storage. An example may help explain the purpose of a
separate prolog and script. One of the most common tasks in a Post-
Script language program is placing text at a particular location on the
current page. This is really two operations: “moving” the current point
to a specific location and “showing” the text. A program is likely to do
this often, so it’s useful for the prolog to define a procedure that com-
bines the operations:

/ms {moveto show} bind def

Later, the script can call the “ms” procedure instead of restating the
individual operations:

(some text) 100 200 ms

The script portion of a printable document ordinarily consists of a
sequence of separate pages. The description of an individual page
should stand by itself, depending only on the definitions in the prolog
and not on anything in previous pages of the script. The language
includes facilities (described in section 3.7, “Memory Management”)
that may be used to guarantee page independence.

PLRM 2nd Edition January 21, 1994 Basic Ideas

2.4 Using the PostScript Language 19

Adobe has established conventions to make document structure
explicit. These document structuring conventions appear in Appendix
G. Document structure is expressed as PostScript language comments;
the interpreter pays no attention to them. However, there are good rea-
sons to adhere to the conventions:

• Utility programs can operate on structured documents in various
ways: change the order of pages, extract subsets of pages, embed
individual pages within other pages, and so on.

• Print managers and spoolers can obtain useful information from a
properly structured document to determine how the document
should be handled.

• The structuring conventions serve as a good basis for organizing
printing from an application.

An application has its own model of the appearance of printable output
that it generates. Some parts of this model are fixed for an entire docu-
ment or for all documents; the application should incorporate their
descriptions into the prolog. Other parts vary from one page to
another; the application should produce the necessary descriptions of
these as they appear. At page boundaries, the application should gener-
ate commands to restore the standard environment defined by the pro-
log and then explicitly re-establish non-standard portions of the
environment for the next page. This technique ensures that each page
is independent of any other.

2.4.3 Translating From Other Print Formats

Many existing applications generate printable documents in some
other print file format or in some intermediate representation. It is pos-
sible to print such documents by translating them into PostScript lan-
guage page descriptions. For example, Adobe’s TranScript® software
package translates documents from a number of widely-used represen-
tations in the UNIX® environment into the PostScript language.

Implementing a translator is often the least expensive way to interface
an existing application to a PostScript printer. Unfortunately, while
such translation is usually straightforward, a translator may not be able
to generate page descriptions that make the best use of the descriptive
capabilities of the PostScript language. This is because the print file
being translated often describes the desired results at a level that is too
low; any higher-level information maintained by the original applica-
tion has been lost and is not available to the translator.

PLRM 2nd Edition January 21, 1994 Basic Ideas

20 Chapter 2: Basic Ideas

While direct PostScript language output from applications is most desir-
able, translation from another print format may be the only choice
available for some applications. A translator should do the best it can to
produce output that conforms to the document structuring conven-
tions (see Appendix G). This ensures that such output is compatible
with the tools for manipulating PostScript page descriptions.

Once again, these guidelines for program structure are not part of the
PostScript language and are not enforced by the PostScript interpreter.
In some cases, a program may require an organization that is incompat-
ible with the structuring conventions; this is most likely to be true of
programs composed directly by a programmer. However, for page
descriptions generated automatically by applications, adherence to the
structuring conventions is strongly recommended.

2.4.4 Using the Interpreter Interactively

Normally, the interpreter executes PostScript language programs gener-
ated by application programs; a user does not interact with the Post-
Script interpreter directly. However, many PostScript interpreters
provide an interactive executive that enables a user to control the inter-
preter directly. That is, from a terminal or terminal emulator connected
directly to the PostScript interpreter, you can issue commands for
immediate execution and control the operation of the interpreter in
limited ways. This is useful for experimentation and debugging.

To use the interpreter this way, you must first connect your terminal
directly to the standard input and output channels of the PostScript
interpreter, so characters that you type are sent directly to the inter-
preter and characters that the interpreter sends appear on your termi-
nal’s screen. How to accomplish this depends on the product. A typical
method is to connect an ordinary character terminal (or personal com-
puter running terminal emulation software) to a PostScript printer via
the printer’s serial connector.

Then, invoke the interactive executive by typing:

executive

(all lower case) followed by the return or line-feed key. The interpreter
responds with a herald, such as:

PLRM 2nd Edition January 21, 1994 Basic Ideas

2.4 Using the PostScript Language 21

PostScript(r) Version 2001.3
Copyright (c) 1984-1990 Adobe Systems Incorporated.
All Rights Reserved.
PS>

The PS> prompt is an indication that the PostScript interpreter is wait-
ing for you to issue a command.

Each time you type a complete PostScript language statement followed
by return or line-feed, the interpreter executes that statement, then
sends another PS> prompt. If the statement causes the interpreter to
send back any output (produced by execution of the print or = opera-
tors, for example), that output appears before the PS> prompt. If the
statement causes an error to occur, an error message appears before the
PS> prompt; control remains in the interactive executive whereas errors
normally cause a job to terminate.

The interactive executive provides a few simple amenities. While you
are typing, the interpreter ordinarily “echoes” the typed characters—it
sends them back to your terminal so you can see them. You can use the
control characters in Table 2.1 to make corrections while entering a
statement.

Table 2.1 Control characters for the interactive executive

Character Function

Backspace (BS) Backs up and erases one character.

Delete (DEL) Same as backspace.

Control-U Erases the current line.

Control-R Redisplays the current line.

Control-C Aborts the entire statement and starts over. Control-C
can also abort a statement that is executing and force
the executive to revert to a PS> prompt.

The interactive executive remains in operation until you invoke the
quit operator or enter a channel-dependent end-of-file indication (for
example, Control-D for a serial connection).

PLRM 2nd Edition January 21, 1994 Basic Ideas

22 Chapter 2: Basic Ideas

There are several important things you should understand about the
interactive executive:

• It is intended solely for direct interaction with the user; an applica-
tion that is generating PostScript language programs should never
invoke executive. In general, a program behaves differently when
sent through the interactive executive than when executed directly
by the PostScript interpreter. For example, the executive produces
extraneous output such as echoes of the input characters and PS>
prompts. Furthermore, a program that explicitly reads data embed-
ded in the program file malfunctions if invoked via the executive,
since the executive itself is interpreting the file.

• The user amenities are intentionally minimal. The executive is not a
full-scale programming environment; it lacks a text editor and other
tools required for program development and it does not keep a
record of your interactive session. The executive is useful mainly for
experimenting and debugging.

• executive is not necessarily available in all PostScript interpreters. Its
behavior may vary among different products.

PLRM 2nd Edition January 21, 1994 Language

23

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

CHAPTER 3

Language

Syntax, data types, and execution semantics are essential aspects of any
PostScript language program. Later chapters document the graphics and
font capabilities that specialize PostScript language software to the task
of controlling the appearance of a printed page or controlling an inter-
active session on the screen. This chapter is concerned with explaining
the PostScript language as a programming language.

As with all programming languages, the PostScript language builds on
elements and ideas from several of the great programming languages.
The syntax most closely resembles that of the programming language
FORTH. It incorporates a postfix notation in which operators are pre-
ceded by their operands. The number of special characters is small and
there are no reserved words.

Note Although the number of built-in operators is large, the names that represent
operators are not reserved by the language. A PostScript language program
may change the meanings of operator names.

The data model includes elements, such as numbers, strings, and arrays,
that are found in many modern programming languages. It also
includes the ability to treat programs as data and to monitor and con-
trol many aspects of the language’s execution state; these notions are
derived from programming languages such as LISP.

PostScript is a relatively simple language. It derives its power from the
ability to combine these features in unlimited ways without arbitrary
restrictions. Though you may seldom fully exploit this power, you can
design sophisticated graphical applications that would otherwise be dif-
ficult or impossible.

Because this is a reference manual and not a tutorial, this chapter
describes each aspect of the language systematically and thoroughly
before moving on to the next. It begins with a brief overview of the

lck

Example 3.0
Table 3.0
Figure 3.0

PLRM 2nd Edition January 21, 1994 Language

24 Chapter 3: Language

PostScript interpreter. The following sections detail the syntax, data
types, execution semantics, memory organization, and general-purpose
operators of the PostScript language—excluding those that deal with
graphics and fonts. The final sections cover file input and output,
named resources, errors, how the interpreter evaluates name objects,
and details on binary encodings and filtered files.

3.1 Interpreter

The PostScript interpreter executes the PostScript language according to
the rules in this chapter. These rules determine the order in which oper-
ations are carried out and how the pieces of a PostScript language pro-
gram fit together to produce the desired results.

The interpreter manipulates entities called PostScript objects. Some
objects are data, such as numbers, booleans, strings, and arrays. Other
objects are elements of programs to be executed, such as names, opera-
tors, and procedures. However, there is not a distinction between data
and programs; any PostScript object may be treated as data or be exe-
cuted as part of a program.

The interpreter operates by executing a sequence of objects. The effect
of executing a particular object depends on that object’s type, attributes,
and value. For example, executing a number object causes the inter-
preter to push a copy of that object on the operand stack (to be
described shortly). Executing a name object causes the interpreter to
look up the name in a dictionary, fetch, and execute the associated
value. Executing an operator object causes the interpreter to perform a
built-in action, such as adding two numbers or painting characters in
raster memory.

The objects to be executed by the interpreter come from two principal
sources:

• A character stream may be scanned according to the syntax rules of
the PostScript language, producing a sequence of new objects. As
each object is scanned, it is immediately executed. The character
stream may come from an external source, such as a file or a commu-
nication channel, or it may come from a string object previously
stored in the PostScript interpreter’s memory.

• Objects previously stored in an array in memory may be executed in
sequence. Such an array is known as a procedure.

PLRM 2nd Edition January 21, 1994 Language

3.2 Syntax 25

The interpreter can switch back and forth between executing a proce-
dure and scanning a character stream. For example, if the interpreter
encounters a name in a character stream, it executes that name by look-
ing it up in a dictionary and retrieving the associated value. If that
value is a procedure object, the interpreter suspends scanning the char-
acter stream and begins executing the objects in the procedure. When it
reaches the end of the procedure, it resumes scanning the character
stream where it left off. The interpreter maintains an execution stack for
remembering all of its suspended execution contexts.

3.2 Syntax

As the interpreter scans the text of a PostScript language program, it cre-
ates various types of PostScript objects, such as numbers, strings, and
procedures. This section discusses only the syntactic representation of
such objects. Their internal representation and behavior are covered in
section 3.3, “Data Types and Objects.”

There are three encodings for the PostScript language: ASCII, binary
token, and binary object sequence. The ASCII encoding is preferred for
expository purposes (such as this manual), for archiving documents,
and for transmission via communications facilities because it is easy to
read and does not rely on any special characters that might be reserved
for communications use. The two binary encodings are usable in con-
trolled environments to improve efficiency of representation or execu-
tion; they are intended exclusively for machine generation. There is
detailed information on the binary encodings in section 3.12, “Binary
Encoding Details,” at the end of this chapter.

3.2.1 Scanner

The PostScript language differs from most other programming lan-
guages in that it does not have any syntactic entity for a “program,” nor
is it necessary for an entire “program” to exist in one place at one time.
PostScript has no notion of “reading in” a program before executing it.
Instead, the PostScript interpreter consumes a program by reading and
executing one syntactic entity at a time. From the interpreter’s point of
view, the program has no permanent existence. Execution of the pro-
gram may have side effects in the interpreter’s memory or elsewhere.
These side effects may include the creation of procedure objects in
memory that are intended to be invoked later in the program; their exe-
cution is deferred.

PLRM 2nd Edition January 21, 1994 Language

26 Chapter 3: Language

It is not correct to think the PostScript interpreter “executes” the char-
acter stream directly. Rather, a scanner groups characters into tokens
according to the PostScript language syntax rules. It then assembles one
or more tokens to create a PostScript object—in other words, a data
value in the interpreter’s memory. Finally, the interpreter executes the
object.

For example, when the scanner encounters a group of consecutive dig-
its surrounded by spaces or other separators, it assembles the digits into
a token and then converts the token into a number object represented
internally as a binary integer. The interpreter then executes this number
object; in this case, it pushes a copy of the number object on the oper-
and stack.

3.2.2 ASCII Encoding

The standard character set for ASCII-encoded PostScript language pro-
grams is the printable subset of the ASCII character set, plus the charac-
ters space, tab, and newline (return or line-feed). ASCII is the American
Standard Code for Information Interchange, a widely used convention
for encoding characters as binary numbers. ASCII encoding does not
prohibit the use of characters outside this set, but such use is not rec-
ommended because it impairs portability and may make transmission
and storage of PostScript language programs more difficult.

Note Control characters are often usurped by communications functions. Control
codes are device dependent—not part of the PostScript language. For example,
the serial communications protocol supported by many products uses the
Control-D character as an end-of-file indication. In such cases, Control-D is a
communications function and should not be part of a PostScript language
program.

Table 3.1 Characters treated as white space

Octal Hex Decimal Name

000 00 0 Null (nul)

011 09 9 Tab (tab)

012 0A 10 Line-feed (LF)

014 0C 12 Form-feed (FF)

015 0D 13 Carriage-return (CR)

040 20 32 Space (SP)

PLRM 2nd Edition January 21, 1994 Language

3.2 Syntax 27

White-space characters separate other syntactic constructs such as
names and numbers from each other. The interpreter treats any number
of consecutive white space characters as if there were just one. All
white-space characters are equivalent, except in comments and strings.

The characters carriage-return (CR) and line-feed (LF) are also called
newline characters. A CR followed immediately by an LF are treated
together as one newline.

The characters (,), <, >, [,], {, }, /, and % are special. They delimit syn-
tactic entities such as strings, procedure bodies, name literals, and com-
ments. Any of these characters terminates the entity preceding it and is
not included in the entity.

All characters besides the white-space characters and delimiters are
referred to as regular characters. These include non-printing characters
that are outside the recommended PostScript ASCII character set.

Comments

Any occurrence of the character % outside a string introduces a com-
ment. The comment consists of all characters between the % and the
next newline or form-feed, including regular, delimiter, space, and tab
characters.

The scanner ignores comments, treating each one as if it were a single
white-space character. That is, a comment separates the token preced-
ing it from the one following. Thus, the ASCII-encoded program frag-
ment

abc% comment {/%) blah blah blah
123

is treated by the scanner as just two tokens: abc and 123.

Numbers

Numbers in the PostScript language include signed integers, such as

123 –98 43445 0 +17

reals, such as

–.002 34.5 –3.62 123.6e10 1E–5 –1. 0.0

PLRM 2nd Edition January 21, 1994 Language

28 Chapter 3: Language

and radix numbers, such as

8#1777 16#FFFE 2#1000

An integer consists of an optional sign followed by one or more decimal
digits. The number is interpreted as a signed decimal integer and is con-
verted to an integer object. If it exceeds the implementation’s limit for
integers, it is converted to a real object (see Appendix B).

A real consists of an optional sign and one or more decimal digits, with
an embedded period (decimal point), a trailing exponent, or both. The
exponent, if present, consists of E or e followed by an optional sign and
one or more decimal digits. For example, the following numbers are
legal reals:

1E6 1.0E6 1.0E–6

The number is interpreted as a real and is converted to a real (floating
point) object. If it exceeds the implementation limit for reals, a
limitcheck error occurs.

A radix number takes the form base#number, where base is a decimal
integer in the range 2 through 36. The number is then interpreted in
this base; it must consist of digits ranging from 0 to base – 1. Digits
greater than 9 are represented by the letters A through Z (or a through
z). The number is treated as an unsigned integer and is converted to an
integer object. This notation is intended for specifying integers in a
non-decimal radix, such as binary, octal, or hexadecimal. If the number
exceeds the implementations limit for integers, a limitcheck error
occurs.

Strings

There are three conventions for quoting a literal string object:

• As literal text enclosed in (and).

• As hexadecimal encoded data enclosed in < and >.

• As ASCII base-85 encoded data enclosed in <~ and ~> (Level 2 only).

A literal text string consists of an arbitrary number of characters
enclosed in (and). Any characters may appear in the string other than
(,), and \, which must be treated specially. Balanced pairs of parenthe-
ses in the string require no special treatment.

PLRM 2nd Edition January 21, 1994 Language

3.2 Syntax 29

The following lines show several valid strings:

(This is a string)
(Strings may contain newlines
and such.)
(Strings may contain special characters *–&}^% and
balanced parentheses () (and so on).)
(The following is an "empty" string.)
()
(It has 0 (zero) length.)

Within a text string, the \ (backslash) character is treated as an “escape”
for various purposes, such as including unbalanced parentheses, non-
printing characters, and the \ character itself. The character immedi-
ately following the \ determines its precise interpretation.

\n line-feed (LF or newline)
\r carriage return (CR)
\t horizontal tab
\b backspace
\f form-feed
\\ backslash
\(left parenthesis
\) right parenthesis
\ddd character code ddd (octal)

If the character following the \ is not in the preceding list, the scanner
ignores the \. If the \ is followed immediately by a newline (CR, LF, or
CR LF pair), the scanner ignores both the initial \ and the newline. But
if a newline appears without a preceding \, the result is equivalent to
\n. For more information about end-of-line conventions, see section
3.8, “File Input and Output.”

The \ newline combination breaks a string into multiple lines but with-
out including the newline characters as part of the string, as in the fol-
lowing examples:

(These\
two strings\
are the same.)
(These two strings are the same.)

(This string has a newline at the end of it.
)
(So does this one.\n)

PLRM 2nd Edition January 21, 1994 Language

30 Chapter 3: Language

The \ddd form may be used to include any 8-bit character constant in a
string. One, two, or three octal digits may be specified with high-order
overflow ignored. This notation is preferred for specifying a character
outside the recommended ASCII character set for the PostScript lan-
guage, since the notation itself stays within the standard set and
thereby avoids possible difficulties in transmitting or storing the text of
the program.

There are two other conventions for representing arbitrary data as
ASCII text: the hexadecimal (base 16) encoding and the ASCII base-85
encoding.

A hexadecimal string consists of a sequence of hex characters (the digits
0 through 9 and the letters A through F or a through f) enclosed within
< and >. Each pair of hex digits defines one character of the string. If the
final digit of a given string is missing—in other words, if there is an odd
number of digits—the final digit is assumed to be zero. White-space
characters are ignored. For example,

<901fa3>

is a three-character string containing the characters whose hex codes
are 90, 1f, and a3. But

<901fa>

is a three-character string containing the characters whose hex codes
are 90, 1f, and a0. Hexadecimal strings are useful for including arbitrary
binary data as literal text.

An ASCII base-85 encoded string (Level 2 only) consists of a sequence of
printable ASCII characters enclosed in <~ and ~>. This represents arbi-
trary binary data using an encoding technique that produces a 4:5
expansion as opposed to the 1:2 expansion for hexadecimal. If a hexa-
decimal or ASCII base-85 string is malformed, a syntaxerror occurs. The
ASCII base-85 encoding algorithm is described under ASCII85Encode in
section 3.13, “Filtered Files Details.”

Names

Any token that consists entirely of regular characters and cannot be
interpreted as a number is treated as a name object (more precisely, an
executable name). All characters except delimiters and white space can
appear in names, including characters ordinarily considered to be punc-
tuation.

PLRM 2nd Edition January 21, 1994 Language

3.2 Syntax 31

The following are examples of valid names:

abc Offset $$ 23A 13-456 a.b $MyDict @pattern

Use care when choosing names that begin with digits. For example,
while 23A is a valid name, 23E1 is a real number, and 23#1 is a radix
number token that represents an integer.

A / (slash—not backslash) introduces a literal name. The slash is not part
of the name itself, but is a prefix indicating that the following name is a
literal. There can be no white space between the / and the name. The
characters // (two slashes) introduce an immediately evaluated name. The
important properties and uses of names, and the distinction between
executable and literal names are described in section 3.3, “Data Types
and Objects”; immediately evaluated names are discussed in section
3.11.2, “Immediately Evaluated Names.”

Arrays

The characters [and] are self-delimiting tokens that specify the con-
struction of an array. The program fragment

[123 /abc (xyz)]

results in the construction of an array object containing the integer
object 123, the literal name object abc, and the string object xyz. Each
token within [] is executed in turn.

[and] are special syntax for names that, when executed, invoke Post-
Script language operators that collect objects and construct an array
containing them. Thus, the example

[123 /abc (xyz)]

really contains the five tokens described below:

• The name object [.

• The integer object 123.

• The literal name object abc.

• The string object xyz.

• The name object].

PLRM 2nd Edition January 21, 1994 Language

32 Chapter 3: Language

When the example is executed, a sixth object (the array) results from
executing the [and] name objects.

Procedures

The special characters { and } delimit an executable array, otherwise
known as a procedure. The syntax is superficially similar to that for the
array construction operators [and]; however, the semantics are entirely
different and arise as a result of scanning the procedure rather than exe-
cuting it.

Scanning the program fragment

{add 2 div}

produces a single procedure object that contains the name object add,
the integer object 2, and the name object div. When the scanner
encounters the initial {, it continues scanning and creating objects, but
the interpreter does not execute them. When the scanner encounters
the matching }, it puts all of the objects created since the initial { into a
new executable array (procedure) object.

The interpreter does not execute a procedure immediately, but treats it
as data; it pushes the procedure on the operand stack. Only when the
procedure is explicitly invoked (by means yet to be described) will it be
executed. Execution of the procedure—and of all objects within the
procedure, including any embedded procedures—has been deferred. The
matter of immediate versus deferred execution is discussed in section
3.5, “Execution.”

The procedure object created by { and } is either an array or a packed
array, according to the current setting of a mode switch. The distinction
between these types of arrays is discussed in section 3.3, “Data Types
and Objects.”

Dictionaries

The special character sequences << and >> (Level 2 only) are self-delimit-
ing tokens that denote the construction of a dictionary, much the same
as [and] denote the construction of an array. They are intended to be
used as follows:

<< key1 value1 key2 value2 ... keyn valuen >>

PLRM 2nd Edition January 21, 1994 Language

3.3 Data Types and Objects 33

This creates a dictionary containing the bracketed key-value pairs, and
pushes the dictionary on the operand stack. Dictionaries are introduced
in section 3.3, “Data Types and Objects.”

<< and >> are merely special names for operators that, when executed,
cause a dictionary to be constructed. This is like the [and] array con-
structor operators, but unlike the { and } delimiters for procedure
literals.

The << and >> tokens are self-delimiting, so they need not be sur-
rounded by white space or other delimiters. Do not confuse these
tokens with < and >, which delimit a hexadecimal string literal, or <~
and ~>, which delimit an ASCII base-85 string literal. The << and >>
tokens are objects in their own right (specifically, name objects); the
< ... > and <~ ... ~> are merely punctuation for the enclosed literal string
objects.

3.3 Data Types and Objects

All data accessible to PostScript language programs, including proce-
dures that are part of the programs themselves, exist in the form of
objects. Objects are produced, manipulated, and consumed by the Post-
Script operators. They are also created by the scanner and executed by
the interpreter.

Each object has a type, some attributes, and a value. Objects contain their
own dynamic types; that is, an object’s type is a property of the object
itself, not of where it is stored or what it is called. Table 3.2 lists all the
object types supported by the PostScript language. Extensions to the
language may introduce additional object types. The distinction
between simple and composite objects is explained below.

Table 3.2 Types of objects

Simple objects Composite objects

boolean array
fontID condition (Display PostScript)
integer dictionary
mark file
name gstate (Level 2)
null lock (Display PostScript)
operator packedarray (Level 2)
real string
save

PLRM 2nd Edition January 21, 1994 Language

34 Chapter 3: Language

3.3.1 Simple and Composite Objects

Objects of most types are simple, atomic entities. An atomic object is
always constant—a 2 is always 2. There is no visible substructure in the
object; the type, attributes, and value are irrevocably bound together
and cannot be changed.

However, objects of certain types indicated in Table 3.2 are composite.
Their values have internal substructure that is visible and can some-
times be modified selectively. The details of the substructures are pre-
sented later in the descriptions of these individual types.

An important distinction between simple and composite objects is the
behavior of operations that copy objects. Copy refers to any operation
that transfers the contents of an object from one place to another in the
memory of the PostScript interpreter. “Fetching” and “storing” objects
are copying operations. It is possible to derive a new object by copying
an existing one, perhaps with modifications.

When a simple object is copied, all of its parts (type, attributes, and
value) are copied together. When a composite object is copied, the
value is not copied; instead, the original and copy objects share the
same value. Consequently, any changes made to the substructure of
one object’s value also appear as part of the other object’s value.

The sharing of composite objects’ values in the PostScript language cor-
responds to the use of pointers in system-programming languages such
as C and Pascal. Indeed, the PostScript interpreter uses pointers to
implement shared values: a composite object contains a pointer to its
value. However, the PostScript language does not have any explicit
notion of a pointer. It is better to think in terms of the copying and
sharing notions presented here.

The values of simple objects are contained in the objects themselves.
The values of composite objects reside in a special region of memory
called virtual memory or VM. Section 3.7, “Memory Management,”
describes the behavior of VM.

3.3.2 Attributes of Objects

In addition to type and value, each object has one or more attributes.
These attributes affect the behavior of the object when it is executed or
when certain operations are performed on it. They do not affect its

PLRM 2nd Edition January 21, 1994 Language

3.3 Data Types and Objects 35

behavior when it is treated strictly as data; so, for example, two integers
with the same value are considered “equal” even if their attributes
differ.

Literal and Executable

Every object is either literal or executable. This distinction comes into
play when the interpreter attempts to execute the object.

• If the object is literal, the interpreter treats it strictly as data and
pushes it on the operand stack for use as an operand of some subse-
quent operator.

• If the object is executable, the interpreter executes it.

What it means to execute an object depends on the object’s type. This is
described in section 3.5, “Execution.” For some types of objects, such as
integers, execution consists of pushing the object on the operand stack;
the distinction between literal and executable integers is meaningless.
But for other types, such as names, operators, and arrays, execution
consists of performing a different action.

• Executing an executable name causes it to be looked up in the current
dictionary context and the associated value to be executed.

• Executing an executable operator causes some built-in action to be
performed.

• Executing an executable array (otherwise known as a procedure)
causes the elements of the array to be executed in turn.

As described in section 3.2, “Syntax,” some tokens produce literal
objects and some produce executable ones.

• Integer, real, and string constants are always literal objects.

• Names are literal if they are preceded by / and executable if they are
not.

• The [and] operators, when executed, produce a literal array object
with the enclosed objects as elements. Likewise, << and >> (Level 2
only) produce a literal dictionary object.

• { and } enclose an executable array or procedure.

PLRM 2nd Edition January 21, 1994 Language

36 Chapter 3: Language

Note As mentioned above, it doesn’t matter whether an object is literal or
executable when it is accessed as data, only when it is executed. However,
referring to an executable object by name often causes that object to be
executed automatically; see section 3.5.5, “Execution of Specific Types.” To
avoid unintended behavior, it’s best to use the executable attribute only for
objects that are meant to be executed, such as procedures.

Access

The other attribute of an object is its access. Only composite objects
have access attributes, which restrict the set of operations that can be
performed on the value of an object.

There are four values of access. In increasing order of restriction, they
are:

1. Unlimited. Normally, objects have unlimited access: all operations
defined for that object are allowed. However, packed array objects
always have read-only (or even more restricted) access.

2. Read-only. An object with read-only access may not have its value
written, but may still be read or executed.

3. Execute-only. An object with execute-only access may not have its
value either read or written, but may still be executed by the Post-
Script interpreter.

4. None. An object with no access may not be operated on in any way
by a PostScript language program. Such objects are not of any direct
use to PostScript language programs, but serve internal purposes that
are not documented in this manual.

The literal/executable distinction and the access attribute are entirely
independent, although there are combinations that are not of any prac-
tical use (for example, a literal array that is execute-only).

With one exception, attributes are properties of an object itself and not
of its value. Two composite objects can share the same value but have
different literal/executable or access attributes. The exception is the dic-
tionary type: A dictionary’s access attribute is a property of the value, so
multiple dictionary objects sharing the value have the same access
attribute.

PLRM 2nd Edition January 21, 1994 Language

3.3 Data Types and Objects 37

3.3.3 Integer and Real

The PostScript language provides two types of numeric objects: integer
and real. Integer objects represent mathematical integers within a cer-
tain interval centered at zero. Real objects approximate mathematical
real numbers within a much larger interval but with limited precision.
They are implemented as floating-point numbers.

Most PostScript arithmetic and mathematical operators can be applied
to numbers of both types. The interpreter performs automatic type con-
version when necessary. Some operators expect only integers or a sub-
range of the integers as operands. There are operators to convert from
one data type to another explicitly. Throughout this manual, number
means an object whose type is either integer or real.

The range and precision of numbers is limited by the internal represen-
tations used in the machine on which the PostScript interpreter is run-
ning. Appendix B gives these limits for typical implementations of the
PostScript interpreter.

Note The machine representation of integers is accessible to a PostScript language
program through the bitwise operators. However, the representation of integers
may depend on the CPU architecture of the implementation. The machine
representation of reals is not accessible to PostScript language programs.

3.3.4 Boolean

The PostScript language provides boolean objects with values true and
false for use in conditional and logical expressions. Booleans are the
results of the relational (comparison) and logical operators. Various
other operators also return them as status information. Booleans
mainly are used as operands for the control operators if and ifelse. The
names true and false are associated with the two values of this type.

3.3.5 Array

An array is a one-dimensional collection of objects accessed by a
numeric index. Unlike arrays in many other computer languages, Post-
Script language arrays may be heterogeneous; that is, an array’s ele-
ments may be any combination of numbers, strings, dictionaries, other
arrays, or any other objects. A procedure is an array that may be executed
by the PostScript interpreter.

PLRM 2nd Edition January 21, 1994 Language

38 Chapter 3: Language

All arrays are indexed from zero, so an array of n elements has indices
from 0 through n − 1. All accesses to arrays are bounds-checked, and a
reference with an out-of-bounds index results in a rangecheck error.

The PostScript language directly supports only one-dimensional arrays.
Arrays of higher dimension may be constructed by using arrays as ele-
ments of arrays, nested to any arbitrary depth.

As discussed earlier, an array is a composite object. When an array
object is copied, the value is not copied. Instead, the old and new
objects share the same value. Additionally, there is an operator
(getinterval) that creates a new array object whose value is a subinterval
of an existing array; the old and new objects share the array elements in
that subinterval.

3.3.6 Packed Array

A packed array is a more compact representation of an ordinary array,
intended primarily for use as a procedure. A packed array object is dis-
tinct from an ordinary array object, but in most respects it behaves the
same as an ordinary array. Its principal distinguishing feature is that it
occupies much less space in memory (see section B.2, “Virtual Memory
Use”).

Throughout this manual, any mention of a procedure may refer to
either an executable array or an executable packed array. The two types
of arrays are not distinguishable when they are executed, only when
they are treated as data. See the introduction to the array operators in
section 3.6, “Overview of Basic Operators.”

3.3.7 String

A string is similar to an array, but its elements must be integers in the
range 0 to 255. The string elements are not integer objects, but are
stored in a more compact format. However, the operators that access
string elements accept or return ordinary integer objects with values in
the range 0 to 255.

String objects are conventionally used to hold text, one character per
string element. However, the PostScript language does not have a dis-
tinct “character” syntax or data type and does not require that the inte-
ger elements of a string encode any particular character set. String
objects may also be used to hold arbitrary binary data.

PLRM 2nd Edition January 21, 1994 Language

3.3 Data Types and Objects 39

To enhance program portability, strings appearing literally as part of a
PostScript language program should be limited to characters from the
printable ASCII character set, with other characters inserted by means
of the \ddd escape convention (see section 3.2, “Syntax”). ASCII text
strings are fully portable; ASCII base-85 text strings are fully portable
among Level 2 implementations.

Like an array, a string is a composite object. Copying a string object or
creating a subinterval (substring) results in sharing the string’s value.

3.3.8 Name

A name is an atomic symbol uniquely defined by a sequence of charac-
ters. Names serve the same purpose as “identifiers” in other program-
ming languages: as tags for variables, procedures, and so on. However,
PostScript language names are not just language artifacts, but are first-
class data objects, similar to “atoms” in LISP.

A name object is ordinarily created when the scanner encounters a
PostScript token consisting entirely of regular characters, perhaps pre-
ceded by /, as described in section 3.2, “Syntax.” However, a name may
also be created by explicit conversion from a string; so there is no
restriction on the set of characters that can be included in names.

Unlike a string, a name is a simple object not made up of other objects.
Although a name is defined by a sequence of characters, those charac-
ters are not “elements” of the name. A name object, although logically
simple, does have an invisible “value” that occupies space in VM.

A name is unique. Any two name objects defined by the same sequence
of characters are identical copies of each other. Name equality is based
on an exact match between the corresponding characters defining each
name. This includes the case of letters, so the names A and a are differ-
ent. Literal and executable objects can be equal, however.

The interpreter can inexpensively determine whether two existing
name objects are equal or unequal without comparing the characters
that define the names. This makes names useful as keys in dictionaries.

Names do not have values, unlike variable or procedure names in other
programming languages. However, names can be associated with values
in dictionaries.

PLRM 2nd Edition January 21, 1994 Language

40 Chapter 3: Language

3.3.9 Dictionary

A dictionary is an associative table whose elements are pairs of PostScript
objects. The first element of a pair is the key and the second element is
the value. The PostScript language includes operators that insert a key-
value pair into a dictionary, look up a key and fetch the associated
value, and perform various other operations.

Keys are normally name objects; the PostScript language syntax and the
interpreter are optimized for this most common case. However, a key
may be any PostScript language object except null (defined later). If you
attempt to use a string as a key, the PostScript interpreter will first con-
vert the string to a name object; thus, strings and names are interchange-
able when used as keys in dictionaries.

A dictionary has the capacity to hold a certain maximum number of
key-value pairs; the capacity is specified when the dictionary is created.
Level 1 and Level 2 implementations of the PostScript language differ in
their behavior when a program attempts to insert an entry into a dic-
tionary that is full. In Level 1, a dictfull error occurs. In Level 2, the
interpreter enlarges the dictionary automatically.

Dictionaries ordinarily associate the names and values of a program’s
components, such as variables and procedures. This corresponds to the
conventional use of identifiers in other programming languages. But
there are many other uses for dictionaries. For example, a PostScript
language font program contains a dictionary that associates the names
of characters with the procedures for drawing those characters’ shapes
(see Chapter 5).

There are three primary methods for accessing dictionaries:

• Operators exist to access a specific dictionary supplied as an operand.

• There is a current dictionary and a set of operators to access it implic-
itly.

• The interpreter automatically looks up executable names it encoun-
ters in the program being executed.

The interpreter maintains a dictionary stack defining the current
dynamic name space. Dictionaries may be pushed on and popped off
the dictionary stack at will. The topmost dictionary on the stack is the
current dictionary.

PLRM 2nd Edition January 21, 1994 Language

3.3 Data Types and Objects 41

When the interpreter looks up a key implicitly—for example, when it
executes a name object—it searches for the key in the dictionaries on
the dictionary stack. It searches first in the topmost dictionary, then in
successively lower dictionaries on the dictionary stack, until it either
finds the key or exhausts the dictionary stack.

In Level 1 implementations of the PostScript language, there are two
built-in dictionaries permanently on the dictionary stack; they are
called systemdict and userdict. In Level 2 implementations, there are
three dictionaries: systemdict, globaldict, and userdict.

• systemdict is a read-only dictionary that associates the names of all
the PostScript operators (those defined in this manual) with their
values (the built-in actions that implement them).

• globaldict (Level 2) is a writable dictionary in global VM. This is
explained in section 3.7.2, “Local and Global VM.”

• userdict is a writable dictionary in local VM. It is the default modifi-
able naming environment normally used by PostScript language pro-
grams.

userdict is the topmost of the permanent dictionaries on the dictionary
stack. The def operator puts definitions there unless the program has
pushed some other dictionary on the dictionary stack. Applications can
and should create their own dictionaries rather than put things in
userdict.

A dictionary is a composite object. Copying a dictionary object does
not copy the dictionary’s contents. Instead, the contents are shared.

3.3.10 Operator

An operator object represents one of the PostScript language’s built-in
actions. When the object is executed, its built-in action is invoked.
Most of this manual is devoted to describing the semantics of the vari-
ous operators.

Operators have names. Most operators are associated with names in
systemdict: The names are the keys and the values are the operators.
When the interpreter executes one of these names, it looks up the name
in the context of the dictionary stack. Unless the name has been
defined in some dictionary higher on the dictionary stack, the inter-
preter finds its definition in systemdict, fetches the associated value
(the operator object itself), and executes it.

PLRM 2nd Edition January 21, 1994 Language

42 Chapter 3: Language

All standard operators are defined in systemdict. However, an applica-
tion that tests if an operator is defined should not do a known in
systemdict; it should use where to check all dictionaries on the diction-
ary stack. This enables proper handling of operator emulations (see
Appendix D).

Note There are some special internal PostScript operators whose names begin with
@. These operators are not officially part of the PostScript language and are
not defined in systemdict. They may appear as the “offending command” in
error messages.

There is nothing special about an operator name, such as add, that dis-
tinguishes it as an operator. Rather, the name add is associated in
systemdict with the operator for performing addition, and execution of
the operator causes the addition to occur. Thus the name add is not a
“reserved word,” as it might be in other programming languages. Its
meaning can be changed by a PostScript language program.

Throughout this manual, the notation add means “the operator object
associated with the name add in systemdict” or, occasionally, in some
other dictionary.

3.3.11 File

A file is a readable or writable stream of characters transferred between
the PostScript interpreter and its environment. The characters in a file
may be stored permanently—in a disk file, for instance—or may be gen-
erated dynamically and transferred via a communication channel.

A file object represents a file. There are operators to open a file and create
a file object for it. Other operators access an open file to read, write, and
process characters in various ways—as strings, as PostScript language
tokens, as binary data represented in hexadecimal, and so on.

Standard input and output files are always available to a PostScript lan-
guage program. The standard input file is the usual source of programs
to be interpreted; the standard output file is the usual destination of
such things as error and status messages.

Although a file object does not have components visible at the Post-
Script language level, it is composite in the sense that all copies of a file
object share the same value, namely the underlying file. If a file opera-
tor has a side effect on the underlying file, such as closing it or chang-
ing the current position in the stream, all file objects sharing the file are
affected.

PLRM 2nd Edition January 21, 1994 Language

3.4 Stacks 43

The properties of files and the operations on them are described in
more detail in section 3.8, “File Input and Output.”

3.3.12 Mark

A mark is a special object used to denote a position on the operand
stack. This use is described in the presentation of stack and array opera-
tors in section 3.6, “Overview of Basic Operators.” There is only one
value of type mark, created by invoking the operator mark, [, or <<.
Mark objects are not legal operands for most operators. Mark objects are
legal operands for], >>, counttomark, cleartomark, and a few generic
operators such as pop and type.

3.3.13 Null

The PostScript interpreter uses null objects to fill empty or uninitialized
positions in composite objects when they are created. There is only one
value of type null; the name null is associated with a null object in
systemdict. Null objects are not legal operands for most operators.

3.3.14 Save

Save objects represent snapshots of the state of the PostScript interpret-
er’s memory. They are created and manipulated by the save and restore
operators, introduced in section 3.7.3, “Save and Restore.”

3.3.15 Other Object Types

FontIDs are special objects used in the construction of fonts; see section
5.2, “Font Dictionaries.”

A gstate object represents an entire graphics state; see section 4.2,
“Graphics State.” Gstate objects are a Level 2 feature.

Locks and conditions are special objects used to synchronize multiple
execution contexts in a Display PostScript system; see section 7.1, “Mul-
tiple Execution Contexts.”

3.4 Stacks

The PostScript interpreter manages four stacks representing the execu-
tion state of a PostScript language program. Three of them—the oper-
and, dictionary, and execution stacks—are described here; the fourth—

PLRM 2nd Edition January 21, 1994 Language

44 Chapter 3: Language

the graphics state stack—is presented in Chapter 4. Stacks are “last-in-
first-out” (LIFO) data structures. In this manual, “the stack” with no
qualifier means the operand stack.

• The operand stack holds arbitrary PostScript objects that are the oper-
ands and results of PostScript operators being executed. When an
operator requires one or more operands, it obtains them by popping
them off the top of the operand stack. When an operator returns one
or more results, it does so by pushing them on the operand stack.
The interpreter pushes objects on the operand stack when it encoun-
ters them as literal data in a program being executed.

• The dictionary stack holds only dictionary objects. The current set of
dictionaries on the dictionary stack defines the environment for all
implicit name searches, such as those that occur when the inter-
preter encounters an executable name. The role of the dictionary
stack is introduced in section 3.3, “Data Types and Objects,” and is
further explained in section 3.5, “Execution.”

• The execution stack holds executable objects (mainly procedures and
files) that are in stages of execution. At any point in the execution of
a PostScript language program, this stack represents the call stack of
the program. Whenever the interpreter suspends execution of an
object to execute some other object, it pushes the new object on the
execution stack. When the interpreter finishes executing an object, it
pops that object off the execution stack and resumes executing the
suspended object beneath it.

The three stacks are independent and there are different ways to access
each of them:

• The operand stack is directly under control of the PostScript lan-
guage program being executed. Objects may be pushed and popped
arbitrarily by various operators.

• The dictionary stack is also under control of the PostScript language
program being executed. But it can hold only dictionaries, and the
bottom three dictionaries (two dictionaries in Level 1 implementa-
tions) on this stack—systemdict, globaldict, and userdict—cannot be
popped off. The operators begin, end, and cleardictstack are the only
operators that can alter the dictionary stack.

• The execution stack is under the control of the interpreter. It can be
read but not modified by a PostScript language program.

PLRM 2nd Edition January 21, 1994 Language

3.5 Execution 45

When an object is pushed on a stack, the object is copied onto the stack
from wherever it was obtained; however, in the case of a composite
object (array, string, or dictionary), the object’s value is not copied on
the stack, but rather is shared with the original object. Similarly, when a
composite object is popped off a stack and put somewhere, only the
object itself is moved, not its value. See section 3.3, “Data Types and
Objects,” for more details.

The maximum capacity of stacks may be limited. See Appendices B and
C.

3.5 Execution

Execution semantics are different for each of the various object types.
Also, execution can be either immediate, occurring as soon as the object
is created by the scanner, or deferred to some later time.

3.5.1 Immediate Execution

Several PostScript language program fragments will help clarify the con-
cept of execution. Example 3.1, “ illustrates immediate execution of a
few operators and operands to perform some simple arithmetic.

Example 3.1

40 60 add 2 div

The interpreter first encounters the literal integer object 40 and pushes
it on the operand stack. Then it pushes the integer object 60 on the
operand stack.

Now it encounters the executable name object add, which it looks up
in the environment of the current dictionary stack. Unless add has
been redefined elsewhere, the interpreter finds it associated with an
operator object, which it executes. This invokes a built-in function that
pops the two integer objects off the operand stack, adds them together,
and pushes the result (a new integer object whose value is 100) back on
the operand stack.

The rest of the program fragment is similarly executed. The interpreter
pushes the integer 2 on the operand stack, then it executes the name
div. The div operator pops two operands off the stack (the integers
whose values are 2 and 100), divides the second-to-top one by the top
one (100 divided by 2, in this case), and pushes the integer result 50 on
the stack.

PLRM 2nd Edition January 21, 1994 Language

46 Chapter 3: Language

The source of the objects being executed by the PostScript interpreter
does not matter. They may have been contained within an array or
scanned in from a character stream. Executing a sequence of objects
produces the same result regardless of where the objects come from.

3.5.2 Operand Order

In Example 3.1, “, 40 is the first and 60 is the second operand of the
add operator. That is, objects are referred to according to the order in
which they are pushed on the operand stack. This is the reverse of the order
in which they are popped off by the add operator. Similarly, the result
pushed by the add operator is the first operand of the div operator, and
the 2 is its second operand.

The same terminology applies to the results of an operator. If an opera-
tor pushes more than one object on the operand stack, the first object
pushed is the first result. This order corresponds to the usual left-to-
right order of appearance of operands in a PostScript language program.

3.5.3 Deferred Execution

The first line of Example 3.2, “ defines a procedure named average that
computes the average of two numbers. The second line applies that pro-
cedure to the integers 40 and 60, producing the same result as Example
3.1.

Example 3.2

/average {add 2 div} def
40 60 average

The interpreter first encounters the literal name average. Recall from
section 3.2, “Syntax,” that / introduces a literal name. The interpreter
pushes this object on the operand stack, as it would any object having
the literal attribute.

Next the interpreter encounters the executable array {add 2 div}. Recall
that { and } enclose a procedure (an executable array, or packed array
object) that is produced by the scanner. This procedure contains three
elements: the executable name add, the literal integer 2, and the exe-
cutable name div. The interpreter has not encountered these elements
yet.

PLRM 2nd Edition January 21, 1994 Language

3.5 Execution 47

Here is what the interpreter does:

1. Upon encountering this procedure object, the interpreter pushes it
on the operand stack, even though the object has the executable
attribute. This is explained soon.

2. The interpreter then encounters the executable name def. Looking
up this name in the current dictionary stack, it finds def to be associ-
ated in systemdict with an operator object, which it invokes.

3. The def operator pops two objects off the operand stack (the proce-
dure {add 2 div} and the name average). It enters this pair into the
current dictionary (most likely userdict), creating a new association
having the name average as its key and the procedure {add 2 div} as
its value.

4. The interpreter pushes the integer objects 40 and 60 on the operand
stack, then encounters the executable name average.

5. It looks up average in the current dictionary stack, finds it to be asso-
ciated with the procedure {add 2 div}, and executes that procedure. In
this case, execution of the array object consists of executing the ele-
ments of the array in sequence, namely the objects add, 2, and div.
This has the same effect as executing those objects directly. It pro-
duces the same result: the integer object 50.

Why did the interpreter treat the procedure as data in the first line of
the example but execute it in the second, despite the procedure having
the executable attribute in both cases? There is a special rule that deter-
mines this behavior: An executable array or packed array encountered
directly by the interpreter is treated as data (pushed onto the operand
stack). But an executable array or packed array encountered indirectly—
as a result of executing some other object, such as a name or an opera-
tor—is invoked as a procedure.

This rule reflects how procedures are ordinarily used. Procedures
appearing directly (either as part of a program being read from a file or
as part of some larger procedure in memory) are usually part of a defini-
tion or of a construct, such as a conditional, that operates on the proce-
dure explicitly. But procedures obtained indirectly—for example, as a
result of looking up a name—are usually intended to be executed. A
PostScript language program can override these semantics when
necessary.

PLRM 2nd Edition January 21, 1994 Language

48 Chapter 3: Language

3.5.4 Control Constructs

In the PostScript language, control constructs such as conditionals and
iterations are specified by means of operators that take procedures as
operands. Example 3.3, “ computes the maximum of the values associ-
ated with the names a and b, as in the steps that follow.

Example 3.3

a b gt {a} {b} ifelse

1. The interpreter encounters the executable names a and b in turn and
looks them up. Assume both names are associated with numbers.
Executing the numbers causes them to be pushed onto the operand
stack.

2. The gt (greater than) operator removes two operands from the stack
and compares them. If the first operand is greater than the second, it
pushes the boolean value true. Otherwise, it pushes false.

3. The interpreter now encounters the procedure objects {a} and {b},
which it pushes onto the operand stack.

4. The ifelse operator takes three operands: a boolean and two proce-
dures. If the boolean’s value is true, ifelse causes the first procedure to
be executed. Otherwise, it causes the second procedure to be exe-
cuted. All three operands are removed from the operand stack before
the selected procedure is executed.

In this example, each procedure consists of a single element that is an
executable name (either a or b). The interpreter looks up this name and,
since it is associated with a number, pushes that number on the oper-
and stack. So the result of executing the entire program fragment is to
push on the operand stack the maximum of the values associated with
a and b.

3.5.5 Execution of Specific Types

An object with the literal attribute is always treated as data—pushed on
the operand stack by the interpreter—regardless of its type. Even opera-
tor objects are treated this way if they have the literal attribute.

PLRM 2nd Edition January 21, 1994 Language

3.5 Execution 49

For many objects, executing them has the same effect as treating them
as data. This is true of integer, real, boolean, dictionary, mark, save,
gstate, and fontID objects. So the distinction between literal and exe-
cutable objects of these types is meaningless. The following descrip-
tions apply only to objects having the executable attribute.

• An executable array or executable packed array (procedure) object is
pushed on the operand stack if it is encountered directly by the
interpreter. If it is invoked indirectly as a result of executing some
other object (a name or an operator), it is called instead. The inter-
preter calls a procedure by pushing it on the execution stack and
then executing the array elements in turn. When the interpreter
reaches the end of the procedure, it pops the procedure object off the
execution stack. (Actually, it pops the procedure object when there is
one element remaining and then pushes that element. This is to per-
mit unlimited depth of “tail recursion” without overflowing the exe-
cution stack.)

• An executable string object is pushed onto the execution stack. The
interpreter then uses the string as a source of characters to be con-
verted to tokens and interpreted according to the PostScript lan-
guage syntax rules. This continues until the interpreter reaches the
end of the string, when it pops the string object from the execution
stack.

• An executable file object is treated much the same as a string: The
interpreter pushes it on the execution stack. It reads the characters of
the file and interprets them as PostScript tokens until it encounters
end-of-file. Then it closes the file and pops the file object from the
execution stack. See section 3.8, “File Input and Output.”

• An executable name object is looked up in the environment of the
current dictionary stack and its associated value is executed. The
interpreter looks first in the top dictionary on the dictionary stack
and then in other dictionaries successively lower on the stack. If it
finds the name as a key in some dictionary, it executes the associated
value. To do that, it examines the value’s type and executable
attribute, and performs the appropriate action described in this sec-
tion. Note that if the value is a procedure, the interpreter executes it.
If the interpreter fails to find the name in any dictionary on the dic-
tionary stack, an undefined error occurs.

• An executable operator object causes the interpreter to perform one of
the built-in operations described in this manual.

PLRM 2nd Edition January 21, 1994 Language

50 Chapter 3: Language

• An executable null object causes the interpreter to perform no action
(in particular, it does not push the object on the operand stack).

3.6 Overview of Basic Operators

This is an overview of the general-purpose PostScript language opera-
tors, excluding all operators that deal with graphics and fonts, which
are described in later chapters. The organization of this section roughly
parallels that of the operator summary at the beginning of Chapter 8.
The information here is insufficient for actual programming; it is
intended only to acquaint you with the available facilities. For com-
plete information about any particular operator, you should refer to the
operator’s detailed description in Chapter 8.

3.6.1 Stack Operators

The operand stack is the PostScript interpreter’s mechanism for passing
arguments to operators and for gathering results from operators. It was
introduced in section 3.4, “Stacks.”

There are various operators that rearrange or manipulate the objects on
the operand stack. Such rearrangement is often required when the
results of some operators are to be used as arguments to other operators
that require their operands in a different order. These operators manip-
ulate only the objects themselves; they do not copy the values of com-
posite objects.

• dup duplicates an object.

• exch exchanges the top two elements of the stack.

• pop removes the top element from the stack.

• copy duplicates portions of the operand stack.

• roll treats a portion of the stack as a circular queue.

• index accesses the stack as if it were an indexable array.

• mark marks a position on the stack.

• clear clears the stack.

• count counts the number of elements in the stack.

PLRM 2nd Edition January 21, 1994 Language

3.6 Overview of Basic Operators 51

• counttomark counts the elements above the highest mark. This is
used primarily for array construction (described later), but has other
applications as well.

3.6.2 Arithmetic and Mathematical Operators

The PostScript language includes a conventional complement of arith-
metic and mathematical operators. In general, these operators accept
either integer or real number objects as operands. They produce either
integer or real numbers as results, depending on the types of the oper-
ands and the magnitude of the results. If the result of an operation is
mathematically meaningless or cannot be represented as a real, an
undefinedresult error occurs.

• add, sub, mul, div, idiv, and mod are arithmetic operators of two
arguments.

• abs, neg, ceiling, floor, round, and truncate are arithmetic operators
of one argument.

• sqrt, exp, ln, log, sin, cos, and atan are mathematical and trigono-
metric functions.

• rand, srand, and rrand access a pseudo-random number generator.

3.6.3 Array, Packed Array, Dictionary, and String Operators

A number of operators are polymorphic—they may be applied to oper-
ands of several different types and their precise functions depend on
the types of the operands. In particular, there are various operators that
perform similar operations on the values of several types of composite
objects—arrays, packed arrays, dictionaries, and strings.

• get takes a composite object and an index (or key, in the case of a
dictionary) and returns a single element of the object.

• put stores a single element in a composite object. (put does not
apply to packed array objects because they are read-only.)

• copy copies the value of a composite object to another composite
object of the same type, replacing the second object’s former value.
This is different from merely copying the object. See the discussion
of simple versus composite objects in section 3.3, “Data Types and
Objects.”

PLRM 2nd Edition January 21, 1994 Language

52 Chapter 3: Language

• length returns the number of elements in a composite object.

• forall accesses all of the elements of a composite object in sequence,
calling a procedure for each one.

• getinterval creates a new object that shares a subinterval of an array,
packed array, or string. This does not apply to dictionary objects.

• putinterval overwrites a subinterval of one array or string with the
contents of another. putinterval does not apply to dictionary or
packed array objects.

In addition to the polymorphic operators, there are operators that
apply to only one of the array, packed array, dictionary, and string
types. For each type, there is an operator (array, packedarray, dict,
string) that creates a new object of that type and a specified length.
These four operators explicitly create new composite object values, con-
suming virtual memory (VM) resources (see section 3.7.1, “Virtual
Memory”). Most other operators read and write the values of composite
objects, but do not create new ones. Operators that return composite
results usually require an operand that is the composite object into
which the result values are to be stored. The operators are organized
this way to give programmers maximum control over consumption of
VM.

Array, packed array, and string objects have a fixed length that is speci-
fied when the objects are created. In Level 1, dictionary objects also
have this property. In Level 2, a dictionary’s capacity can grow beyond
its initial allocation.

The following operators apply only to arrays and (sometimes) packed
arrays:

• aload and astore transfer all the elements of an array to or from the
operand stack in a single operation. aload may also be applied to a
packed array.

• The array construction operators [and] combine to produce a new
array object whose elements are the objects appearing between the
brackets in a PostScript language program. The [operator, which is a
synonym for mark, pushes a mark object on the operand stack. Exe-
cution of the program fragment between the [and the] causes zero
or more objects to be pushed on the operand stack. Finally, the]
operator counts the number of objects above the mark on the stack,

PLRM 2nd Edition January 21, 1994 Language

3.6 Overview of Basic Operators 53

creates an array of that length, stores the elements from the stack in
the array, removes the mark from the stack, and pushes the array on
the stack.

• setpacking and currentpacking (both Level 2) control a mode setting
that determines the type of procedure objects the scanner generates
when it encounters a sequence of tokens enclosed in { and }. If the
array packing mode is true, the scanner produces packed arrays; if the
mode is false, it produces ordinary arrays. The default value is false.

• Packed array objects are always read-only, so the put, putinterval,
and astore operations are not allowed on them. Accessing arbitrary
elements of a packed array object can be quite slow; however, access-
ing the elements sequentially, as the PostScript interpreter and the
forall operator do, is efficient.

The following operators apply only to dictionaries:

• begin and end push new dictionaries on the dictionary stack and
pop them off.

• def and store associate keys with values in dictionaries on the dic-
tionary stack; load and where search for keys there.

• countdictstack, cleardictstack, and dictstack operate on the diction-
ary stack.

• known queries whether a key is present in a specific dictionary.

• maxlength obtains a dictionary’s maximum capacity.

• undef (Level 2) removes individual keys from a dictionary.

• << and >> (Level 2) construct a dictionary consisting of the bracketed
objects interpreted as key-value pairs.

The following operators apply only to strings:

• search and anchorsearch perform textual string searching and
matching.

• token scans the characters of a string according to the PostScript lan-
guage syntax rules, without executing the resulting objects.

PLRM 2nd Edition January 21, 1994 Language

54 Chapter 3: Language

There are many additional operators that use array, dictionary, or string
operands for special purposes—for instance, as transformation matrices,
font dictionaries, or text to be shown.

3.6.4 Relational, Boolean, and Bitwise Operators

The relational operators compare two operands and produce a boolean
result indicating if the relation holds. Any two objects may be com-
pared for equality (eq and ne—equal and not equal); numbers and
strings may be compared by the inequality operators (gt, ge, le, and lt—
greater than, greater than or equal to, less than or equal to, and less than).

The boolean and bitwise operators (and, or, xor, true, false, and not)
compute logical combinations of boolean operands or bitwise combina-
tions of integer operands. The bitwise shift operator bitshift applies
only to integers.

3.6.5 Control Operators

The control operators modify the interpreter’s usual sequential execu-
tion of objects. Most of them take a procedure operand that they exe-
cute conditionally or repeatedly.

• if and ifelse execute a procedure conditionally depending on the
value of a boolean operand. (ifelse is introduced in section 3.5, “Exe-
cution.”)

• exec executes an arbitrary object unconditionally.

• for, repeat, loop, and forall execute a procedure repeatedly. Several
specialized graphics and font operators, such as pathforall and
kshow, behave similarly.

• exit transfers control out of the scope of any of these looping opera-
tors.

• countexecstack and execstack are used to read the execution stack.

A PostScript language program may terminate prematurely by execut-
ing the stop operator. This occurs most commonly as a result of an
error; the default error handlers (in errordict) all execute stop.

PLRM 2nd Edition January 21, 1994 Language

3.7 Memory Management 55

The stopped operator establishes an execution environment that
encapsulates the effect of a stop. That is, stopped executes a procedure
given as an operand, just the same as exec. If the interpreter executes
stop during that procedure, it terminates the procedure and resumes
execution at the object immediately after the stopped operator.

3.6.6 Type, Attribute, and Conversion Operators

These operators deal with the details of PostScript types, attributes, and
values, introduced in section 3.3, “Data Types and Objects.”

• type returns the type of any operand as a name object (integertype,
realtype, and so on).

• xcheck, rcheck, and wcheck query the literal/executable and access
attributes of an object.

• cvlit and cvx change the literal/executable attribute of an object.

• readonly, executeonly, and noaccess reduce an object’s access
attribute. Access can only be reduced, never increased.

• cvi and cvr convert between integer and real types, and interpret a
numeric string as an integer or real number.

• cvn converts a string to a name object defined by the characters of
the string.

• cvs and cvrs convert objects of several types to a printable string rep-
resentation.

3.7 Memory Management

A PostScript language program executes in an environment with these
major components: stacks, virtual memory, standard input and output
files, and the graphics state.

• The operand stack is working storage for objects that are the operands
and results of operators. The dictionary stack contains dictionary
objects that define the current name space. The execution stack con-
tains objects that are in partial stages of execution by the PostScript
interpreter. See section 3.4, “Stacks.”

PLRM 2nd Edition January 21, 1994 Language

56 Chapter 3: Language

• The virtual memory (VM) is a storage pool for the values of all com-
posite objects. The adjective “virtual” emphasizes the behavior of
this memory visible at the PostScript language level, not its imple-
mentation in computer storage.

• The standard input file is the normal source of program text to be exe-
cuted by the PostScript interpreter. The standard output file is the nor-
mal destination of output from the print operator and of error
messages. Other files can exist as well. See section 3.8, “File Input
and Output.”

• The graphics state is a collection of parameters that control the pro-
duction of text and graphics on a raster output device. See section
4.2, “Graphics State.”

This section describes the behavior of VM and its interactions with
other components of the PostScript execution environment. It
describes facilities for controlling the environment as a whole. The
PostScript interpreter can execute a sequence of self-contained Post-
Script programs as independent “jobs”; similarly, each job can have
internal structure whose components are independent of each other.

3.7.1 Virtual Memory

As described in section 3.3, “Data Types and Objects,” there are two
classes of objects: simple and composite. A simple object’s value is con-
tained in the object itself. A composite object’s value is stored sepa-
rately; the object contains a reference to it. The virtual memory (VM) is
the storage in which the values of composite objects reside.

For example, the program fragment

 234 (Here is a string)

pushes two objects, an integer and a string, on the operand stack. The
integer, which is a simple object, contains the value 234 as part of the
object itself. The string, which is a composite object, contains a refer-
ence to the value (Here is a string), which is a text string that resides in
VM. The elements of the text string are characters (actually, integers in
the range 0 to 255) that can be individually selected or replaced.

Here is another example:

 {234 (Here is a string)}

PLRM 2nd Edition January 21, 1994 Language

3.7 Memory Management 57

This pushes a single object, a two-element executable array, on the
operand stack. The array is a composite object whose value resides in
VM. The value in turn consists of two objects, an integer and a string.
Those objects are elements of the array, which can be individually
selected or replaced.

Several composite objects can share the same value. For example, in

 {234 (Here is a string)} dup

the dup operator pushes a second copy of the array object on the oper-
and stack. The two objects share the same value—that is, the same stor-
age in VM. So, replacing an element of one array will affect the other.
Other types of composite objects, including strings and dictionaries,
behave similarly.

Creating a new composite object consumes VM storage for its value.
This occurs in two principal ways:

• The scanner allocates storage for each composite literal object that it
encounters. Composite literals are delimited by (...), <...>, <~...~>,
and {...}. The first three produce strings; the fourth produces an exe-
cutable array. There also are binary encodings for composite objects.

• Some operators explicitly create new composite objects and allocate
storage for them. The array, packedarray, dict, string, and gstate
operators create new array, packed array, dictionary, string, and
gstate objects, respectively. Also, the bracketing constructs [...] and
<<...>> create new array and dictionary objects, respectively. The
brackets are just special names for operators; the closing bracket
operators allocate the storage.

For the most part, consumption and management of VM storage are
under the control of the PostScript language program. Aside from the
operators mentioned above and a few others that are clearly docu-
mented, most operators do not create new composite objects or allocate
storage in VM. Some operators place their results in existing objects
supplied by the caller. For example, the cvs (convert to string) operator
overwrites the value of a supplied string operand and returns a string
object that shares a substring of the supplied string’s storage.

PLRM 2nd Edition January 21, 1994 Language

58 Chapter 3: Language

3.7.2 Local and Global VM

There are two divisions of VM containing the values of composite
objects: local and global. Only composite objects occupy VM. An “object
in VM” means a “composite object whose value occupies VM”; the loca-
tion of the object (for example, on a stack or stored as an element of
some other object) is immaterial.

Note Global VM exists only in Level 2 and Display PostScript implementations of
the PostScript language. In Level 1 implementations, all of VM is local.

Local VM is a storage pool that obeys a stack-like discipline. Allocations
in local VM and modifications to existing objects in local VM are sub-
ject to a feature called save and restore, named after the operators that
invoke it. save and restore bracket a section of a PostScript language
program whose local VM activity is to be encapsulated. restore deallo-
cates new objects and undoes modifications to existing objects that
were made since the matching save. save and restore are described in
section 3.7.3, “Save and Restore.”

Global VM is a storage pool for objects that don’t obey a fixed disci-
pline. Objects in global VM can come into existence and disappear in
an arbitrary order during execution of a program. Modifications to
existing objects in global VM are not affected by occurrences of save
and restore within the program. However, an entire job’s VM activity
can be encapsulated, enabling separate jobs to be executed indepen-
dently. This is described in section 3.7.7, “Job Execution Environment.”

In a hierarchically structured program, such as a page description, local
VM is used to hold information whose lifetime conforms to the struc-
ture; that is, it persists to the end of a structural division, such as a sin-
gle page. Global VM may be used to hold information whose lifetime is
independent of the structure, such as definitions of fonts and other
resources that are loaded dynamically during execution of a program.

Control over allocation of objects in local versus global VM is provided
by the setglobal operator (a Level 2 feature). This operator establishes a
VM allocation mode, a boolean value that determines where subsequent
allocations are to occur (false means local, true means global). It affects
objects created implicitly by the scanner and objects created explicitly
by operators. The default VM allocation mode is local; a program can
switch to global VM allocation mode when it needs to.

PLRM 2nd Edition January 21, 1994 Language

3.7 Memory Management 59

The following example illustrates creation of objects in local and global
VM:

 /lstr (string1) def
 /ldict 10 dict def
 true setglobal
 /gstr (string2) def
 /gdict 5 dict def
 false setglobal

In the first line, when the scanner encounters (string1), it allocates the
string object in local VM. In the second line, the dict operator allocates
a new dictionary in local VM. The third line switches to global VM allo-
cation mode. The fourth and fifth lines allocate a string object and a
dictionary object in global VM. The sixth line switches back to local VM
allocation mode. The program associates the four newly created objects
with the names lstr, ldict, gstr, and gdict in the current dictionary, pre-
sumably userdict.

It is illegal for an object in global VM to contain a reference to an object
in local VM. An attempt to store a local object as an element of a global
object will result in an invalidaccess error. The reason for this restriction
is that subsequent execution of the restore operator might deallocate
the local object, leaving the global object with a reference to a non-exis-
tent object.

This restriction applies only to storing a composite object in local VM as
an element of a composite object in global VM. All other combinations
are allowed. The following example illustrates this, using the objects
that were created in the preceding example:

ldict /a lstr put % Legal—a local object into a local dict
gdict /b gstr put % Legal—a global object into a global dict
ldict /c gstr put % Legal—a global object into a local dict
gdict /d lstr put % Illegal (invalidaccess error)—a local object into a global dict
gdict /e 7 put % Legal—a simple object into any dict

There are no restrictions on storing simple objects, such as integers and
names, as elements of either local or global composite objects. The
gcheck operator inquires whether an object can be stored as an element
of a global composite object. It returns true for a simple object or for a
composite object in global VM, false for a composite object in local VM.

PLRM 2nd Edition January 21, 1994 Language

60 Chapter 3: Language

3.7.3 Save and Restore

The save operator takes a snapshot of the state of local VM; it returns a
save object that represents the snapshot. The restore operator causes
local VM to revert to a snapshot generated by a preceding save. Specifi-
cally:

• restore discards all objects in local VM that were created since the
corresponding save, and reclaims the memory they occupied.

• restore resets the values of all composite objects in local VM, except
strings, to their state at the time of the save.

• restore performs an implicit grestoreall, which resets the graphics
state to its value at the time of the save (see section 4.2, “Graphics
State.”)

• restore closes files that were opened since the corresponding save, so
long as those files were opened while local VM allocation mode was
in effect (see section 3.8, “File Input and Output”).

The effects of restore are limited to the ones described above.

• restore does not affect the contents of the operand, dictionary, and
execution stacks. If a stack contains a reference to a composite object
in local VM that would be discarded by the restore, the restore is not
allowed. An invalidrestore error occurs.

• It does not affect any objects that reside in global VM, except as
described in section 3.7.7, “Job Execution Environment.”

• It does not undo side effects outside VM, such as writing data to files
or rendering graphics on the raster output device. (However, the
implicit grestoreall may deactivate the current device, thereby eras-
ing the current page. See section 4.11, “Device Setup,” for details.)

save and restore can be nested to a limited depth (see Appendix B for
implementation limits). A PostScript language program can use save
and restore to encapsulate the execution of an embedded program that
also uses save and restore.

save and restore are intended for use in structured programs, such as
page descriptions. The conventions for structuring programs are intro-
duced in section 2.4.2, “Program Structure,” and detailed in Appendix
G. In such programs, save and restore serve the following functions:

PLRM 2nd Edition January 21, 1994 Language

3.7 Memory Management 61

• A document consists of a prolog and a script. The prolog contains
definitions that are used throughout the document. The script con-
sists of a sequence of independent pages. Each page has a save at the
beginning and a restore at the end, immediately before the
showpage operator. Each page begins execution with the initial con-
ditions established in local VM by the prolog. There are no
unwanted legacies from previous pages.

• A page sometimes contains additional substructure, such as embed-
ded illustrations, whose execution needs to be encapsulated. The
encapsulated program can make wholesale changes to the contents
of local VM to serve its own purposes. By bracketing the program
with save and restore, the enclosing program can isolate the effects
of the embedded program.

• As a PostScript language program executes, new composite objects
accumulate in local VM. These include objects created by the scan-
ner, such as literal string tokens, and objects allocated explicitly by
operators. The restore operator reclaims all local VM storage allo-
cated since the corresponding save; executing save and restore peri-
odically ensures that unreclaimed objects will not exhaust available
VM resources. In Level 1 implementations, save and restore are the
only way to reclaim VM storage. Even in Level 2, explicit reclamation
by save and restore is much more efficient than automatic reclama-
tion, described in section 3.7.4, “Garbage Collection.”

• The PostScript interpreter uses save and restore to encapsulate the
execution of individual jobs, as described in section 3.7.7, “Job Exe-
cution Environment.”

3.7.4 Garbage Collection

In addition to the save and restore operators for explicit VM reclama-
tion, Level 2 implementations and Display PostScript systems include a
facility for automatic reclamation, popularly known as a garbage collec-
tor. The garbage collector reclaims the memory occupied by composite
objects that are no longer accessible to the PostScript language pro-
gram.

For example, after the following program is executed,

/a (string 1) def
/a (string 2) def
(Here is some text) show

PLRM 2nd Edition January 21, 1994 Language

62 Chapter 3: Language

the string object (string 1) is no longer accessible, since the dictionary
entry that referred to it has been replaced by a different object,
(string 2). Similarly, the string (Here is some text) is no longer accessible,
since the show operator consumes its operand, but does not store it
anywhere. The inaccessible strings are candidates for garbage collec-
tion.

Garbage collection normally takes place without explicit action by the
PostScript language program. It has no effects that are visible to the pro-
gram. However, the presence of a garbage collector strongly influences
the style of programming that is permissible. If no garbage collector is
present, a program that consumes VM endlessly and never executes
save and restore will eventually exhaust available memory and cause a
VMerror.

Creating and destroying composite objects in VM have a cost. The most
common case is that of literal objects—particularly strings, user paths,
and binary object sequences—that are immediately consumed by oper-
ators such as show and ufill, and never used again. The garbage collec-
tor is engineered to deal with this case inexpensively, so application
programs should not hesitate to take advantage of it. However, the cost
of garbage collection is greater for objects that have longer lifetimes or
are allocated explicitly. Programs that frequently require temporary
objects are encouraged to create them once and reuse them instead of
creating new ones—for example, allocate a string object before an image
data acquisition procedure, rather than within it (see section 4.10.7,
“Using Images”).

Even with garbage collection, the save and restore operators still have
their standard behavior. That is, restore resets all accessible objects in
local VM to their state at the time of the matching save. It reclaims all
composite objects created in local VM since the save, and does so very
cheaply. On the other hand, garbage collection is the only way to
reclaim storage in global VM, since save and restore normally do not
affect global VM.

With garbage collection comes the ability to explicitly discard compos-
ite objects that are no longer needed. This can be done in an order
unrelated to the time of creation of those objects, as opposed to the
stack-like order imposed by save and restore. This is particularly desir-
able for very large objects, such as font definitions.

If the only reference to a particular composite object is an element of
some array or dictionary, replacing that element with something else
(say, using put) renders the object inaccessible. Alternatively, the undef

PLRM 2nd Edition January 21, 1994 Language

3.7 Memory Management 63

operator removes a dictionary entry entirely; that is, it removes both
the key and the value of a key-value pair, as opposed to replacing the
value with some other value. In either case, the removed object
becomes a candidate for garbage collection.

Regardless of the means used to remove a reference to a composite
object, if the object containing the reference is in local VM, the action
can be undone by a subsequent restore. This is true even for undef.
Consider the following example:

/a (string 1) def
save
currentdict /a undef
restore

Execution of undef removes the key a and its value from the current
dictionary, seemingly causing the object (string 1) to become inaccessi-
ble. However, assuming that the current dictionary is userdict, or some
other dictionary in local VM, restore reinstates the deleted entry, since
it existed at the time of the corresponding save. The value is still acces-
sible and cannot be garbage collected.

As a practical matter, this means that the technique of discarding
objects explicitly (in expectation of their being garbage collected) is use-
ful mainly for objects in global VM, where save and restore have no
effect, and for objects in local VM that were created at the current level
of save nesting.

3.7.5 Standard and User-Defined Dictionaries

A job begins execution with three standard dictionaries on the diction-
ary stack: systemdict, globaldict, and userdict, with userdict on top.

• systemdict is a global dictionary that is permanently read-only. It
contains mainly operators.

• globaldict is a global dictionary that is writable (Level 2).

• userdict is a local dictionary that is writable.

There are other standard dictionaries that are the values of permanent
named entries in systemdict. Some of these are in local VM, some in
global VM, as shown in Table 3.3 and Table 3.4. A PostScript language

PLRM 2nd Edition January 21, 1994 Language

64 Chapter 3: Language

program can also create new dictionaries in either local or global VM,
then push them on the dictionary stack or store them as entries in
userdict or globaldict.

Table 3.3 Standard local dictionaries

Dictionary Definition

userdict Standard writable local dictionary. Initially, it is the top
dictionary on the dictionary stack, making it the current
dictionary.

errordict Error dictionary. See section 3.10, “Errors.”

$error Dictionary accessed by the built-in error-handling pro-
cedures to store stack snapshots and other information.
See section 3.10, “Errors.”

statusdict Dictionary for product-specific operators and other defi-
nitions. See Chapter 8.

FontDirectory Dictionary for font definitions. It is normally read-only,
but is updated by definefont and consulted by findfont.
See section 3.9, “Named Resources,” and section 5.2,
“Font Dictionaries.”

Table 3.4 Standard global dictionaries

Dictionary Definition

systemdict Read-only system dictionary containing all operators
and other definitions that are standard parts of the Post-
Script language. It is the bottom dictionary on the dic-
tionary stack.

globaldict (Level 2) Standard writable global dictionary. It is on the
dictionary stack between systemdict and userdict.

GlobalFontDirectory (Level 2) Dictionary for font definitions in global VM. It
is normally read-only, but is updated by definefont and
consulted by findfont. See section 3.9, “Named
Resources,” and section 5.2, “Font Dictionaries.”

The dictionaries userdict and globaldict are intended to be the principal
repositories for application-defined dictionaries and other objects.
When a PostScript language program creates a dictionary in local VM, it
then typically associates that dictionary with a name in userdict. Simi-
larly, when the program creates a dictionary in global VM, it typically
associates the dictionary with a name in globaldict. Note that the latter

PLRM 2nd Edition January 21, 1994 Language

3.7 Memory Management 65

step requires explicit action on the part of the program. Entering global
VM allocation does not alter the dictionary stack (say, to put globaldict
on top).

The principal intended use of global VM is to hold font definitions and
other resources that are loaded dynamically during execution of a Post-
Script language program. The findfont operator loads fonts into global
VM automatically when necessary. However, any program can take
advantage of global VM when its properties are useful. The following
guidelines are suggested:

• Objects that are created during the prolog can be in either local or
global VM; in either case, they will exist throughout the job, since
they are defined outside the save and restore that enclose individual
pages of the script. A dictionary in local VM reverts to the initial
state defined by the prolog at the end of each page. This is usually
the desirable behavior. A dictionary in global VM accumulates
changes indefinitely and never reverts to an earlier state. This is use-
ful when there is a need to communicate information from one page
to another (strongly discouraged in a page description).

• When using a writable dictionary in global VM, you must be careful
about what objects you store in it. Attempting to store a local com-
posite object in a global dictionary will cause an invalidaccess error.
So, it is advisable to segregate local and global data and to use global
VM only for those objects that must persist through executions of
save and restore.

• In general, the prologs for most existing PostScript language pro-
grams do not work correctly if they are simply loaded into global
VM. The same is true of some user-defined (Type 3) fonts. These pro-
grams must be altered to define global and local information sepa-
rately. Typically, global VM should be used to hold procedure
definitions and constant data; local VM should be used to hold tem-
porary data needed during execution of the procedures. There is no
advantage to putting prologs in global VM except to share them
among multiple contexts in a Display PostScript system (see below).

• Creating gstate (graphics state) objects in global VM is particularly
risky. This is because the graphics state almost always contains one
or more local objects, which cannot be stored in a global gstate (see
currentgstate operator in Chapter 8).

PLRM 2nd Edition January 21, 1994 Language

66 Chapter 3: Language

In a Display PostScript system, which supports multiple execution con-
texts operating simultaneously, global VM serves an additional purpose.
Two or more contexts can share the same global VM, enabling them to
communicate with each other dynamically. This is described in section
7.1, “Multiple Execution Contexts.”

3.7.6 User Objects

Some applications require a convenient and efficient way to refer to
PostScript language objects previously constructed in VM. The conven-
tional way to accomplish this is to store such objects as named entries
in dictionaries and later to refer to them by name. In a PostScript lan-
guage program written by a programmer, this approach is natural and
straightforward. When the program is generated mechanically by
another program, however, it is more convenient to number the objects
with small integers and later to refer to them by the numbers. This sim-
plifies the bookkeeping the application program must do.

The PostScript language provides built-in support for a single space of
numbered objects, called user objects. There are three operators,
defineuserobject, undefineuserobject, and execuserobject, which
manipulate an array named UserObjects. These operators don’t intro-
duce any fundamental capability. They merely provide convenient and
efficient notation for accessing the elements of a special array.

Note User objects exist only in Level 2 and Display PostScript implementations.
The user object facility is entirely separate from the encoded user name feature
of the binary encoding of the PostScript language. The latter is a Display
PostScript extension that is described in Chapter 7.

Example 3.4 illustrates the intended use of user objects:

Example 3.4

17 {ucache 132 402 316 554 setbbox ... } cvlit defineuserobject
17 execuserobject ufill

The first line of the example constructs an interesting object that is to
be used repeatedly (in this case, a user path; see section 4.6, “User
Paths”) and associates the user object index 17 with this object.

PLRM 2nd Edition January 21, 1994 Language

3.7 Memory Management 67

The second line pushes the user object onto the operand stack, from
which ufill takes it. execuserobject executes the user object associated
with index 17. However, because the object in this example is not exe-
cutable, the result of the execution is to push the object onto the oper-
and stack.

Note The pswrap translator, an adjunct to the Display PostScript system, enables
an application program to refer to user objects conveniently (see Chapter 7).

defineuserobject manages the UserObjects array automatically; there is
no reason for a PostScript language program to refer to UserObjects
explicitly. The array is allocated in local VM and defined in userdict.
This means that the effect of defineuserobject is subject to save and
restore. The values of user objects given to defineuserobject can be in
either local or global VM.

3.7.7 Job Execution Environment

As indicated in section 2.4, “Using the PostScript Language,” the con-
ventional model of a PostScript interpreter is a “print server”—a single-
threaded process that consumes and executes a sequence of “print
jobs,” each of which is a complete, independent PostScript language
program. This model is also appropriate for certain other environments,
such as a document previewer built on top of a Display PostScript sys-
tem.

This model does not apply when an application uses the Display Post-
Script system to manage the display screen interactively. That is
described in Chapter 7. The following material applies only to a Post-
Script interpreter that is being operated as a job server.

The notion of a “print job” is not formally a part of the PostScript lan-
guage, because it involves not only the PostScript interpreter but also
some description of the environment in which the interpreter operates.
Still, it is useful to describe a general job model that is accurate for most
PostScript printers, though perhaps lacking in some details. Informa-
tion about communication protocols, job control, system management,
and so on, does not appear here, but in documentation for specific
products.

A job begins execution in an initial environment that consists of an
empty operand stack, a dictionary stack containing the three standard
dictionaries (systemdict, globaldict (Level 2), and userdict), many other
objects accessible via those dictionaries, and miscellaneous interpreter
parameters.

PLRM 2nd Edition January 21, 1994 Language

68 Chapter 3: Language

During execution, the job may alter its environment. Ordinarily, when
a job finishes, the environment reverts to its initial state to prepare for
the next job. That is, the job is encapsulated. The server accomplishes
this encapsulation by executing save and restore and by explicitly
resetting stacks and parameters between jobs.

With suitable authorization, a job can make persistent alterations to
objects in VM. That is, the job is not encapsulated. Instead, its alter-
ations appear as part of the initial state of the next and all subsequent
jobs. This is accomplished by means of the startjob and exitserver facil-
ities described below.

Server Operation

A job server is presented a sequence of files via one or more communi-
cation channels. For each file, the server performs the following
sequence of steps:

1. Establish standard input and output file objects for the channel from
which the file is to be obtained.

2. Execute save. This is the outermost save, which unlike a normal save
obtains a snapshot of the initial state of objects in both local and
global VM.

3. Establish default initial state for the interpreter: empty operand
stack, local VM allocation mode, default user space for the raster out-
put device, and so on.

4. Execute the standard input file until it reaches end-of-file or an error
occurs. If an error occurs, report it and flush input to end-of-file.

5. Execute restore, causing objects in VM (both local and global) to
revert to the state saved in step 2.

6. Close the standard input and output files, transmitting an end-of-file
indication over the communication channel.

Ordinarily, the server executes all six steps once for each file that it
receives. Each file is treated as a separate job, and each job is encapsu-
lated.

PLRM 2nd Edition January 21, 1994 Language

3.7 Memory Management 69

Altering Initial VM

A program can circumvent job encapsulation and alter the initial VM
for subsequent jobs. To do so, it can use either startjob, a Level 2 fea-
ture, or exitserver, a feature available in all implementations that
include a job server. This capability is controlled by a password. The sys-
tem administrator can choose not to make the capability available to
ordinary users. Applications and drivers must be prepared to deal with
the possibility that altering the initial VM is not allowed.

Note startjob and exitserver should be invoked only by a print manager, spooler, or
system administration program. They should never be used by an application
program composing a page description. Appendix I gives more guidelines for
using startjob and exitserver.

startjob is invoked as follows:

 true password startjob

where password is a password—a string or integer; see section C.3.1,
“Passwords.” If this is successful, startjob causes the server to execute
steps 5, 3, and 4 in the above sequence. In other words, it logically ends
the current job, undoing all modifications it has made so far, and starts
a new job. However, it does not precede the new job with a save, so its
execution is not encapsulated. Furthermore, it does not disturb the
standard input and output files; the interpreter resumes consuming the
remainder of the same input file.

Having started an unencapsulated job, the PostScript language program
can alter the VM in arbitrary ways. Those alterations are persistent. If
the job simply runs to completion, ending step 4 in the above
sequence, the server skips step 5 (since there is no saved VM snapshot
to restore), continues with step 6, and processes the next job normally
starting at step 1.

Alternatively, a program can explicitly terminate its alterations to initial
VM:

 false password startjob

This has the effect of executing steps 2, 3, and 4, logically starting yet
another job that is encapsulated in the normal way, but still continuing
to read from the same file.

PLRM 2nd Edition January 21, 1994 Language

70 Chapter 3: Language

If startjob executes successfully, it always starts a new job in the sense
described above. It clears all the stacks and then pushes the result true
on the operand stack. But if startjob is unsuccessful, it has no effect
other than to push false on the operand stack. In the latter case, the
effect is as if the program text before and after the occurrence of
startjob were a single combined job.

A typical sequence is:

 true password startjob pop
...application prolog here...
 false password startjob pop
...application script here...

This installs the application prolog in initial VM if it is allowed to do so.
However, the script executes successfully, regardless of whether the
attempt to alter initial VM was successful. The program can determine
the outcome by testing the result returned by startjob.

Although the above sequence is typical, there is no restriction on the
sequence of encapsulated and unencapsulated jobs. If the password is
correct and the boolean operand to startjob is true, the job that follows
it is unencapsulated; if false, the job is encapsulated. But if the password
is incorrect, startjob does not start a new job; the current job simply
continues.

startjob also fails to start a new job if, at the time it is executed, the cur-
rent save nesting is more than one level deep. In other words, startjob
works only when the current save level is equal to the level at which
the current job started. This permits a file that executes startjob to be
encapsulated as part of another job simply by bracketing it with save
and restore.

Note If an unencapsulated job uses save and restore, the save and restore affect
global as well as local VM, since they are at the outermost save level. Also, if
the job ends with one or more saves pending, a restore to the outermost saved
VM is performed automatically.

exitserver

exitserver is an unofficial Level 1 feature that is retained in Level 2
implementations for compatibility. Although exitserver has never been
a formal part of the PostScript language, it exists in nearly every Adobe

PLRM 2nd Edition January 21, 1994 Language

3.8 File Input and Output 71

PostScript product. Some applications have come to depend on it. The
startjob feature, described above, is more flexible and is preferred for
new Level 2 applications.

The canonical method of invoking exitserver is:

 serverdict begin password exitserver

This has the same effect as:

true password startjob not
{/exitserver errordict /invalidaccess get exec} if

In other words, if successful, exitserver initiates an unencapsulated job
that can alter initial VM; if unsuccessful, it generates an invalidaccess
error. Like startjob, a successful exitserver clears the stacks—it removes
serverdict from the dictionary stack. The program that follows (termi-
nated by end-of-file) is executed as an unencapsulated job.

In many implementations, successful execution of exitserver sends the
message %%[exitserver: permanent state may be changed]%% to the
standard output file. This message is not generated by startjob. It is sup-
pressed if binary is true in the $error dictionary. See section 3.10.2,
“Error Handling.”

Note Aside from exitserver, the other contents of serverdict are not specified as part
of the language. In Level 2, the effect of executing exitserver more than once
in the same file is the same as that of executing the equivalent startjob
sequence multiple times. In Level 1, the effect of executing the exitserver
operator multiple times is undefined and unpredictable.

3.8 File Input and Output

A file is a finite sequence of characters bounded by an end-of-file indica-
tion. These characters may be stored permanently in some place (for
instance, a disk file) or they may be generated on the fly and transmit-
ted over some communication channel. Files are the means by which
the PostScript interpreter receives executable programs and exchanges
data with the external environment.

There are two kinds of files: input and output. An input file is a source
from which a PostScript language program can read a sequence of char-
acters. An output file is a destination to which a PostScript language
program can write characters. Some files in permanent storage media
can be read and written.

PLRM 2nd Edition January 21, 1994 Language

72 Chapter 3: Language

3.8.1 Basic File Operators

A PostScript file object represents a file. The file operators take a file
object as an operand to read or write characters. Ignoring for a moment
how a file object comes into existence, the file operators include:

• read reads the next character from an input file.

• write appends a character to an output file.

• readstring, readline, and writestring transfer the contents of strings
to and from files.

• readhexstring and writehexstring read and write binary data repre-
sented in the file by hexadecimal notation.

• token scans characters from an input file according to the PostScript
language syntax rules.

• exec, applied to an input file, causes the PostScript interpreter to exe-
cute a PostScript language program from that file.

The operators that write to a file do not necessarily deliver the charac-
ters to their destination immediately. They may leave some characters
in buffers for reasons of implementation or efficiency. The flush and
flushfile operators deliver these buffered characters immediately. These
operators are useful in certain situations, such as during two-way inter-
actions with another computer or with a human user, when such data
must be transmitted immediately.

Standard Input and Output Files

All PostScript interpreters provide standard input and standard output
files, which usually represent a real-time communication channel to
and from another computer or user terminal. The standard input and
output files always exist; it is not necessary for a program to create or
close them.

The PostScript interpreter reads and interprets the standard input file as
PostScript language program text. It sends error and status messages to
the standard output file. Also, a PostScript language program may exe-
cute the print operator to send arbitrary data to the standard output
file. Note that print is a file operator; it has nothing to do with placing
text on a page or causing pages to emerge from a printer.

PLRM 2nd Edition January 21, 1994 Language

3.8 File Input and Output 73

It seldom is necessary for a PostScript language program to deal explic-
itly with file objects for the standard files, because the PostScript inter-
preter reads the standard input file by default and the print operator
references the standard output file implicitly. Additionally, the file cur-
rently being read by the PostScript interpreter is available via the
currentfile operator. This file need not be the standard input file. How-
ever, when necessary, a program may apply the file operator to the
identifying strings %stdin or %stdout to obtain file objects for the stan-
dard input and output files.

End-of-Line Conventions

The PostScript language scanner and the readline operator recognize all
three external forms of end-of-line (EOL)—LF alone, CR alone, and the
CR LF pair—and treat them uniformly. The PostScript interpreter does
not translate data read by other means or written by any means.

End-of-line sequences are recognized and treated specially in the fol-
lowing situations:

• Any of the three forms of EOL appearing in a literal string are con-
verted to a single newline (LF character) in the resulting string object.

(any text〈CR〉some more text)
(any text〈LF〉some more text)
(any text〈CR〉〈LF〉some more text)

These three examples produce identical string objects, each of which
has a single newline (LF) separating “text” and “some.”

• Any of the three forms of EOL appearing immediately after \ in a
string are treated as a line continuation; both the \ and the EOL are
discarded.

(any text\〈CR〉some more text)
(any text\〈LF〉some more text)
(any text\〈CR〉〈LF〉some more text)
(any textsome more text)

These four examples produce identical string objects.

• Any of the three forms of EOL appearing outside a string are treated
as a single white-space character. Since the language treats multiple
white-space characters as a single white-space character, the treat-

PLRM 2nd Edition January 21, 1994 Language

74 Chapter 3: Language

ment of EOL is interesting only when a PostScript language token is
followed by data to be read explicitly by one of the file operators.

currentfile read〈CR〉x
currentfile read〈LF〉x
currentfile read〈CR〉〈LF〉x

The above three examples produce identical results: the operator
reads the character x from the current input file and leaves its char-
acter code (the integer 120) on the stack.

• The readline operator treats any of the three forms of EOL as the ter-
mination condition.

• Data read by read and readstring do not undergo EOL translation.
The PostScript interpreter reads whatever characters were received
from the channel. However, the channel itself may perform some
EOL translation, as discussed below.

• Data written by write and writestring do not undergo EOL transla-
tion. Whatever characters the PostScript interpreter provides are sent
to the channel. However, the channel itself may perform some EOL
translation, as discussed below.

Communication Channel Behavior

Communications functions often usurp control characters. Control
codes are device dependent and not part of the PostScript language. For
example, the serial communication protocol supported by many prod-
ucts uses the Control-D character as an end-of-file indication. In this
case, Control-D is a communications function and not logically part of
a PostScript language program. This specifically applies to the serial
channel; other channels, such as LocalTalk™ and Ethernet, have differ-
ent conventions for end-of-file and other control functions. In all cases,
communication channel behavior is independent of the actions of the Post-
Script interpreter.

There are two levels of PostScript EOL translation: one in the PostScript
interpreter and one in the serial communication channel. The previous
description applies only to the EOL conventions at the level of the Post-
Script interpreter. The purpose of the seemingly redundant communica-
tion level EOL translation is to maintain compatibility with diverse
host operating system and communications environments.

PLRM 2nd Edition January 21, 1994 Language

3.8 File Input and Output 75

As discussed in section 3.2, “Syntax,” the ASCII encoding of the lan-
guage is designed for maximum portability. It avoids using control
characters that might be pre-empted by operating systems or communi-
cation channels. However, there are situations in which transmission of
arbitrary binary data is desirable. For example, sampled images are rep-
resented by large quantities of binary data. The PostScript language has
an alternative binary encoding that is advantageous in certain situa-
tions. There are two main ways to deal with PostScript language pro-
grams that contain binary information:

• Communicate with the interpreter via binary channels exclusively.
Some channels, such as LocalTalk and Ethernet, are binary by nature.
They do not pre-empt any character codes, but instead communicate
control information separately from the data. Other channels, such
as serial channels, may support a binary communication protocol
that allows control characters to be quoted. This approach presup-
poses a well-controlled environment. PostScript language programs
produced in that environment may not be portable to other envi-
ronments.

• Take advantage of filters for encoding binary data as ASCII text.
Filters are a Level 2 feature, described in section 3.8.4, “Filters.”
Programs represented in this way do not include any control codes
and are therefore portable to any Level 2 interpreter in any
environment.

3.8.2 Named Files

The PostScript language provides access to named files in secondary
storage. The file access capabilities are part of the integration of the lan-
guage with an underlying operating system; there are variations from
one such integration to another. Not all the file system capabilities of
the underlying operating system are necessarily made available at the
PostScript language level.

The PostScript language provides a standard set of operators for access-
ing named files. These operators are supported in all Level 2 implemen-
tations and also in certain Level 1 implementations that have access to
file systems. The operators are deletefile, renamefile, filenameforall,
setfileposition, and fileposition. Although the language defines a stan-
dard framework for dealing with files, the detailed semantics of the file
system operators, particularly file-naming conventions, are operating
system dependent.

PLRM 2nd Edition January 21, 1994 Language

76 Chapter 3: Language

Files are in one or more “secondary storage devices,” hereafter referred
to simply as devices. (These are not to be confused with the “current
device,” which is a raster output device identified in the graphics state.)
The PostScript language defines a uniform convention for naming
devices, but it says nothing about how files in a given device are
named. Different devices have different properties, and not all devices
support all operations.

A complete file name is in the form %device%file, where device identifies
the secondary storage device and file is the name of the file within the
device. When a complete file name is presented to a file system opera-
tor, the device portion selects the device; the file portion is in turn pre-
sented to the implementation of that device, which is operating system
and environment dependent.

When a file name is presented without a %device% prefix, a search rule
determines which device is selected. The available storage devices are
consulted in order; the requested operation is attempted on each device
until the operation succeeds. The number of available devices, their
names, and the order in which they are searched is environment depen-
dent. Not all devices necessarily participate in such searches; some
devices can be accessed only by explicitly naming them.

In an interpreter that runs on top of an operating system (OS), such as
the Display PostScript system in a workstation, there is a device that
represents the complete file system provided by the OS. If so, by con-
vention that device’s name is os; thus, complete file names are in the
form %os%file, where file conforms to underlying file system conven-
tions. This device always participates in searches, as described above; a
program can access ordinary files without specifying the %os% prefix.
There may be more than one device that behaves in this way; the
names of such devices are product dependent.

Note The os device may impose some restrictions on the set of files that can be
accessed. Restrictions are necessary when the PostScript interpreter executes
with a user identity different from that of the user running the application
program.

In an interpreter that controls a dedicated product, such as a typical
printer product, there can be one or more devices that represent file sys-
tems on disks and cartridges. Files on these devices have names such as
%disk0%file, %disk1%file, and %cartridge0%file. Once again, these
devices participate in searches when the device name is not specified.

PLRM 2nd Edition January 21, 1994 Language

3.8 File Input and Output 77

For the operators file, deletefile, renamefile, status, and filenameforall,
a filename is a string object that identifies a file. The name of the file can
be in one of three forms.

• %device%file identifies a named file on a specific device, as described
above.

• file (first character not %) identifies a named file on an unspecified
device, which is selected by an environment-specific search rule, as
described above.

• %device or %device% identifies an unnamed file on the device. Cer-
tain devices, such as cartridges, support a single unnamed file as
opposed to a collection of named files. Other devices represent com-
munication channels rather than permanent storage media. There
are also special files named %stdin, %stdout, %lineedit, and
%statementedit, described below. The deletefile, renamefile, and
filenameforall operators do not apply to file names of this form.

“Wildcard” file names are handled by the filenameforall operator. See
filenameforall in Chapter 8 for more information on wildcards.

Creating and Closing a File Object

File objects are created by the file operator. This operator takes two
strings: the first identifies the file and the second specifies access. file
returns a new file object associated with that file.

An access is a string object that specifies how a file is to be accessed. File
access conventions are operating system specific. The following access
specifications are typical of the UNIX operating system and are sup-
ported by many others. The access string always begins with r, w, or a,
possibly followed by +; any additional characters supply operating sys-
tem specific information. Table 3.5 lists access strings and their mean-
ings.

Table 3.5 Access strings

Access string Meaning

r Open for reading only. Error if file doesn’t already exist.

w Open for writing only. Create file if it doesn’t already exist.
Truncate and overwrite it if it does exist.

a Open for writing only. Create file if it doesn’t already exist.
Append to it if it does.

PLRM 2nd Edition January 21, 1994 Language

78 Chapter 3: Language

r+ Open for reading and writing. Error if file doesn’t already exist.

w+ Open for reading and writing. Create file if it doesn’t already
exist. Truncate and overwrite it if it does.

a+ Open for reading and writing. Create file if it doesn’t already
exist. Append to it if it does.

Like other composite objects, such as strings and arrays, file objects
have access attributes. The access attribute of a file object is based on
the access string used to create it. Attempting to access a file object in a
way that would violate its access causes an invalidaccess error.

Certain files—in particular, named files on disk—are positionable, mean-
ing that one can access the data in the file in an arbitrary order rather
than only sequentially from the beginning. The setfileposition operator
adjusts a file object so it refers to a specified position in the underlying
file; subsequent reads or writes access the file at that new position. One
can open a positionable file for reading and writing by specifying + in
the access string, as shown in Table 3.5. To ensure predictable results, it
is necessary to execute setfileposition when switching between reading
and writing.

At the end of reading or writing a file, a program should close the file to
break the association between the PostScript file object and the actual
file. The file operators close a file automatically if end-of-file is encoun-
tered during reading (see below). The closefile operator closes a file
explicitly. restore closes a file if the file object was created since the cor-
responding save while in local VM allocation mode. Garbage collection
closes a file if the object is no longer accessible.

All operators that access files treat end-of-file and exception conditions
the same. During reading, if an end-of-file indication is encountered
before the requested item can be read, the file is closed and the opera-
tion returns an explicit end-of-file result. This also occurs if the file has
already been closed when the operator is executed. All other exceptions
during reading and any exceptions during writing result in execution of
the errors ioerror, invalidfileaccess, or invalidaccess.

3.8.3 Special Files

The file operator can also return special files that are identified by the
filename string. These special files are:

• %stdin, the standard input file.

PLRM 2nd Edition January 21, 1994 Language

3.8 File Input and Output 79

• %stdout, the standard output file.

• %stderr, the standard error file. This is for reporting low-level errors.
In many configurations, it is the same as the standard output file.

• %statementedit, the statement editor filter file, described below.

• %lineedit, the line editor filter file, described below.

For example, the statements

(%stdin) (r) file
(%stdout) (w) file

push copies of the standard input and output file objects on the oper-
and stack. These are duplicates of existing file objects, not new objects.

Some PostScript interpreters support an interactive executive, invoked by
executive; this is described in section 2.4.4, “Using the Interpreter Inter-
actively.” executive obtains commands from the user by means of a
special file named %statementedit. Applying the file operator to the file
name string %statementedit causes the following:

• The file operator begins reading characters from the standard input
file and storing them in a temporary buffer. While doing so, it echoes
the characters to the standard output file. It also interprets certain
control characters as editing functions for making corrections, as
described in section 2.4.4, “Using the Interpreter Interactively.”

• When a complete statement has been entered, the file operator re-
turns. A statement consists of one or more lines terminated by new-
line that together form one or more complete PostScript language
tokens, with no opening brackets ({, (, <, or <~) left unmatched.

• The returned file object represents a temporary file containing the
statement that was entered. Reading from that file obtains the char-
acters of the statement in turn; end-of-file is reported when the end
of the statement is reached. Normally, this file is used as an operand
to exec, causing the statement to be executed as a PostScript lan-
guage program.

PLRM 2nd Edition January 21, 1994 Language

80 Chapter 3: Language

The %lineedit special file is similar to %statementedit. However, the file
operator returns after a single line has been entered, regardless of
whether it constitutes a complete statement. If the standard input file
reaches end-of-file before any characters have been entered, the file
operator issues an undefinedfilename error.

It is important to understand that the file object returned by file for the
%statementedit and %lineedit special files is not the same as the stan-
dard input file. It represents a temporary file containing a single buff-
ered statement. When the end of that statement is reached, the file is
closed and the file object is no longer of any use. Successive executions
of file for %statementedit and %lineedit return different file objects.

The %statementedit and %lineedit special files are not available in Post-
Script interpreters that do not support an interactive executive. Post-
Script language programs that are page descriptions should never refer
to these files.

3.8.4 Filters

A filter is a special kind of file object that can be layered on top of some
other file to transform data being read from or written to that file.
When a PostScript language program reads characters from an input
filter, the filter reads characters from its underlying file and transforms
the data in some way, depending on the filter. Similarly, when a pro-
gram writes characters to an output filter, the filter transforms the data
and writes the results to its underlying file. Filters are a Level 2 feature.

There are two main classes of filters:

• An encoding filter is an output file that takes the data written to it,
converts them to some encoded representation depending on the
filter, and writes the encoded data to the underlying file. For exam-
ple, the ASCIIHexEncode filter transforms binary data to an ASCII
hexadecimal encoded representation, which it writes to its underly-
ing file. All encoding filters have “Encode” as part of their names.

• A decoding filter is an input file that reads encoded data from its
underlying file and decodes them. The program reading from the
filter receives the decoded data. For example, the ASCIIHexDecode
filter reads ASCII hexadecimal encoded data from its underlying file
and transforms them to binary. All decoding filters have “Decode” as
part of their names.

PLRM 2nd Edition January 21, 1994 Language

3.8 File Input and Output 81

Decoding filters are most likely to be used in page descriptions. An
application program generating a page description can encode certain
information (for example, data for sampled images) to compress it or to
convert it to a portable ASCII representation. Then, within the page
description itself, it invokes the corresponding decoding filter to con-
vert the information back to its original form.

Encoding filters are unlikely to be used in most page descriptions. How-
ever, a PostScript language program can use them to encode data to be
sent back to the application or written to a disk file. In the interest of
symmetry, the PostScript language supports both encoding and decod-
ing filters for all of its standard data transformation algorithms.

Creating Filters

Filter files are created by the filter operator, which is a Level 2 feature.
The filter operator expects the following operands in the order given:

1. A data source or data target. This is ordinarily a file object that
represents the underlying file the filter is to read or write. However, it
can also be a string or a procedure. This is described in section 3.13,
“Filtered Files Details.”

2. Filter parameters. Some filters require additional parameters to con-
trol how they operate. This information must be given as one or
more operands following the data source or target. Most filters
require no additional parameters.

3. Filter name. This is a name object, such as ASCIIHexDecode, that
specifies the data transformation the filter is to perform. It also deter-
mines how many parameters there are and how they are to be inter-
preted.

The filter operator returns a new file object that represents the filtered
file. For an encoding filter, this is an output file, and for a decoding
filter, an input file. The direction of the underlying file—that is, its
read/write attribute—must match that of the filter. Filtered files can be
used just the same as other files; they are valid as operands to file opera-
tors such as read, write, readstring, and writestring. Input filters are
also valid as data sources for operators such as exec or image.

Since a filter is itself a file, it can be used as the underlying file for yet
another filter. One can cascade filters to form a pipeline that passes the
data stream through two or more encoding or decoding transforma-
tions in sequence. Example 3.5, “ illustrates the construction of an

PLRM 2nd Edition January 21, 1994 Language

82 Chapter 3: Language

input pipeline for decoding sampled image data that is embedded in
the program. The application has encoded the image data twice: once
using the RunLengthEncode method to compress the data and then
using the ASCII85Encode method to represent the binary compressed
data as ASCII text.

Example 3.5

256 256 8 [256 0 0 –256 0 256] % Other operands of image operator
currentfile
/ASCII85Decode filter
/RunLengthDecode filter
image
...Encoded image data...
~> % ASCII85 end-of-data marker

The currentfile operator returns the file object from which the Post-
Script interpreter is currently executing. The first execution of filter cre-
ates an ASCII85Decode filter whose underlying file is the one returned
by currentfile. It pushes the filter file object on the stack. The second
execution of filter creates a RunLengthDecode filter whose underlying
file is the first filter file; it pushes the new filter file object on the stack.
Finally, the image operator uses the second filter file as its data source.
As image reads from its data source, the data are drawn from the under-
lying file and transformed by the two filters in sequence.

Standard Filters

The PostScript language supports a standard set of filters. These filters
fall into three main categories. Each category includes encoding and
decoding filters.

• ASCII encoding filters enable arbitrary 8-bit binary data to be repre-
sented in the printable subset of the ASCII character set. This
improves the portability of the resulting data, since it avoids the
problem of interference by operating systems or communication
channels that pre-empt use of control characters, represent text as 7-
bit bytes, or impose line-length restrictions.

• Compression and decompression filters enable data to be represented in
a compressed form. This is particularly valuable for large sampled
images. Compressing the image data reduces storage requirements
and transmission time. There are several compression filters, each of
which is best suited for particular kinds of image data. Note that the

PLRM 2nd Edition January 21, 1994 Language

3.8 File Input and Output 83

compressed data is in 8-bit binary form. For maximum portability of
the encoded data, these filters should be used with ASCII encoding
filters, as illustrated in Example 3.5, “.

• Subfile filters pass data through without modification. These filters
permit the creation of file objects that access arbitrary user-defined
data sources or data targets. Input filters also can read data from an
underlying file up to a specified end-of-data marker.

Table 3.6 summarizes the available filters. A program can determine the
complete list of filters that the PostScript interpreter supports by apply-
ing the resourceforall operator to the Filter category; see section 3.9,
“Named Resources.”

Table 3.6 Standard filters

Filter name Parameters Semantics

ASCIIHexEncode (none) Encodes binary data in an ASCII hexadecimal representation. Each binary data
byte is converted to two hexadecimal digits, resulting in an expansion factor of
1:2 in the size of the encoded data.

ASCIIHexDecode (none) Decodes ASCII hexadecimal encoded data, producing the original binary data.

ASCII85Encode (none) Encodes binary data in an ASCII base-85 representation. This encoding uses
nearly all of the printable ASCII character set. The resulting expansion factor is
4:5, making this encoding much more efficient than hexadecimal.

ASCII85Decode (none) Decodes ASCII base-85 encoded data, producing the original binary data.

LZWEncode (none) Compresses text or binary data using the LZW (Lempel-Ziv-Welch) adaptive
compression method. This is a good general-purpose encoding that is especially
well-suited for English language and PostScript language text.

LZWDecode (none) Decompresses LZW encoded data, producing the original text or binary data.

RunLengthEncode recordsize Compresses binary data using a simple byte-oriented run-length encoding algo-
rithm. This encoding is best suited to monochrome image data, or any data that
contain frequent long runs of a single byte value.

RunLengthDecode (none) Decompresses run-length encoded data, producing the original binary data.

CCITTFaxEncode dictionary Compresses binary data using a bit-oriented encoding algorithm (the CCITT fac-
simile standard). This encoding is specialized to monochrome image data at 1 bit
per pixel.

CCITTFaxDecode dictionary Decompresses facsimile encoded data, producing the original binary data.

DCTEncode dictionary Compresses continuous-tone (gray-scale or color) sampled image data using a
DCT (discrete cosine transform) technique based on the proposed JPEG stan-
dard. This encoding is specialized to image data. It is “lossy,” meaning that the
encoding algorithm can lose some information.

PLRM 2nd Edition January 21, 1994 Language

84 Chapter 3: Language

DCTDecode dictionary Decompresses DCT encoded data, producing image sample data that approxi-
mate the original data.

NullEncode (none) Passes all data through, without any modification. This permits an arbitrary data
target (procedure or string) to be treated as an output file.

SubFileDecode count, string Passes all data through, without any modification. This permits an arbitrary data
source (procedure or string) to be treated as an input file. Optionally, this filter
detects an end-of-data marker in the source data stream, treating the preceding
data as a subfile.

Section 3.13, “Filtered Files Details,” has complete information about
individual filters, including specifications of the encoding algorithms
for some of them. The section also describes the semantics of data
sources and data targets in more detail.

3.8.5 Additional File Operators

There are other miscellaneous file operators:

• status and bytesavailable return status information about a file.

• currentfile returns the file object from which the interpreter is cur-
rently reading.

• run is a convenience operator that combines the functions of file
and exec.

Several built-in procedures print the values of objects on the operand
stack, sending a readable representation of those values to the standard
output file:

• = pops one object from the operand stack and writes a text represen-
tation of its value to the standard output file, followed by a newline.

• == is similar to =, but produces results closer to full PostScript lan-
guage syntax and expands the values of arrays.

• stack prints the entire contents of the operand stack with =, but
leaves the stack unchanged.

• pstack performs a similar operation to stack, but uses ==.

Input/output and storage devices can be manipulated individually by
Level 2 operators. In particular:

PLRM 2nd Edition January 21, 1994 Language

3.9 Named Resources 85

• setdevparams and currentdevparams access device-dependent
parameters (see Appendix C).

• resourceforall, applied to the IODevice category, enumerates all
available devices (see section 3.9, “Named Resources”).

3.9 Named Resources

The PostScript language has various features involving the use of open-
ended collections of objects to control what the features do. For exam-
ple, the font machinery uses font dictionaries that describe the appear-
ance of characters. The number of possible font dictionaries is
unlimited. For Level 2 implementations this same idea applies to forms,
patterns, color rendering dictionaries, and many other categories of
objects.

It is often convenient to associate these objects with names in some
central registry. This is particularly true for fonts, which are assigned
standard names, such as Times-Roman or Palatino-BoldItalic, when they
are created. Other categories of objects also can benefit from a central
naming convention.

If all available objects in a particular category (for example, all possible
fonts) were permanently resident in VM, they could simply be stored in
some dictionary. Accessing a named object would be a matter of per-
forming get from the dictionary; checking if a named object is available
would be accomplished by performing a known on the dictionary.

There are many more fonts and objects of other categories than can
possibly reside in VM at any given time. These objects originate from a
source external to the PostScript interpreter. They are introduced into
VM in two ways:

1. The application or spooler embeds the objects’ definitions directly in
the job stream.

2. During execution, the PostScript language program requests the
objects by name. The interpreter loads them into VM automatically
from an external source, such as a disk file, a ROM cartridge, or a net-
work file server.

The notion of “named resources” supports the second method. A
resource is a collection of named objects that either reside in VM or can
be located and brought into VM on demand. There are separate catego-

PLRM 2nd Edition January 21, 1994 Language

86 Chapter 3: Language

ries of resources with independent name spaces. For example, fonts and
forms are distinct resource categories. Within each category, there is a
collection of named resource instances. Some instances are objects that
reside in VM, while others exist in some external form that can be
brought into VM on demand. Each category can have its own policy for
locating instances that are not in VM and for managing the instances
that are in VM.

3.9.1 Resource Operators

There are five operators that apply to resources: findresource,
resourcestatus, resourceforall, defineresource, and undefineresource.
These operators and the general concept of named resources are Level 2
features. A more limited facility applicable only to fonts—the findfont
and definefont operators—is available in Level 1.

The findresource operator is the key feature of the resource facility.
Given a resource category name and an instance name, findresource
returns an object. If the requested resource instance does not already
exist as an object in VM, findresource gets it from an external source
and loads it into VM. A PostScript language program can access named
resources without knowing if they are already in VM or how they are
obtained from external storage.

Other important features include resourcestatus, which returns infor-
mation about a resource instance, and resourceforall, which enumer-
ates all available resource instances in a particular category. These
operators apply to all resource instances, whether or not they reside in
VM; the operators do not cause the resource instances to be brought
into VM. resourceforall should be used with care and only when abso-
lutely necessary, since the set of available resource instances is poten-
tially extremely large.

A program can explicitly define a named resource instance in VM. That
is, it can create an object in VM, then execute defineresource to associ-
ate the object with a name in a particular resource category. This
resource instance will be visible in subsequent executions of
findresource, resourcestatus, and resourceforall. A program can also
execute undefineresource to reverse the effect of a prior defineresource.
The findresource operator automatically executes defineresource and
undefineresource to manage the VM for resource instances that it
obtains from external storage.

PLRM 2nd Edition January 21, 1994 Language

3.9 Named Resources 87

Resource instances can be defined in either local or global VM. The life-
time of the definition depends on the VM allocation mode in effect at
the time the definition is made (see section 3.7.2, “Local and Global
VM”). Normally, both local and global resource instances are visible
and available to a program. However, when the current VM allocation
mode is global, only global instances are visible; this ensures correct
behavior of resource instances that are defined in terms of other
resource instances.

When a program executes defineresource to define a resource instance
explicitly, it has complete control over whether to use local or global
VM. However, when execution of findresource causes a resource
instance to be brought into VM automatically, the decision whether to
use local or global VM is independent of the VM allocation mode at the
time findresource is executed. Usually, resource instances are loaded
into global VM; this enables them to be managed independently of the
save and restore activity of the executing program. However, certain
resource instances do not function correctly when they reside in global
VM; they are loaded into local VM instead.

The language does not specify a standard method for installing
resources in external storage. Installation typically consists of writing a
named file in a file system. However, details of how resource names are
mapped to file names and how the files are managed are environment
dependent. In some environments, resources may be installed using
facilities entirely separate from the PostScript interpreter.

Resource instances are identified by keys that ordinarily are name or
string objects; the resource operators treat names and strings equiva-
lently. Use of other types of keys is permitted but not recommended.
The defineresource operator can define a resource instance with a key
that is not a name or string; the other resource operators can access the
instance using that key. However, such a key can never match any
resource instance in external storage.

3.9.2 Resource Categories

Resource categories are identified by name. The standard resource cate-
gories are in the following tables. Within a given category, every
resource instance that resides in VM is of a particular type and has a
particular intended interpretation or use.

PLRM 2nd Edition January 21, 1994 Language

88 Chapter 3: Language

Table 3.7 Regular resources

Category name Object type Interpretation

Font dictionary Font dictionary

Encoding array Encoding vector

Form dictionary Form definition

Pattern dictionary Pattern definition (prototype)

ProcSet dictionary Procedure set

ColorSpace array Parameterized color space

Halftone dictionary Halftone dictionary

ColorRendering dictionary Color rendering dictionary

Table 3.8 Resources whose instances are implicit

Category name Object type Interpretation

Filter name Filter algorithm

ColorSpaceFamily name Color space family

Emulator name Language interpreter

IODevice string Input/output or storage device

ColorRenderingType integer Color rendering dictionary type

FMapType integer Composite font mapping algorithm

FontType integer Font dictionary type

FormType integer Form dictionary type

HalftoneType integer Halftone dictionary type

ImageType integer Image dictionary type

PatternType integer Pattern dictionary type

Table 3.9 Resources used in defining new resource categories

Category name Object type Interpretation

Category dictionary Resource category (recursive)

Generic any Prototype for new categories

PLRM 2nd Edition January 21, 1994 Language

3.9 Named Resources 89

Regular resources are those whose instances are ordinary useful objects,
such as font or halftone dictionaries. For example, a program typically
uses the result returned by findresource as an operand of some other
operator, such as scalefont or sethalftone.

Implicit resources are those whose instances are not objects, but which
represent some built-in capability of the PostScript interpreter. For
example, the instances of the Filter category are filter names, such as
ASCII85Decode and CCITTFaxDecode, that are passed directly to the
filter operator. For such resources, the findresource operator returns
only its name operand. However, resourceforall and resourcestatus are
useful for inquiring about the availability of capabilities, such as spe-
cific filter algorithms.

The Category and Generic resources are used in defining new categories
of resources. This is described in section 3.9.3, “Creating Resource Cate-
gories.”

The resource operators—findresource, resourcestatus, resourceforall,
defineresource, and undefineresource—have standard behavior that is
uniform across all resource categories. This behavior is specified in the
operator descriptions in Chapter 8. For some categories, the operators
have additional semantics that are category specific. The following sec-
tions describe the semantics of each resource category.

Font

Instance names of the Font resource category are font names, such as
Times-Roman. The instances are prototype font dictionaries. Those
instances are suitable for use as operands to scalefont or makefont, pro-
ducing a transformed font dictionary that can be used to paint charac-
ters on the page.

There are several special-purpose operators that apply only to fonts, but
are otherwise equivalent to the resource operators:

• findfont is equivalent to /Font findresource

• definefont is equivalent to /Font defineresource

• undefinefont is equivalent to /Font undefineresource

The definefont and undefinefont operators have additional font-spe-
cific semantics, which are described under those operators. Those
semantics also apply to defineresource and undefineresource when

PLRM 2nd Edition January 21, 1994 Language

90 Chapter 3: Language

applied to the Font category. findfont and definefont are available in
Level 1 implementations, even though the general facility for named
resources exists only in Level 2.

The font operators also maintain dictionaries of font names and
instances that are defined in VM. Those dictionaries are FontDirectory
(all fonts in VM) and GlobalFontDirectory (only fonts in global VM).
They are provided solely for compatibility with existing applications,
which use them to enumerate the defined fonts; they are obsolete. The
preferred method of enumerating all available fonts is:

(*) proc scratch /Font resourceforall

where proc is a procedure and scratch is a string used repeatedly to hold
font names. This method works for all available fonts, whether or not
they are in VM. Normally, it’s preferable to use resourcestatus to deter-
mine the availability of specific resources rather than enumerate all
resources and check whether those of interest are in the list.

Encoding

Instances of the Encoding resource category are array objects, suitable
for use as the Encoding entry of font dictionaries (see section 5.3,
“Character Encoding”). An encoding array usually contains 256 names,
permitting it to be indexed by any 8-bit character code. An encoding
array for use with composite fonts contains integers instead of names,
and can be of any length.

There are two standard encodings that are permanently defined in VM
and available by name in systemdict. If any other encodings exist, they
are available only through findresource. There are three special-purpose
operators that apply only to encodings, but are otherwise equivalent to
the resource operators:

• StandardEncoding is equivalent to /StandardEncoding /Encoding
findresource

• ISOLatin1Encoding is equivalent to /ISOLatin1Encoding /Encoding
findresource

• findencoding is equivalent to /Encoding findresource

PLRM 2nd Edition January 21, 1994 Language

3.9 Named Resources 91

Form

Instances of the Form resource category are form dictionaries, described
in section 4.7, “Forms.” A form dictionary is suitable as the operand to
execform to render the form on the page. There are no standard
instances of this resource category.

Pattern

Instances of the Pattern resource category are prototype pattern dic-
tionaries, described in section 4.9, “Patterns.” A prototype pattern dic-
tionary is suitable as the operand to makepattern, producing a
transformed pattern dictionary describing a tiling that is locked to
device space. This pattern can then be used in painting operations by
establishing a Pattern color space or by invoking the setpattern opera-
tor. There are no standard instances of this resource category.

ProcSet

Instances of the ProcSet resource category are procedure sets or procsets.
A procset is a dictionary containing named procedures. Application
prologs can be organized as one or more procsets that are available from
a library instead of being included in-line in every document that uses
them. The ProcSet resource category is a way to organize such a library.
There are no standard instances of this resource category.

ColorSpace

Instances of the ColorSpace resource category are array objects that rep-
resent fully parameterized color spaces. The first element of a color
space array is a color space family name; the remaining elements are
parameters to the color space. See section 4.8, “Color Spaces.” There are
no standard instances of this resource category.

Note The ColorSpace resource category is distinct from the ColorSpaceFamily
category, described below.

Halftone

Instances of the Halftone resource category are halftone dictionaries,
suitable as operands to the sethalftone operator (see section 6.4, “Half-
tones”). There are no standard instances of this resource category.

PLRM 2nd Edition January 21, 1994 Language

92 Chapter 3: Language

ColorRendering

Instances of the ColorRendering resource category are color rendering
dictionaries, suitable as operands to the setcolorrendering operator (see
section 6.1, “CIE-Based Color to Device Color”). There are no standard
instances of this resource category.

Implicit Resources

For all implicit resources, the findresource operator returns the
instance’s key if the instance is defined. The resourcestatus and
resourceforall operators have their normal behavior, although the
status and size values returned by resourcestatus are meaningless. The
defineresource operator is ordinarily not allowed, but the ability to
define new instances of implicit resources may exist in some implemen-
tations. The mechanisms are implementation dependent.

The instances of the Filter category are filter names, such as
ASCII85Decode and RunLengthEncode, which are used as an operand
of the filter operator to determine its behavior. Filters are described in
section 3.8.4, “Filters.”

The instances of the ColorSpaceFamily category are color space family
names, which appear as the first element of a color space array object.
Some color spaces, such as DeviceRGB, are determined by their family
name; others, such as CIEBasedABC, require additional parameters to
describe them. Color spaces are described in section 4.8, “Color
Spaces.”

The instances of the Emulator category are names of emulators for lan-
guages other than PostScript that may be built into a particular
implementation. Those emulators are not a standard part of the Post-
Script language, but one or more of them may be present in some prod-
ucts.

The instances of the IODevice category are names of input/output and
storage devices, expressed as strings of the form %device%. See section
3.8.2, “Named Files,” and section C.4, “Device Parameters.”

The instances of the ColorRenderingType, FMapType, FontType,
FormType, HalftoneType, ImageType, and PatternType categories are
integers that are the acceptable values for the correspondingly named
entries in various classes of special dictionaries. For example, the

PLRM 2nd Edition January 21, 1994 Language

3.9 Named Resources 93

FontType category always includes the integers 0, 1, and 3 as keys. If an
interpreter supports additional FontType values, the FontType category
will also include those values as instances.

3.9.3 Creating Resource Categories

The language support for named resources is quite general. Most of it is
independent of the semantics of specific resource categories. It’s occa-
sionally useful to create new resource categories, each containing an
independent collection of named instances. This is accomplished
through a level of recursion in the resource machinery itself.

The resource category named Category contains all of the resource cate-
gories as instances. The instance names are resource category names,
such as Font, Form, and Halftone. The instance values are dictionary
objects, each containing information about how the resource category
is implemented.

A new resource category is created by defining a new instance of the
Category category. Example 3.6 creates a Widget category.

Example 3.6

true setglobal
/Widget catdict /Category defineresource pop
false setglobal

In this example, catdict is a dictionary describing the implementation of
the Widget category. Once defined, one can manipulate instances of the
Widget category like other categories:

/Frob1 w /Widget defineresource % Returns w
/Frob1 /Widget findresource % Returns w
/Frob1 /Widget resourcestatus % Returns status size true
(*) proc scratch /Widget resourceforall % Pushes (Frob1) on stack,

% then calls proc

In this example, w is an instance of the Widget category whose type is
whatever is appropriate for widgets. /Frob1 is the name of that instance.

It is possible to redefine existing resource categories this way. Make sure
the new definition correctly implements any special semantics of the
category.

PLRM 2nd Edition January 21, 1994 Language

94 Chapter 3: Language

Category Implementation Dictionary

The behavior of all the resource operators, such as defineresource, is
determined by entries in the resource category’s implementation dic-
tionary. This was supplied as an operand to defineresource when the
category was created. In the example

/Frob1 w /Widget defineresource

the defineresource operator:

1. Obtains catdict, the implementation dictionary for the Widget cate-
gory.

2. Executes begin on the implementation dictionary.

3. Executes the DefineResource entry in the dictionary, which is ordi-
narily a procedure, but might be an operator. When the procedure
corresponding to the DefineResource entry is called, the operand
stack contains the operands that were passed to defineresource,
except the category name (Widget in this example) has been
removed. DefineResource is expected to consume the remaining
operands, perform whatever action is appropriate for this resource
category, and return the appropriate result.

4. Executes the end operator. If an error occurred during step 3, it also
restores the operand and dictionary stacks to their initial state.

The other resource operators—undefineresource, findresource,
resourcestatus, and resourceforall—behave the same way, with the
exception that resourceforall does not restore the stacks upon error.
Aside from the steps described above, all of the behavior of the resource
operators is implemented by the corresponding procedures in the dic-
tionary.

A category implementation dictionary contains the following entries:

Table 3.10 Entries in a category implementation dictionary

Key Type Semantics

DefineResource procedure (Required) Implements defineresource behavior.

UndefineResource procedure (Required) Implements undefineresource behavior.

FindResource procedure (Required) Implements findresource behavior.

ResourceStatus procedure (Required) Implements resourcestatus behavior.

PLRM 2nd Edition January 21, 1994 Language

3.9 Named Resources 95

ResourceForAll procedure (Required) Implements resourceforall behavior.

Category name (Required) The category name. Inserted by defineresource when the category is
defined.

InstanceType name (Optional) The expected type of instances of this category. If this entry is present,
defineresource checks that the instance’s type, as returned by the type operator,
matches it.

ResourceFileName procedure (Optional) Translates a resource instance name to a file name (see below).

The dictionary may also contain other information useful to the proce-
dures in the dictionary. Since the dictionary is on the dictionary stack
at the time those procedures are called, the procedures can access the
information conveniently.

A single dictionary provides the implementation for both local and glo-
bal instances of a category. The implementation must maintain the
local and global instances separately and must respect the VM alloca-
tion mode in effect at the time each resource operator is executed. The
category implementation dictionary must be in global VM; the
defineresource that installs it in the Category category must be exe-
cuted while in global VM allocation mode.

Generic Category

The preceding section describes a way to define a new resource cate-
gory, but it does not provide guidance about how the individual proce-
dures in the category’s dictionary should be implemented. In principle,
every resource category has complete freedom over how to organize
and manage resource instances, both in VM and in external storage.

Since different implementations have different conventions for orga-
nizing resource instances, especially in external storage, a program that
seeks to create a new resource category might need implementation-
dependent information. To overcome this problem, it is useful to have a
generic resource implementation that can be copied and used to define
new resource categories. The Category category contains an instance
named Generic, whose value is a dictionary containing a generic
resource implementation.

The following example of defining the Widget resource category is simi-
lar to Example 3.6 on page 93. However, Example 3.7 generates the cat-
egory implementation dictionary by copying the one belonging to the
Generic category. This avoids the need to know anything about how
resource categories actually work.

PLRM 2nd Edition January 21, 1994 Language

96 Chapter 3: Language

Example 3.7

true setglobal
/Generic /Category findresource
dup length 1 add dict copy
dup /InstanceType /dicttype put
/Widget exch /Category defineresource pop
false setglobal

The Generic resource category’s implementation dictionary does not
have an InstanceType entry; instances need not be of any particular
type. In the above example, the third line makes a copy of the diction-
ary with space for one additional entry. The fourth line inserts an
InstanceType entry with value dicttype. As a result, defineresource
requires that instances of the Widget category be dictionaries.

3.9.4 Resources as Files

The PostScript language does not specify how external resources are
installed, how they are loaded, or what correspondence, if any, exists
between resource names and file names. In general, all knowledge of
such things is in the category implementation dictionary and in envi-
ronment-dependent installation software.

Typically, resource instances are installed as named files, which can also
be accessed by ordinary PostScript file operators such as file and run.
There is a straightforward mapping from resource names to file names,
though the details of this mapping vary because of restrictions on file
name syntax imposed by the underlying file system.

In some implementations, including many dedicated printers, the only
access to the file system is through the PostScript interpreter. In such
environments, it is important for PostScript language programs to be
able to access the underlying resource files directly to install or remove
them. Only resource installation or other system management software
should do this. Page descriptions should never attempt to access
resources as files; they should use only resource operators, such as
findresource.

The implementation dictionary for a category can contain an optional
entry, ResourceFileName, which is a procedure that translates from a
resource name to a file name. If the procedure exists, a program can call
it as follows:

PLRM 2nd Edition January 21, 1994 Language

3.9 Named Resources 97

1. Push the category implementation dictionary on the dictionary
stack. The ResourceFileName procedure requires this to obtain cate-
gory-specific information, such as Category.

2. Push the instance name and a scratch string on the operand stack.
The scratch string must be long enough to accept the complete file
name for the resource.

3. Execute ResourceFileName.

4. Pop the dictionary stack.

ResourceFileName builds a complete file name in the scratch string and
returns the substring that was used on the operand stack. This string
can then be used as the filename operand of file operators, such as file,
deletefile, status, and so on. For example, the following program frag-
ment obtains the file name for the Times-Roman font:

/Font /Category findresource
begin
/Times-Roman scratch ResourceFileName
end

If this is successful, it leaves a string on the operand stack, such as
%font%Times-Roman or %os%C:\FONT\TIMESRMN.PS, that can be used
as the name of the font file. This file name uniquely identifies the file
containing the resource definition for the specified category and
instance names. It also conforms to all restrictions imposed by the
underlying file system.

There may be a limit on the length of a resource file name, which in
turn imposes a length limit on the instance name. The inherent limit
on resource instance names is the same as that on name objects in gen-
eral (see Appendix B). By convention, font names are restricted to fewer
than 40 characters. This convention is recommended for other resource
categories as well. Note that the resource file name may be longer or
shorter than the resource instance name, depending on details of the
name-mapping algorithm. When calling ResourceFileName, it is pru-
dent to provide a scratch string at least 100 characters long.

A resource file contains a PostScript language program that can be exe-
cuted to load the resource instance into VM. The last action the pro-
gram should do is execute defineresource or an equivalent operator,
such as definefont, to associate the resource instance with a category
and a name. In other words, each resource file must be self-identifying

PLRM 2nd Edition January 21, 1994 Language

98 Chapter 3: Language

and self-defining. The resource file must be well-behaved: it must leave
the stacks in their original state and it must not execute any operators
(graphics operators, for instance) not directly related to creating the
resource instance.

For most resource categories, the implementation of findresource exe-
cutes true setglobal prior to executing the resource file. As a result, the
resource instance is loaded into global VM and defineresource defines
the resource instance globally. Unfortunately, certain resource instances
behave incorrectly if they reside in global VM. Some means are required
to force such resources to be loaded into local VM instead. Two meth-
ods are currently used.

• The implementation of findresource for the Font category makes the
decision based on the FontType of the font being loaded. If the
FontType is 1, findresource executes true setglobal prior to executing
the font file; otherwise, it leaves the VM allocation mode
unchanged. This is based on the assumption that Type 1 fonts
always behave correctly in global VM but the behavior of Type 3
fonts is unpredictable.

• For other resource categories, the implementation of findresource
always executes true setglobal. This is based on the assumption that
resource instances normally behave correctly in global VM. If a par-
ticular instance is known not to work in global VM, the resource file
should begin with an explicit false setglobal. See the explanation of
the %%VMlocation convention in section G.6, “Requirement Con-
ventions.”

A resource file can contain header comments, as specified in Appendix
G. If there is a header comment of the form

%%VMusage: int int

then the resourcestatus operator returns the larger of the two integers
as its size result. If the %%VMusage comment is not present,
resourcestatus may not be able to determine the VM consumption for
the resource instance; it will return a size of –1.

The definition of an entire resource category—that is, an instance of the
Category category—can come from a resource file in the normal way. If
any resource operator is presented with an unknown category name, it

PLRM 2nd Edition January 21, 1994 Language

3.10 Errors 99

automatically executes

category /Category findresource

in an attempt to cause the resource category to become defined. Only if
that fails will the resource operator generate an undefined error to
report that the resource category is unknown.

3.10 Errors

Various sorts of errors can occur during execution of a PostScript lan-
guage program. Some errors are detected by the interpreter, such as
overflow of one of the PostScript interpreter’s stacks. Others are
detected during execution of the built-in operators, such as occurrence
of the wrong type of operand.

Errors are handled in a uniform fashion that is under the control of the
PostScript language program. Each error is associated with a name, such
as stackoverflow or typecheck. Each error name appears as a key in a
special dictionary called errordict and is associated with a value that is
the handler for that error. The complete set of error names appears in
section 8.1, “Operator Summary.”

3.10.1 Error Initiation

When an error occurs, the interpreter

1. Restores the operand stack to the state it was when it began execut-
ing the current object.

2. Pushes that object onto the operand stack.

3. Looks up the error’s name in errordict and executes the associated
value, which is the error handler for that error.

This is everything the interpreter itself does in response to an error. The
error handler in errordict is responsible for all other actions. A Post-
Script language program can modify error behavior by defining its own
error-handling procedures and associating them with the names in
errordict.

The interrupt and timeout errors, which are initiated by events external
to the PostScript interpreter, are treated specially. The interpreter
merely executes interrupt or timeout from errordict, sandwiched

PLRM 2nd Edition January 21, 1994 Language

100 Chapter 3: Language

between execution of two objects being interpreted in normal
sequence. It does not push the object being executed, nor does it alter
the operand stack in any other way. In other words, it omits steps 1 and
2 above.

3.10.2 Error Handling

The errordict present in the initial state of VM provides standard han-
dlers for all errors. However, errordict is a writable dictionary; a pro-
gram can replace individual error handlers selectively. errordict is in
local VM, so changes obey save and restore; see section 3.7, “Memory
Management.”

The default error handler procedures all operate in a standard way. They
record information about the error in a special dictionary named
$error, set the VM allocation mode to local, and execute stop. They do
not print anything.

Execution of stop exits the innermost enclosing context established by
stopped. Assuming the user program has not invoked stopped, inter-
pretation continues in the job server, which invoked the user program
with stopped. In a Display PostScript execution context that is not
under the control of a job server, interpretation continues in the con-
text’s outer-level start or resyncstart procedure.

As part of error recovery, the job server executes the name handleerror
from errordict. The default handleerror procedure accesses the error
information in the $error dictionary and reports the error in an instal-
lation-dependent fashion. In some environments, handleerror simply
writes a text message to the standard output file. In other environ-
ments, it invokes more elaborate error-reporting mechanisms. In a Dis-
play PostScript system, handleerror normally transmits a binary object
sequence back to the application (see section 3.12.6, “Structured Out-
put”).

After an error occurs, $error contains the key-value entries as shown in
Table 3.11.

Table 3.11 Entries in the $error dictionary

Key Type Value

newerror boolean Set to true to indicate that an error has occurred. handleerror sets it to false.

errorname name The name of the error that was invoked.

PLRM 2nd Edition January 21, 1994 Language

3.11 Early Name Binding 101

command any The operator or other object being executed by the interpreter at the time the
error occurred.

errorinfo array If the error was a configurationerror caused by setpagedevice or setdevparams,
this array contains the key and value of the request that could not be satisfied.

ostack array A snapshot of the entire operand stack immediately before the error, stored as if
by the astore operator.

estack array A snapshot of the execution stack, stored as if by the execstack operator.

dstack array A snapshot of the dictionary stack, stored as if by the dictstack operator.

recordstacks boolean (Level 2) Controls whether the standard error handlers record the ostack, estack,
and dstack snapshots. Default value: true in a printer, false in a Display PostScript
system.

binary boolean (Level 2) Controls the format of error reports produced by the standard
handleerror procedure. false produces a text message; true produces a binary
object sequence. Default value: false in a printer, true in a Display PostScript sys-
tem.

A program that wishes to modify the behavior of error handling can do
so in one of two ways. First, it can change the way errors are reported
simply by redefining handleerror in errordict. For example, a revised
error handler might report more information about the context of the
error, or it might produce a printed page containing the error informa-
tion instead of reporting it to the standard output file.

Second, a program can change the way errors are invoked by redefining
the individual error names in errordict. There is no restriction on what
an error-handling procedure can do. For example, in an interactive
environment, an error handler might invoke a debugging facility that
would enable the user to examine or alter the execution environment
and perhaps resume execution.

3.11 Early Name Binding

Normally, when the PostScript language scanner encounters an execut-
able name in the program being scanned, it simply produces an execut-
able name object; it does not look up the value of the name. It looks up
the name only when the name object is executed by the interpreter. The
lookup occurs in the dictionaries on the dictionary stack at the time of
execution.

PLRM 2nd Edition January 21, 1994 Language

102 Chapter 3: Language

A name object contained in a procedure is looked up each time the pro-
cedure is executed. For example, given the definition

/average {add 2 div} def

the names add and div are looked up, yielding operators to be executed,
every time the average procedure is invoked.

This so-called late binding of names is an important feature of the Post-
Script language. However, there are situations in which early binding is
advantageous. There are two facilities for looking up the values of
names before execution: the bind operator and the immediately evalu-
ated name.

3.11.1 bind Operator

bind performs early name binding on entire procedures. bind looks up
all the executable names in a procedure. For each name whose value is
an operator (not an array, procedure, or other type), it replaces the name
with the operator object. This lookup occurs in the dictionaries on the
dictionary stack at the time bind is executed. The effect of bind applies
not only to the procedure, but to all subsidiary procedures (executable
arrays) nested to arbitrary depth.

When the interpreter executes this procedure, it encounters the operator
objects, not the names of operators. For example, if the average proce-
dure has been defined this way:

/average {add 2 div} bind def

then during execution of average, the interpreter executes the add and
div operators directly, without looking up the names add and div.

There are two main benefits of using bind:

• A procedure that has been bound will execute the sequence of opera-
tors that were intended when the procedure was defined, even if one
or more of the operator names have been redefined in the meantime.

• A bound procedure executes somewhat faster than one that has not
been bound, since the interpreter need not look up the operator
names each time, but can execute the operators directly.

PLRM 2nd Edition January 21, 1994 Language

3.11 Early Name Binding 103

The first benefit is mainly of interest in procedures that are part of the
PostScript implementation, such as findfont and =. Those procedures
are expected to behave correctly and uniformly, regardless of how a user
program has altered its name environment.

The second benefit is of interest in most PostScript language programs,
particularly in the prologs of page descriptions. It is worthwhile to
apply bind to any procedure that will be executed more than a few
times.

It is important to understand that bind replaces only those names
whose values are operators at the time bind is executed. Names whose
values are of other types, particularly procedures, are not disturbed. If
an operator name has been redefined in some dictionary above
systemdict on the dictionary stack before execution of bind, occurrences
of that name in the procedure will not be replaced.

Note Certain standard language features, such as findfont, are implemented as
built-in procedures instead of as operators. Also, certain names, such as true,
false, and null, are associated directly with literal values in systemdict.
Occurrences of such names in a procedure are not altered by bind.

3.11.2 Immediately Evaluated Names

Level 2 implementations and many Level 1 implementations (see
Appendix A) include a syntax feature called the immediately evaluated
name. When the PostScript language scanner encounters a token of the
form //name (a name preceded by two slashes with no intervening
spaces), it immediately looks up the name and substitutes the corre-
sponding value for the name. This lookup occurs in the dictionaries on
the dictionary stack at the time the scanner encounters the token. If it
can’t find the name, an undefined error occurs.

The substitution occurs immediately, even inside an executable array
delimited by { and }, where execution is deferred. Note that this process
is a substitution and not an execution; that is, the name’s value is not exe-
cuted, but rather is substituted for the name itself, just as if the load
operator were applied to the name.

The most common use of immediately evaluated names is to perform
early binding of objects (other than operators) in procedure definitions.
The bind operator, described in section 3.11.1, “bind Operator,” per-
forms early binding of operators; to bind objects of other types, explicit
use of immediately evaluated names is required.

PLRM 2nd Edition January 21, 1994 Language

104 Chapter 3: Language

Example 3.8, “ illustrates using an immediately evaluated name to bind
a reference to a dictionary.

Example 3.8

/mydict << ... >> def
/proc {
 //mydict begin
 ...
 end
} bind def

In the definition of proc, //mydict is an immediately evaluated name. At
the moment the scanner encounters the name, it substitutes the name’s
current value, which is the dictionary defined earlier in the example.
The first element of the proc executable array is a dictionary object, not
a name object. When proc is executed, it will access that dictionary,
even if in the meantime mydict has been redefined or the definition has
been removed.

Another use of immediately evaluated names is to refer directly to per-
manent objects: standard dictionaries, such as systemdict, and constant
literal objects, such as the values of true, false, and null. On the other
hand, it does not make sense to treat the names of variables as immedi-
ately evaluated names. Doing so would cause a procedure to be irrevo-
cably bound to particular values of those variables.

A word of caution is in order. Indiscriminate use of immediately evalu-
ated names may change the semantics of a program. As discussed in
section 3.5, “Execution,” the behavior of a procedure differs depending
on whether the interpreter encounters it directly or as the result of exe-
cuting some other object (a name or operator). Execution of the pro-
gram fragments

{... b ...}
{... //b ...}

will have different effects if the value of the name b is a procedure. So,
it is inadvisable to treat the names of operators as immediately evalu-
ated names. A program that does so will malfunction in an environ-
ment in which some operators have been redefined as procedures. This
is why bind applies only to names whose values are operators, not pro-
cedures or other types.

PLRM 2nd Edition January 21, 1994 Language

3.12 Binary Encoding Details 105

3.12 Binary Encoding Details

In Level 2 and the Display PostScript system, the scanner recognizes
two encoded forms of the PostScript language in addition to ASCII.
These are binary token encoding and binary object sequence encoding. All
three encoding formats can be mixed in any program.

The binary encodings are intended for machine generation. Display
PostScript system applications are further encouraged to make use of
the Client Library and pswrap facilities, available from vendors of
systems that support the Display PostScript system.

The binary token encoding represents elements of the PostScript lan-
guage as individual syntactic entities. This encoding emphasizes com-
pactness over efficiency of generation or interpretation. Still, the binary
token encoding is usually more efficient than using ASCII. Most ele-
ments of the language, such as integers, reals, and operator names, are
represented by fewer characters in the binary encoding than in the
ASCII encoding. Binary encoding is most suitable for environments in
which communication bandwidth or storage space is the scarce
resource.

The binary object sequence encoding represents a sequence of one or
more PostScript objects as a single syntactic entity. This encoding is not
compact, but it can be generated and interpreted very efficiently. In this
encoding, most elements of the language are in a natural machine rep-
resentation or something very close to one. Also, this encoding is ori-
ented toward sending fully or partially precompiled sequences of
objects, as opposed to sequences generated “on the fly.” This organiza-
tion matches that of the Client Library, which is the principal interface
between Display PostScript applications and the PostScript interpreter.
Binary object sequence encoding is most suitable for environments in
which execution costs dominate communication costs.

Use of the binary encodings requires that the communication channel
between the application and the PostScript interpreter be fully transpar-
ent. That is, the channel must be able to carry an arbitrary sequence of
arbitrary 8-bit character codes, with no characters reserved for commu-
nication functions, no “line” or “record” length restrictions, and so on.
If the communication channel is not transparent, an application must
use the ASCII encoding. Alternatively, it can make use of the filters that
encode binary data as ASCII text. See section 3.13, “Filtered Files
Details.”

PLRM 2nd Edition January 21, 1994 Language

106 Chapter 3: Language

The various language encodings apply only to characters the PostScript
language scanner consumes. Applying exec to an executable file or
string object invokes the scanner, as does the token operator. File opera-
tors such as read and readstring, however, read the incoming sequence
of characters as data, not as encoded PostScript language programs.

The first character of each token determines what encoding is to be
used for that token. If the character code is in the range 128 to 159
inclusive (that is, one of the first 32 codes with the high-order bit set),
one of the binary encodings is used. For binary encodings, the character
code is treated as a token type: it determines which encoding is used and
sometimes also specifies the type and representation of the token.

Note The codes 128 to 159 are control characters in most standard character sets,
such as ISO and JIS; they do not have glyphs assigned to them and are
unlikely to be used to construct names in PostScript language programs.
Interpretation of binary encodings can be disabled. See the setobjectformat
operator.

Following the token type character, subsequent characters are inter-
preted according to the same encoding until the end of the token is
reached, regardless of character codes. A character code outside the
range 128 to 159 can appear within a multiple-byte binary encoding. A
character code in the range 128 to 159 can appear within an ASCII
string literal or a comment. However, a binary token type character ter-
minates a preceding ASCII name or number token.

In the following descriptions, the term byte is synonymous with charac-
ter but emphasizes that the information represents binary data instead
of ASCII text.

3.12.1 Binary Tokens

Binary tokens are variable-length binary encodings of certain types of
PostScript objects. A binary token represents an object that can also be
represented in the ASCII encoding, but it can usually represent the
object with fewer characters. The binary token encoding is usually the
most compact representation of a program.

Semantically, a binary token is equivalent to some corresponding ASCII
token. When the scanner encounters the binary encoding for the inte-
ger 123, it produces the same result as when it encounters an ASCII
token consisting of the characters 1, 2, and 3. That is, it produces an

PLRM 2nd Edition January 21, 1994 Language

3.12 Binary Encoding Details 107

integer object whose value is 123; the object is the same and occupies
the same amount of space if stored in VM whether it came from a
binary or an ASCII token.

Unlike the ASCII and binary object sequence encodings, the binary
token encoding is incomplete; not everything in the language can be
expressed as a binary token. For example, it doesn’t make sense to have
binary token encodings of { and }, because their ASCII encodings are
already compact. It also doesn’t make sense to have binary encodings
for the names of operators that are rarely used, because their contribu-
tion to the overall length of a PostScript language program is negligible.
The incompleteness of the binary token encoding is not a problem,
because ASCII and binary tokens can be mixed.

The binary token encoding is summarized in Table 3.12. A binary token
begins with a token type byte. A majority of the token types (132 to
149) are used for binary tokens; the remainder are used for binary
object sequences or are unassigned. The token type determines how
many additional bytes constitute the token and how the token is inter-
preted.

Table 3.12 Binary token interpretation

Token Additional
type(s) bytes Interpretation

128–131 — Binary object sequence (see section 3.12.2, “Binary Object Sequences”).

132 4 32-bit integer, high-order byte first.

133 4 32-bit integer, low-order byte first.

134 2 16-bit integer, high-order byte first.

135 2 16-bit integer, low-order byte first.

136 1 8-bit integer, treating the byte after the token type as a signed number n;
−128 ≤ n ≤ 127.

137 3 or 5 16- or 32-bit, fixed-point number. The number representation (size, byte order,
and scale) is encoded in the byte immediately following the token type; the
remaining two or four bytes constitute the number itself. The representation
parameter is treated as an unsigned integer r in the range 0 to 255:

0 ≤ r ≤ 31 32-bit fixed point number, high-order byte first. The scale parame-
ter (number of bits of fraction) is equal to r.

32≤ r ≤ 47 16-bit fixed point number, high-order byte first; scale = r – 32.

r ≥ 128 Same as r – 128, except all numbers are given low-order byte first.

138 4 32-bit IEEE standard real, high-order byte first.

PLRM 2nd Edition January 21, 1994 Language

108 Chapter 3: Language

139 4 32-bit IEEE standard real, low-order byte first.

140 4 32-bit native real.

141 1 Boolean. The byte following the token type gives the value 0 for false, 1 for true.

142 1 + n String of length n. The parameter n is in the byte following the token type;
0 ≤ n ≤ 255. The n characters of the string follow the parameter.

143 2 + n Long string of length n. The 16-bit parameter n is contained in the two bytes fol-
lowing the token type, represented high-order byte first; 0 ≤ n ≤ 65535. The n
bytes of the string follow the parameter.

144 2 + n Long string of length n. The 16-bit parameter n is contained in the two bytes fol-
lowing the token type, represented low-order byte first; 0 ≤ n ≤ 65535. The n
bytes of the string follow the parameter.

145 1 Literal name from the system name table indexed by index. The index parameter
is contained in the byte following the token type; 0 ≤ index ≤ 255.

146 1 Executable name from the system name table indexed by index. The index
parameter is contained in the byte following the token type; 0 ≤ index ≤ 255.

147 1 (Display PostScript only) Literal name from the user name table indexed by index.
The index parameter is contained in the byte following the token type;
0 ≤ index ≤ 255.

148 1 (Display PostScript only) Executable name from the user name table indexed by
index. The index parameter is contained in the byte following the token type;
0 ≤ index ≤ 255.

149 3 + data Homogeneous number array, which consists of a four-byte header, including the
token type, followed by a variable length array of numbers whose size and repre-
sentation are specified in the header. The header is described in detail below.

150–159 — Unassigned. Occurrence of a token with these types will cause a syntaxerror.

The encodings for integers, reals, and booleans are straightforward.
They are explained in section 3.12.4, “Number Representations.” The
other token types require additional discussion.

A fixed point number is a binary number having integer and fractional
parts. The position of the binary point is specified by a separate scale
value. In a fixed point number of n bits, the high-order bit is the sign,
the next n – scale – 1 bits are the integer part, and the low-order scale
bits are the fractional part. For example, if the number is 16 bits wide
and scale is 5, it is interpreted as a sign, a 10-bit integer part, and a 5-bit
fractional part. A negative number is represented in two’s complement
form.

There are both 16- and 32-bit fixed point numbers, enabling an applica-
tion to make a trade-off between compactness and precision. Regardless

PLRM 2nd Edition January 21, 1994 Language

3.12 Binary Encoding Details 109

of the token’s length, the object produced by the scanner for a fixed
point number is an integer if scale is zero; otherwise it is a real. A 32-bit
fixed point number takes more bytes to represent than a 32-bit real. It is
useful only if the application already represents numbers that way.
Using this representation makes somewhat more sense in homoge-
neous number arrays, described below.

A string token specifies the string’s length as a one- or two-byte,
unsigned integer. The specified number of characters of the string fol-
low immediately. All characters are treated literally. There is no special
treatment of \ (backslash) or other characters.

The name encodings specify a system name index or a user name index
that selects a name object from the system or user name table (see
Appendix F) and uses it as either a literal or an executable name. This
mechanism is described in section 3.12.3, “Encoded System Names.”

A homogeneous number array is a single binary token that represents a lit-
eral array object whose elements are all numbers. Figure 3.1 on page
110 illustrates the organization of the homogeneous number array. The
token consists of a four-byte header, including the token type, followed
by an arbitrarily long sequence of numbers. All of the numbers are rep-
resented in the same way, which is specified in the header. The header
consists of the token type byte (149, denoting a homogeneous number
array), a byte that describes the number representation, and two bytes
that specify the array length (number of elements). The number repre-
sentation is treated as an unsigned integer r in the range 0 to 255 and is
interpreted as shown in Table 3.13.

Table 3.13 Number representation in the header for a homogeneous number array

Representation Interpretation

0 ≤ r ≤ 31 32-bit fixed point number, high-order byte first. The
scale parameter (number of bits of fraction) is equal to r.

32 ≤ r ≤ 47 16-bit fixed point number, high-order byte first.
scale = r – 32.

48 32-bit IEEE standard real, high-order byte first.

49 32-bit native real.

128 ≤ r ≤ 177 Same as r – 128, except all numbers are given low-order
byte first.

This interpretation is similar to that of the representation parameter r
in individual fixed point number tokens.

PLRM 2nd Edition January 21, 1994 Language

110 Chapter 3: Language

Figure 3.1 Homogeneous number array

The array’s length is given by the last two bytes of the header, treated as
an unsigned 16-bit number. The byte order in this field is specified by
the number representation. r < 128 indicates high-order byte first;
r ≥ 128 indicates low-order byte first.

Following the header are 2 × length or 4 × length bytes, depending on
representation, that encode successive numbers of the array.

When the homogeneous number array is consumed by the PostScript
language scanner, the scanner produces a literal array object. The ele-
ments of this array are all integers if the representation parameter r is 0,
32, 128, or 160, specifying fixed point numbers with a scale of zero.
Otherwise, they are all reals. Once scanned, such an array is indistin-
guishable from an array produced by other means and occupies the
same amount of space.

149 token type

representation

array length
(elements)

Header

Number Representation

LSB

sign

sign

LSB of
exponent

fraction

exponent

Low byte first

LSB

sign

sign exponent
LSB of

exponent

sign

High byte first

2-byte
integer/fixed

4-byte
integer/fixed

IEEE
real

Note: first byte is at top in all diagrams

Header
(4 bytes)

Array of numbers
(2 or 4 bytes each;
all the same size)

length
(bytes)

8
bits

Number Representation

LSB

sign

LSB

fraction

PLRM 2nd Edition January 21, 1994 Language

3.12 Binary Encoding Details 111

Although the homogeneous number array representation is useful in its
own right, it is particularly useful with operators that take an encoded
number string as an operand. This is described in section 3.12.5,
“Encoded Number Strings.”

3.12.2 Binary Object Sequences

A binary object sequence is a single token that describes an executable
array of objects, each of which may be a simple object, a string, or
another array nested to arbitrary depth. The entire sequence can be
constructed, transmitted, and scanned as a single, self-contained, syn-
tactic entity.

Semantically, a binary object sequence is an ordinary executable array,
as if the objects in the sequence were surrounded by { and }, but with
one important difference: Its execution is immediate instead of
deferred. That is, when the PostScript interpreter encounters a binary
object sequence in a file being executed directly, the interpreter per-
forms an implicit exec instead of pushing the array on the operand
stack, as it ordinarily would do. This special treatment does not apply
when a binary object sequence appears in a context where execution is
already deferred—for example, nested in ASCII-encoded { and } or con-
sumed by the token operator.

Because a binary object sequence is syntactically a single token, the
scanner processes it completely before the interpreter executes it. The
VM allocation mode in effect at the time the binary object sequence is
scanned determines whether the entire array and all of its composite
objects are allocated in local or global VM.

The encoding emphasizes ease of construction and interpretation over
compactness. Each object is represented by eight successive bytes. In
the case of simple objects, these eight bytes describe the entire object—
type, attributes, and value. In the case of composite objects, the eight
bytes include a reference to some other part of the binary object
sequence where the value of the object resides. The entire structure is
easy to describe using the data type definition facilities of implementa-
tion languages, such as C and Pascal. Figure 3.2 on page 112 shows the
organization of the binary object sequence.

PLRM 2nd Edition January 21, 1994 Language

112 Chapter 3: Language

Figure 3.2 Binary object sequence

A binary object sequence consists of four parts, in the following order:

• Header—four or eight bytes of information about the binary object
sequence as a whole.

• Top-level array—a sequence of objects, eight bytes each, which con-
stitute the value of the main array object.

• Subsidiary arrays—more eight-byte objects, which constitute the val-
ues of nested array objects.

• String values—an unstructured sequence of bytes, which constitute
the values of string objects and the text of name objects.

Header
(4 or 8 bytes)

8
bits

Subsidiary
arrays of objects
(8 bytes each)

String
values
(variable length)

length
(bytes)

token type

Normal Header
(4 bytes)

overall length
(bytes)

top level array
length (objects)

0

Extended Header
(8 bytes)

0

Object
(8 bytes)

type0 = literal
1 = executable

length

value

Note: first byte is at top in all diagrams

token type

overall length
(bytes)

top level array
length (objects)Top-level

array of objects
(8 bytes each)

PLRM 2nd Edition January 21, 1994 Language

3.12 Binary Encoding Details 113

The first byte of the header is the token type, mentioned earlier. Four
token types denote a binary object sequence and select a number repre-
sentation for all integers and reals embedded within it (see section
3.12.4, “Number Representations”). They are:

128 high-order byte first, IEEE standard real format
129 low-order byte first, IEEE standard real format
130 high-order byte first, native real format
131 low-order byte first, native real format

There are two forms of header, normal and extended, as shown in Figure
3.2. The normal header can describe a binary object sequence that has
no more than 255 top-level objects and 65,535 bytes overall. The
extended header is required for sequences that exceed these limits.

Following the header is an uninterrupted sequence of eight-byte objects
that constitute the top-level array and subsidiary arrays. The length of
this sequence is not explicit. It continues until the earliest string value
referenced from an object in the sequence, or until the end of the entire
token.

The first byte of each object in the sequence gives the object’s literal/
executable attribute in the high-order bit and its type in the low-order 7
bits. The attribute values are:

0 literal
1 executable

The meaning of the object type field is given in Table 3.14.

Table 3.14 Object types; length and value fields interpretation

Object Type Length field Value field

0 null Unused Unused

1 integer Unused Signed, 32-bit integer

2 real Selects representation Real or fixed point number

3 name (See below) Offset or index

4 boolean Unused 0 for false, 1 for true

5 string Number of elements Offset of first element

6 immediately (See below) Offset or index
evaluated name

9 array Number of elements Offset of first element

10 mark Unused Unused

PLRM 2nd Edition January 21, 1994 Language

114 Chapter 3: Language

The second byte of an object is unused; its value must be zero. The third
and fourth bytes constitute the length; the fifth through eighth bytes
constitute the value. The bytes interpretation of the length and value
fields depends on the object’s type and are given in Table 3.14. Once
again, the byte order within these fields is according to the number rep-
resentation for the binary object sequence overall.

Number representations are explained in section 3.12.4, “Number Rep-
resentations.” For a real, if length is zero, value is a floating point num-
ber. If length is non-zero, value is a fixed point number, using length as its
scale factor (see section 3.12.1, “Binary Tokens”).

For types string and array, the length field specifies the number of ele-
ments (characters in a string or objects in an array). It is treated as an
unsigned 16-bit integer. The value field specifies the offset, in bytes, of
the start of the object’s value relative to the first byte of the first object
in the top-level array. An array offset must refer somewhere within the
top-level or subsidiary arrays; it must be a multiple of 8. A string offset
must refer somewhere within the string values. The strings have no
alignment requirement and need not be null-terminated or otherwise
delimited. If the length of a string or array object is zero, its value is dis-
regarded.

For the name type, the length field is treated as a signed, 16-bit integer
that selects one of three interpretations of the value field:

n > 0 Value is an offset to the text of the name, just as with a string.
n is the name’s length, which must be within the implemen-
tation limit for names.

n = 0 Value is a user name index. This is a Display PostScript feature,
not a standard part of Level 2 implementations.

n = −1 Value is a system name index (see 3.12.3, “Encoded System
Names”).

An immediately evaluated name object corresponds to the //name syntax
of the ASCII encoding. See section 3.11.2, “Immediately Evaluated
Names.” Aside from the type code, its representation is the same as a
name. However, with an immediately evaluated name object, the scan-
ner immediately looks up the name in the environment of the current
dictionary stack and substitutes the corresponding value for that name.
If the name is not found, an undefined error occurs.

PLRM 2nd Edition January 21, 1994 Language

3.12 Binary Encoding Details 115

For the composite objects, there are no enforced restrictions against
multiple references to the same value or to recursive or self-referential
arrays. However, such structures cannot be expressed directly in the
ASCII or binary token encodings of the language; their use violates the
interchangeability of the encodings. The recommended structure of a
binary object sequence is for each composite object to refer to a distinct
value. There is one exception: References from multiple name objects to
the same string value are encouraged, because name objects are unique
by definition.

The scanner generates a syntaxerror when it encounters a binary object
sequence that is malformed in any way. Possible causes include:

• An object type that is undefined.

• An “unused” field that is not zero.

• Lengths and offsets that, combined, would refer outside the bounds
of the binary object sequence.

• An array offset that is not a multiple of 8 or that refers beyond the
earliest string offset.

When a syntaxerror occurs, the PostScript interpreter pushes onto the
operand stack the object that caused the error. For an error detected by
the scanner, however, there is not such an object, because the error
occurs before the scanner has finished creating one. Instead, the scan-
ner fabricates a string object consisting of the characters encountered so
far in the current token. If a binary token or binary object sequence was
being scanned, the string object produced is a description of the token
rather than the literal characters, which would be gibberish if printed as
part of an error message.

An example of such as error string is:

(bin obj seq, type=128, elements=23, size=234, array out of bounds)

3.12.3 Encoded System Names

Both the binary token and binary object sequence encodings provide
optional means for representing certain names as small integers instead
of as full text strings. Such an integer is referred to as a system name
index or a user name index. Careful use of encoded names can save sub-
stantial space and improve execution performance.

PLRM 2nd Edition January 21, 1994 Language

116 Chapter 3: Language

Encoded system names are a Level 2 feature; they are described below.
Encoded user names are supported only in the Display PostScript sys-
tem; they are documented in Chapter 7.

A name index is a reference to an element of a name table already
known to the PostScript interpreter. When the scanner encounters a
name token that specifies a name index, rather than a text name, it
immediately substitutes the corresponding element of the table. This
substitution occurs at scan time, not at execution time. The result of
the substitution is an ordinary PostScript name object.

The system name table contains standard operator names, single-letter
names, and miscellaneous other useful names. The contents of this
table are documented in Appendix F. They are also available as a
machine-readable file for use by drivers, translators, and other programs
that deal with binary encodings; contact the Adobe Systems Develop-
ers’ Association.

If there is no name associated with a specified system name index, the
scanner generates an undefined error. The offending command is
systemn, where n is the decimal representation of the index.

An encoded binary name specifies, as part of the encoding, whether the
name is to be literal or executable. A given element of the system name
table can be treated as either literal or executable when referenced from
a binary token or object sequence. In the binary object sequence encod-
ing, one can also specify an immediately evaluated name object analo-
gous to //name. When such an object specifies a name index, there are
two substitutions: the first obtains a name object from the table, the sec-
ond looks up that name object in the current dictionary stack.

A program can depend on a given system name index representing a
particular name object. Applications that generate binary encoded Post-
Script language programs are encouraged to take advantage of system
name index encodings, because they save both space and time.

Note The binary token encoding can reference only the first 256 elements of the
system name table. Therefore, this table is organized such that the most
commonly used names are in the first 256 elements. The binary object
sequence encoding does not have this limitation.

PLRM 2nd Edition January 21, 1994 Language

3.12 Binary Encoding Details 117

3.12.4 Number Representations

Binary tokens and binary object sequences use various representations
for numbers. Some numbers are the values of number objects (integers
and reals). Others provide structural information, such as lengths and
offsets within binary object sequences.

Different machine architectures use different representations for num-
bers. The two most common variations are the byte order within multi-
ple-byte integers and the format of real (floating point) numbers.

Rather than specify a single convention for representing numbers, the
language provides a choice of representations. The application program
chooses whichever convention is most appropriate for the machine on
which it is running. The PostScript language scanner accepts numbers
conforming to any of the conventions, translating to its own internal
representation when necessary. This translation is needed only when
the application and the PostScript interpreter are running on machines
with different architectures.

The number representation to be used is specified as part of the token
type—the initial character of the binary token or binary object
sequence. There are two independent choices, one for byte order and
one for real format.

The byte order choices are:

• High-order byte first in a multiple-byte integer or fixed point num-
ber. The high-order byte comes first, followed by successively lower-
order bytes.

• Low-order byte first in a multiple-byte integer or fixed point number.
The low-order byte comes first, followed by successively higher-order
bytes.

The real format choices are:

• IEEE standard—a real number is represented in IEEE 32-bit, floating
point format (see the bibliography). The order of the bytes is the
same as the integer byte order. For example, if the high-order byte of
an integer comes first, then the byte containing the sign and first 7
exponent bits of an IEEE standard real comes first.

PLRM 2nd Edition January 21, 1994 Language

118 Chapter 3: Language

• Native—a real number is represented in the native format for the
machine on which the PostScript interpreter is running. This may be
a standard format or something completely different. The choice of
byte order is not relevant. The application program is responsible for
finding out what the correct format is. In general, this is useful only
in environments where the application and the PostScript inter-
preter are running on the same machine or on machines with com-
patible architectures. PostScript language programs that use this real-
number representation are not portable.

Because each binary token and binary object sequence specifies its own
number representation, binary encoded programs with different num-
ber representations can be mixed. This is a convenience for applications
that obtain portions of PostScript language programs from different
sources.

The ByteOrder and RealFormat system parameters indicate the native
byte order and real number representation of the machine on which
the PostScript interpreter is running (see Appendix C). A Display Post-
Script application can query RealFormat to determine whether the
interpreter’s native real number format is the same as the application’s.
If so, translation to and from IEEE format can be avoided.

3.12.5 Encoded Number Strings

Several operators require as operands an indefinitely long sequence of
numbers to be used as coordinate values, either absolute or relative. The
operators include those dealing with user paths, rectangles, and explic-
itly positioned text. In the most common use of these operators, all of
the numbers are provided as literal values by the applications rather
than being computed by the PostScript language program.

In order to facilitate this common use and to streamline generation and
interpretation of numeric operand sequences, these operators permit
their operands to be presented in either of two ways:

• As an array object whose elements are numbers to be used succes-
sively.

• As a string object to be interpreted as an encoded number string.

PLRM 2nd Edition January 21, 1994 Language

3.12 Binary Encoding Details 119

An encoded number string is a string that contains a single homogeneous
number array according to the binary token encoding. That is, the first
four bytes are treated as a header. The remaining bytes are treated as a
sequence of numbers encoded as described in the header. (See Figure
3.1 on page 110.)

An encoded number string is a compact representation of a number
sequence both in its external form and in VM. Syntactically, it is simply
a string object. It remains in that form after being scanned and placed
in VM. It is interpreted as a sequence of numbers only when it is used as
an operand of an operator that is expecting a number array. Further-
more, even then it is neither processed by the scanner nor expanded
into an array object; instead, the numbers are consumed directly by the
operator. This arrangement is compact and efficient, particularly for
large number sequences.

Example 3.9, “ shows equivalent ways of invoking rectfill, which is one
of the Level 2 operators that expect number sequences as operands.

Example 3.9

[100 200 40 50] rectfill
<95200004 0064 00c8 0028 0032> rectfill

The first line constructs an ordinary PostScript array object containing
the numbers and passes it to rectfill. This is the most general form,
because the [and] could enclose an arbitrary computation that pro-
duces the numbers and pushes them on the stack.

On the second line, a string object appears in the program. When
rectfill notices that it has been given a string object, it interprets the
value of the string, expecting to find the binary token encoding of a
homogeneous number array.

Example 3.9 does not use encoded number strings to best advantage. In
this example, it is an ASCII-encoded hexadecimal string enclosed in
< and >. In a real application, one would use a more efficient encoding,
such as a binary string token or an ASCII base-85 string literal. An ordi-
nary ASCII string enclosed in (and) is unsuitable because of the need
to quote special characters.

The operators that use encoded number strings include rectfill,
rectstroke, rectclip, rectviewclip, xshow, yshow, and xyshow. An
encoded user path can represent its numeric operands as an encoded
number string. The relevant operators are ufill, ueofill, ustroke,
uappend, inufill, inueofill, and inustroke.

PLRM 2nd Edition January 21, 1994 Language

120 Chapter 3: Language

3.12.6 Structured Output

In some environments, a PostScript language program can transmit
information back to the application program that generated it. This is
particularly true in the Display PostScript system, where the application
program and the PostScript interpreter communicate interactively via
the Client Library (see Chapter 7). This information includes the values
of objects produced by queries, error messages, and unstructured text
generated by print.

A PostScript language program writes all of this data to its standard out-
put file. The Client Library or application requires a way to distinguish
among these different kinds of information received from the Post-
Script interpreter. To serve this need, the language includes operators to
write output in a structured output format. This format is basically the
same as the binary object sequence representation for input, described
in section 3.12.2, “Binary Object Sequences.”

A program that writes structured output should take care when using
unstructured output operators, such as print and =. Because the start of
a binary object sequence is indicated by a character whose code is in the
range 128 to 159 inclusive, unstructured output should consist only of
character codes outside that range. Otherwise, confusion will ensue in
the Client Library or the application. Of course, this is only a conven-
tion. By prior arrangement, a program can send arbitrary unstructured
data to the application.

The operator printobject writes an object as a binary object sequence to
the standard output file. A similar operator, writeobject, writes to any
file. The binary object sequence contains a top-level array consisting of
one element that is the object being written (see section 3.12.2, “Binary
Object Sequences”). That object, however, can be composite, so the
binary object sequence may include subsidiary arrays and strings.

In the binary object sequences produced by printobject and
writeobject, the number representation is controlled by the
setobjectformat operator. The binary object sequence has a token type
that identifies the representation used.

Accompanying the top-level object in the object sequence is a one-byte
tag, which is specified as an operand of printobject and writeobject.
This tag is carried in the second byte of the object, which is otherwise
unused (see Figure 3.2 on page 112). Only the top-level object receives a

PLRM 2nd Edition January 21, 1994 Language

3.12 Binary Encoding Details 121

tag; the second byte of subsidiary objects is zero. Despite its physical
position, the tag is logically associated with the object sequence as a
whole.

The purpose of the tag is to enable the PostScript language program to
specify the intended disposition of the object sequence. A few tag val-
ues are reserved for reporting errors (see below). The remaining tag val-
ues may be used arbitrarily. For example, the Display PostScript Client
Library uses tags when it issues queries to the PostScript interpreter. A
query consists of a PostScript language program that includes one or
more instances of printobject to send responses back to the Client
Library. A different tag is specified for each printobject so the Client
Library can distinguish among the responses as they arrive.

Tag values 0 through 249 are available for general use. Tag values 250
through 255 are reserved for identifying object sequences that have spe-
cial significance. Of these, only tag value 250 is presently defined; it is
used to report errors.

Errors are initiated as described in section 3.10, “Errors.” Normally,
when an error occurs, control automatically passes from the PostScript
language program to a built-in procedure that catches errors. That pro-
cedure invokes handleerror. Subsequent behavior depends on the defi-
nition of handleerror. The following description applies to the standard
definition of handleerror.

If the value of binary in the $error dictionary is true and binary
encoding is enabled, handleerror writes a binary object sequence with a
tag value of 250. But if binary is false or binary encoding is disabled,
handleerror writes a human-readable text message whose format is
product-dependent.

The binary object sequence that reports an error contains a four-ele-
ment array as its top-level object. The array elements, ordered as they
appear, are:

• The name Error, which indicates an ordinary error detected by the
PostScript interpreter. A different name could indicate another class
of errors, in which case the meanings of the other array elements
might be different.

• The name that identifies the specific error—for example, typecheck.

PLRM 2nd Edition January 21, 1994 Language

122 Chapter 3: Language

• The object that was being executed when the error occurred. If the
object that raised the error is not printable, some suitable substitute
is provided—for example, an operator name in place of an operator
object.

• An error-handler flag—a boolean object whose value is true if the
program expects to resynchronize with the client, and false other-
wise. The normal value is false, but certain Display PostScript appli-
cations set it to true (see the section on handling errors in The Display
PostScript Reference Manual, available from the Adobe Systems Devel-
opers’ Association).

3.13 Filtered Files Details

Level 2 implementations of the PostScript language support a special
kind of file called a filter, which reads or writes an underlying file and
transforms the data in some way. Filters are introduced in 3.8.4, “Fil-
ters.” This section describes the semantics of filters in more detail. It
includes information about:

• Use of files, procedures, and strings as data sources and targets.

• End-of-data conventions.

• Details of individual filters.

• Specifications of encoding algorithms for some filters.

3.13.1 Data Sources and Targets

As stated in section 3.8.4, “Filters,” there are two kinds of filters, decod-
ing filters and encoding filters. A decoding filter is an input file that reads
from an underlying data source and produces transformed data as it is
read. An encoding filter is an output file that takes the data written to it
and writes transformed data to an underlying data target. Data sources
and data targets may be files, procedures, or strings.

Files

A file is the most common data source or target for a filter. A file used as
a data source must be an input file; one used as a data target must be an
output file. Otherwise, an invalidaccess error occurs.

PLRM 2nd Edition January 21, 1994 Language

3.13 Filtered Files Details 123

If a file is a data source for a decoding filter, the filter reads from it as
necessary to satisfy demands on the filter, until either the filter reaches
its end-of-data (EOD) condition or the data source reaches end-of-file. If
a file is a data target for an encoding filter, the filter writes to it as neces-
sary to dispose of data that have been written to the filter and trans-
formed.

Closing a filter file does not close the underlying file. A program typi-
cally creates a decoding filter to process data embedded in the program
file itself—the one designated by currentfile. When the filter reaches
EOD, execution of the underlying file resumes. Similarly, a program can
embed the output of an encoding filter in the middle of an arbitrary
data stream being written to the underlying output file.

Once a program has begun reading from or writing to a filter, it should
not attempt to access the underlying file in any way until the filter has
been closed. Doing so could interfere with the operation of the filter
and leave the underlying file in an unpredictable state. However, it is
safe to access the underlying file after execution of filter but before the
first read or write of the filter file. The procedure for establishing a filter
pipeline in Example 3.5 on page 82 depends on this.

Procedures

The data source or target can be a procedure. When the filter file is read
or written, it calls the procedure to obtain input data to be decoded or
to dispose of output data that have been encoded. This enables the data
to be supplied or consumed by an arbitrary program.

If a procedure is a data source, the filter calls it whenever it needs to
obtain input data. The procedure must return (on the operand stack) a
readable string containing any number of bytes of data. The filter pops
this string from the stack and uses its contents as input to the filter. This
process repeats until the filter encounters end-of-data (EOD). Any left-
over data in the final string are discarded. The procedure can return a
string of length zero to indicate that no more data are available.

If a procedure is a data target, the filter calls it whenever it needs to dis-
pose of output data. Before calling the procedure, it pushes two oper-
ands on the stack: a string and a boolean flag. It expects the procedure
to consume those operands and to return a string. The filter calls the
procedure in the following three situations:

PLRM 2nd Edition January 21, 1994 Language

124 Chapter 3: Language

• Upon the first write to the filter after the filter operator creates it, the
filter calls the data target procedure with an empty string and the
boolean true. The procedure must return a writable string of non-
zero length, into which the filter may write filtered data.

• Whenever the filter needs to dispose of accumulated output data, it
calls the procedure again, passing it a string containing the data and
the boolean true. This string is either the same string that was
returned from the previous call or a substring of that string. The pro-
cedure must now do whatever is appropriate with the data, then
return another string or the same string into which the filter can
write additional filtered data.

• When the filter file is closed, it calls the procedure a final time, pass-
ing it a string or substring containing the remaining output data, if
any, and the boolean false. The procedure must now do whatever is
appropriate with the data and perform any required end-of-data
actions, then return a string. Any string (for example, one of length
zero) is acceptable. The filter does not use this string, but merely
pops it off the stack.

It is normal for the data source or target procedure to return the same
string each time. The string is allocated once at the beginning and
serves simply as a buffer that is used repeatedly. Each time a data source
procedure is called, it fills the string with one buffer’s worth of data and
returns it. Similarly, each time a data target procedure is called, it first
disposes of any buffered data passed to it, then returns the original
string for reuse.

Between successive calls to the data source or target procedure, a pro-
gram should not do anything that would alter the contents of the string
returned by that procedure. The filter reads or writes the string at
unpredictable times, so altering it could disrupt the operation of the
filter. If the string returned by the procedure is reclaimed by a restore
before the filter becomes closed, the results are unpredictable. Typically,
an ioerror occurs.

One use of procedures as data sources or targets is to run filters “back-
ward.” Filters are organized such that decoding filters are input files and
encoding filters are output files. Normally, a PostScript language pro-
gram obtains encoded data from some external source, decodes them,
and uses the decoded data; or it generates some data, encodes them,
and sends them to some external destination. The organization of fil-

PLRM 2nd Edition January 21, 1994 Language

3.13 Filtered Files Details 125

ters supports this model. However, if a program must provide the input
to a decoding filter or consume the output of an encoding filter, it can
do so by using procedures as data sources or targets.

Strings

If a string is a data source, the filter simply uses its contents as data to be
decoded. If the filter encounters EOD, it ignores the remainder of the
string. Otherwise, it continues until it has exhausted the string data.

If a string is a data target, the filter writes encoded data into it. This con-
tinues until the filter is closed. The contents of the string are not
dependable until that time. If the filter exhausts the capacity of the
string, an ioerror occurs. There is no way to determine how much data
the filter has written into the string. If a program needs to know, it
should use a procedure as the data target.

3.13.2 End-of-Data and End-of-File

A filter can reach a state in which it cannot continue filtering data. This
is called the end-of-data (EOD) condition. Most decoding (input) filters
can detect an EOD marker encoded in the data that they are reading.
The nature of this marker depends on the filter. Most encoding (output)
filters append an EOD marker to the data that they are writing. This
generally occurs automatically when the filter file is closed. In a few
instances, the EOD condition is based on predetermined information,
such as a byte count or a scan line count, instead of on an explicit
marker in the encoded data.

A file object, including a filter, can be closed at an arbitrary time, and a
readable file can run out of data. This is called the end-of-file (EOF)
condition. When a decoding filter detects EOD and all the decoded data
have been read, the filter reaches the EOF condition. The underlying
data source or target for a filter can itself reach EOF. This usually results
in the filter reaching EOF, perhaps after some delay.

For efficient operation, filters must be buffered. The PostScript inter-
preter automatically provides buffering as part of the filter file object.
Due to the effects of buffering, the filter reads from its data source or
writes to its data target at irregular times, not at times when the filter
file itself is read or written. Also, many filtering algorithms require an
unpredictable amount of state to be held within the filter object.

PLRM 2nd Edition January 21, 1994 Language

126 Chapter 3: Language

Decoding Filters

Before encountering EOD, a decoding filter reads an unpredictable
amount of data from its data source. However, when it encounters EOD,
it stops reading from its data source. If the data source is a file, encoded
data that are properly terminated by EOD can be followed by additional
unencoded data, which a program can then read directly from that file.

When a filter reaches EOD and all the decoded data have been read
from it, the filter file reaches EOF and is closed automatically. Auto-
matic closing of input files at EOF is a standard feature of all file objects,
not just of filters. Unlike other file objects, a filter reaches EOF and is
closed immediately after the last data character is read from it instead of
at the following attempt to read a character. A filter also reaches EOF if
its data source runs out of data by reaching EOF.

Applying flushfile to a decoding filter causes data to be drawn from the
data source until the filter reaches EOD or the source runs out of data,
whichever occurs first. This can be used to flush the remainder of the
encoded data from the underlying file when reading of filtered data
must be terminated prematurely. After flushfile, the underlying file is
positioned so the next read from that file will begin immediately fol-
lowing the EOD of the encoded data. If a program closes a decoding
filter prematurely before it reaches EOD and without explicitly flushing
it, the data source will be in an indeterminate state. Because of buffer-
ing, there is no dependable way to predict how much data will have
been consumed from the data source.

Encoding Filters

As stated earlier, writing to an encoding (output) filter causes it to write
encoded data to its data target. However, due to the effects of buffering,
the writes to the data target occur at unpredictable times. The only way
to ensure that all encoded data have been written is to close the filter.

Most encoding filters can accept an indefinite amount of data to be
encoded. The amount usually is not specified in advance. Closing the
filter causes an EOD marker to be written to the data target at the end of
the encoded data. The nature of the EOD marker depends on the filter
being used; it is sometimes under the control of parameters specified
when the filter is created.

PLRM 2nd Edition January 21, 1994 Language

3.13 Filtered Files Details 127

The standard filter DCTEncode requires the amount of data to be speci-
fied in advance. This information is supplied when the filter is created.
When that amount of data has been encoded, the filter reaches the
EOD condition automatically. Attempting to write additional data to
the filter causes an ioerror, possibly after some delay.

Some data targets can become unable to accept further data. For
instance, if the data target is a string, that string may become full. If the
data target is a file, that file may become closed. Attempting to write to
a filter whose data target cannot accept data causes an ioerror.

Applying flushfile to an encoding filter file causes the filter to flush buff-
ered data to its data target to the extent possible. If the data target is a
file, flushfile is also invoked for it. The effect of flushfile will propagate
all the way down a filter pipeline. However, due to the nature of filter
algorithms, it is not possible to guarantee that all data stored as part of a
filter’s internal state will be flushed.

On the other hand, applying closefile to an encoding filter flushes both
the buffered data and the filter’s internal state. This causes all encoded
data to be written to the data target, followed by an EOD marker, if
appropriate.

When closing a pipeline consisting of two or more encoding filters, one
must close each component filter file in sequence, starting with the one
that was created last (in other words, the one farthest upstream). This
ensures that all buffered data and all appropriate EOD markers are writ-
ten in the proper order.

3.13.3 Details of Individual Filters

As stated in 3.8.4, “Filters,” the PostScript language supports three cate-
gories of standard filters: ASCII encoding filters, compression and
decompression filters, and subfile filters. The following sections docu-
ment the individual filters.

Some of the encoded formats these filters support are the same as or
similar to those supported by applications or utility programs on many
computer systems. It should be straightforward to make those programs
compatible with the filters. Also, C language implementations of some
filters are available from the Adobe Systems Developers’ Association.

PLRM 2nd Edition January 21, 1994 Language

128 Chapter 3: Language

ASCIIHexDecode Filter

The syntax for using the ASCIIHexDecode filter is:

source /ASCIIHexDecode filter

This filter decodes data encoded as ASCII hexadecimal and produces
binary data. For each pair of ASCII hexadecimal digits (0–9 and A–F or
a–f), it produces one byte of binary data. All white-space characters—
space, tab, carriage return, line-feed, form-feed, and null—are ignored.
The character > indicates EOD. Any other characters will cause an
ioerror.

If the filter encounters EOD when it has read an odd number of hexa-
decimal digits, it will behave as if it had read an additional zero digit.

ASCIIHexEncode Filter

The syntax for using the ASCIIHexEncode filter is:

target /ASCIIHexEncode filter

This filter encodes binary data as ASCII hexadecimal. For each byte of
binary data, it produces two ASCII hexadecimal digits (0–9 and A–F or
a–f). It inserts a newline (line-feed) character in the encoded output at
least once every 80 characters, thereby limiting the lengths of lines.

When the ASCIIHexEncode filter is closed, it writes a > character as an
EOD marker.

ASCII85Decode Filter

The syntax for using the ASCII85Decode filter is:

source /ASCII85Decode filter

This filter decodes data encoded in the ASCII base-85 encoding and pro-
duces binary data. See the description of the ASCII85Encode filter for a
definition of the ASCII base-85 encoding.

The ASCII base-85 encoded data format uses the characters ! through u
and the character z. All white-space characters—space, tab, carriage-
return, line-feed, form-feed, and null—are ignored. If the filter encoun-
ters the character ~ in its input, the next character must be > and the

PLRM 2nd Edition January 21, 1994 Language

3.13 Filtered Files Details 129

filter will reach EOD. Any other characters will cause the filter to issue
an ioerror. Also, any character sequences that represent impossible
combinations in the ASCII base-85 encoding will cause an ioerror.

ASCII85Encode Filter

The syntax for using the ASCII85Encode filter is:

target /ASCII85Encode filter

This filter encodes binary data in the ASCII base-85 encoding. Gener-
ally, for every 4 bytes of binary data it produces 5 ASCII printing charac-
ters in the range ! through u. It inserts a newline (line-feed) character in
the encoded output at least once every 80 characters, thereby limiting
the lengths of lines.

When the ASCII85Encode filter is closed, it writes the two-character
sequence ~> as an EOD marker.

Binary data bytes are encoded in 4-tuples (groups of 4). Each 4-tuple is
used to produce a 5-tuple of ASCII characters. If the binary 4-tuple is (b1

b2 b3 b4) and the encoded 5-tuple is (c1 c2 c3 c4 c5), then the relation
between them is:

In other words, four bytes of binary data are interpreted as a base-256
number and then converted into a base-85 number. The five “digits” of
this number, (c1 c2 c3 c4 c5), are then converted into ASCII characters by
adding 33, which is the ASCII code for !, to each. ASCII characters in
the range ! to u are used, where ! represents the value 0 and u represents
the value 84. As a special case, if all five digits are zero, they are repre-
sented by a single character z instead of by !!!!!.

If the ASCII85Encode filter is closed when the number of characters
written to it is not a multiple of 4, it uses the characters of the last, par-
tial 4-tuple to produce a last, partial 5-tuple of output. Given n (1, 2, or
3) bytes of binary data, it first appends 4 – n zero bytes to make a com-
plete 4-tuple. Then, it encodes the 4-tuple in the usual way, but without
applying the z special case. Finally, it writes the first n + 1 bytes of the

b1 2563×() b2 2562×() b3 2561×() b4+ + + �=

c1 854×() c2 853×() c3 852×() c4 851×() c5+ + + +

PLRM 2nd Edition January 21, 1994 Language

130 Chapter 3: Language

resulting 5-tuple. Those bytes are followed immediately by the ~> EOD
marker. This information is sufficient to correctly encode the number of
final bytes and the values of those bytes.

The following conditions constitute encoding violations:

• The value represented by a 5-tuple is greater than 232 – 1.

• A z character occurs in the middle of a 5-tuple.

• A final partial 5-tuple contains only one character.

These conditions never occur in the output produced by the
ASCII85Encode filter. Their occurrence in the input to the
ASCII85Decode filter causes an ioerror.

The ASCII base-85 encoding is similar to one used by the public domain
utilities btoa and atob, which are widely available on workstations.
However, it is not exactly the same; in particular, it omits the begin-
data and end-data marker lines, and it uses a different convention for
marking end-of-data.

LZWDecode Filter

The syntax for using the LZWDecode filter is:

source /LZWDecode filter

The LZWDecode filter decodes data that are encoded in a Lempel-Ziv-
Welch compressed format. See the description of the LZWEncode filter
for details of the format. A code of 257 indicates EOD.

LZWEncode Filter

The syntax for using the LZWEncode filter is:

target /LZWEncode filter

The LZWEncode filter encodes ASCII or binary data according to the
basic LZW (Lempel-Ziv-Welch) data compression method, which is a
variable-length, adaptive compression method. The output produced
by the LZWEncode filter is always binary, even if the input is ASCII text.

PLRM 2nd Edition January 21, 1994 Language

3.13 Filtered Files Details 131

LZW compression can discover and exploit many patterns in its input
data, whether that input is text or image data. It is especially well-suited
to English language and PostScript language text.

The encoded data consist of a sequence of codes that can be from 9 to
12 bits long. Each code denotes a single character of input data
(0 to 255), a clear-table marker (256), an EOD marker (257), or a table
entry representing a multi-character sequence that has been encoun-
tered previously in the input (258 and greater).

Initially, the code length is 9 bits and the table contains only entries for
the 258 fixed codes. As encoding proceeds, entries are appended to the
table associating new codes with longer and longer input character
sequences. The encoding and decoding filters maintain identical copies
of this table.

Whenever both encoder and decoder independently (but synchro-
nously) realize that the current code length is no longer sufficient to
represent the number of entries in the table, they increase the number
of bits per code by one. The first output code that is 10 bits long is the
one following the creation of table entry 511, and so on for 11 (1023)
and 12 (2047) bits. Codes are never longer than 12 bits, so entry 4095 is
the last entry of the LZW table.

The encoder executes the following sequence of steps to generate each
output code.

1. Accumulate a sequence of one or more input characters matching
some sequence already present in the table. For maximum compres-
sion, the encoder should find the longest such sequence.

2. Output the code corresponding to that sequence.

3. Create a new table entry for the first unused code. Its value is the
sequence found in step 1 followed by the next input character.

For example, suppose the input begins with the following sequence of
ASCII character codes:

 45 45 45 45 45 65 45 45 45 66 ...

Starting with an empty table, the encoder proceeds as shown in Table
3.15.

PLRM 2nd Edition January 21, 1994 Language

132 Chapter 3: Language

Table 3.15 Typical LZW encoding sequence

Input Output Code added Sequence represented
sequence code to table by new code

– 256 (clear-table)

45 45 258 45 45

45 45 258 259 45 45 45

45 45 258 260 45 45 65

65 65 261 65 45

45 45 45 259 262 45 45 45 66

Codes are packed into a continuous bit stream, high-order bit first. This
stream is then divided into 8-bit bytes, high-order bit first. Thus, codes
can straddle byte boundaries arbitrarily. After the EOD marker (code
value of 257), any leftover bits in the final byte are set to 0.

In the above example, all the output codes are nine bits long; they
would pack into bytes like this (represented in hexadecimal):

 80 0B 60 50 22 0C 0 ...

To adapt to changing input sequences, the encoder may at any point
issue a clear-table code, which causes both encoder and decoder to
restart with initial tables and 9-bit codes. By convention, the encoder
begins by issuing a clear-table code. It must issue a clear-table code
when the table becomes full; it may do so sooner.

LZW has been adopted as one of the standard compression methods in
the tag image file format (TIFF) 5.0 standard. The PostScript language
LZWEncode and LZWDecode filters use the same coding as is used by
other popular implementations of LZW; this coding differs slightly
from the one described in the TIFF 5.0 specification. Variants of LZW
are used in the UNIX compress and personal computer ARC utilities.

The LZW compression method is said to be the subject of United States
patent number 4,558,302 and corresponding foreign patents owned by
the Unisys Corporation. Adobe Systems has licensed this patent for use
in its products. Independent software vendors (ISVs) may be required to
license this patent to develop software using the LZW method to com-
press PostScript language programs or data for use with Adobe products.
Unisys has agreed that ISVs may obtain such a license for a modest one-

PLRM 2nd Edition January 21, 1994 Language

3.13 Filtered Files Details 133

time fee. Further information can be obtained from: Welch Licensing
Department, Law Department, M/SC2SW1, Unisys Corporation, Blue
Bell, Pennsylvania, 19424.

RunLengthDecode Filter

The syntax for using the RunLengthDecode filter is:

source /RunLengthDecode filter

This filter decodes data in run-length encoded format. The encoded
data consist of pairs of run-length bytes and data. See the description of
the RunLengthEncode filter for details of the format. A run length of
128 indicates EOD.

RunLengthEncode Filter

The syntax for using the RunLengthEncode filter is:

target recordsize /RunLengthEncode filter

The RunLengthEncode filter encodes data in a simple byte-oriented,
run-length encoded format. The compressed data format is a sequence
of runs, where each run consists of a length byte followed by 1 to 128
bytes of data. If the length byte is in the range 0 to 127, the following
length + 1 bytes (1 to 128 bytes) are to be copied literally upon decom-
pression. If length is in the range 129 to 255, the following single byte is
to be replicated 257 − length times (2 to 128 times) upon decompres-
sion.

When the RunLengthEncode filter is closed, it writes a final byte, with
value 128 as an EOD marker.

recordsize is a positive integer specifying the number of bytes in a
“record” of source data. The RunLengthEncode filter will not create a
run that contains data from more than one source record. If recordsize is
zero, the filter does not treat its source data as records. The notion of a
“record” is irrelevant in the context of the PostScript interpreter (in par-
ticular, the image operator does not require its data to be divided into
records). A non-zero recordsize is useful only if the encoded data is to be
sent to some application program that requires it.

PLRM 2nd Edition January 21, 1994 Language

134 Chapter 3: Language

This encoding is very similar to that used by the Apple® Macintosh®

PackBits routine and by TIFF Data Compression scheme #32773. Out-
put from PackBits is acceptable as input to the RunLengthDecode filter
if an EOD marker (byte value 128) is appended to it. Output from the
RunLengthEncode filter is acceptable to UnPackBits if the recordsize
parameter is equal to the length of one scan line for the image being
encoded.

CCITTFaxDecode Filter

The syntax for using the CCITTFaxDecode filter is:

source dictionary /CCITTFaxDecode filter

This filter decodes image data that have been encoded according to the
CCITT facsimile standard. See CCITTFaxEncode for a description of the
filter parameters.

If the CCITTFaxDecode filter encounters improperly encoded source
data, it will issue an ioerror. It will not perform any error correction or
resynchronization.

CCITTFaxEncode Filter

The syntax for using the CCITTFaxEncode filter is:

target dictionary /CCITTFaxEncode filter

This filter encodes image data according to the CCITT facsimile (fax)
standard. This encoding is defined by an international standards orga-
nization named CCITT, the International Coordinating Committee for Tele-
phony and Telegraphy. The encoding is designed to achieve efficient
compression of monochrome (1 bit per pixel) image data at relatively
low resolutions. The encoding algorithm is not described in this man-
ual but in the CCITT standard (see the bibliography).

Note PostScript language support for the CCITT standard is limited to encoding
and decoding of image data. It does not include initial connection and
handshaking protocols that would be required to communicate with a fax
machine. The purpose of these filters is to enable efficient interchange of bi-
level sampled images between an application program and a PostScript
interpreter.

PLRM 2nd Edition January 21, 1994 Language

3.13 Filtered Files Details 135

The CCITTFaxDecode and CCITTFaxEncode filters support two
encoding schemes, Group 3 and Group 4, and various optional features
of the CCITT standard. Parameters for these filters are provided in the
form of a dictionary object whose entries define the parameters. Table
3.16 describes the contents of this dictionary. All of its entries are
optional and have default values.

Table 3.16 Entries in CCITTFaxEncode and CCITTFaxDecode dictionaries

Key Type Semantics

Uncompressed boolean (Optional) If true, the CCITTFaxEncode filter is permitted to use uncompressed
encoding when advantageous. If false, it never uses uncompressed encoding. The
CCITTFaxDecode filter always accepts uncompressed encoding. Default value:
false.

Uncompressed encoding is an optional part of the CCITT fax encoding standard.
Its use can prevent significant data expansion when encoding certain image
data, but many fax machine manufacturers and software vendors do not support
it.

K integer (Optional) Selects the encoding scheme to be used. A negative value indicates
pure two-dimensional (Group 4) encoding. Zero indicates pure one-dimensional
encoding (Group 3, 1-D). A positive value indicates mixed one- and two-dimen-
sional encoding (Group 3, 2-D), in which a line encoded one-dimensionally can
be followed by at most K – 1 lines encoded two-dimensionally. Default value: 0.

The CCITTFaxEncode filter uses the value of K to determine how to encode the
data. The CCITTFaxDecode filter distinguishes among negative, zero, and posi-
tive values of K to determine how to interpret the encoded data. However, it
does not distinguish between different positive K values.

EndOfLine boolean (Optional) If true, the CCITTFaxEncode filter prefixes an end-of-line bit pattern to
each line of encoded data. The CCITTFaxDecode filter always accepts end-of-line
bit patterns, but requires them to be present only if EndOfLine is true. Default
value: false.

EncodedByteAlign boolean (Optional) If true, the CCITTFaxEncode filter inserts extra zero bits before each
encoded line so that the line begins on a byte boundary; the CCITTFaxDecode
filter skips over encoded bits to begin decoding each line at a byte boundary. If
false, the filters neither generate nor expect extra bits in the encoded representa-
tion. Default value: false.

Columns integer (Optional) Specifies the width of the image in pixels. If Columns is not a multiple
of 8, the filters adjust the width of the unencoded image to the next multiple of
8. This is for consistency with the image operator, which requires that each line
of source data start on a byte boundary. Default value: 1728.

Rows integer (Optional) Affects CCITTFaxDecode only. Specifies the height of the image in
scan lines. If this parameter is zero or absent, the image’s height is not predeter-
mined. The encoded data must be terminated by an end-of-block bit pattern or
by the end of the filter’s data source. Default value: 0.

PLRM 2nd Edition January 21, 1994 Language

136 Chapter 3: Language

EndOfBlock boolean (Optional) If true, the CCITTFaxEncode filter appends an end-of-block pattern to
the encoded data; the CCITTFaxDecode filter expects the encoded data to be ter-
minated by end-of-block, overriding the Rows parameter. If false, CCITTFaxEn-
code does not append an end-of-block pattern. CCITTFaxDecode stops when it
has decoded Rows lines or when its data source is exhausted, whichever happens
first. The end-of-block pattern is the CCITT end-of-facsimile-block (EOFB) or
return-to-control (RTC) appropriate for the K parameter. Default value: true.

BlackIs1 boolean (Optional) If true, causes 1 bits to be interpreted as black pixels and 0 bits as white
pixels, the reverse of the normal PostScript language convention for image data.
Default value: false.

DamagedRowsBeforeError
integer (Optional) Affects CCITTFaxDecode only. If DamagedRowsBeforeError is positive

EndOfLine is true, and K is non-negative, then up to DamagedRowsBeforeError
rows of data will be tolerated before an IOError is generated. Tolerating a
damaged row means locating its end in the encoded data by searching for an
EndOfLine pattern, then substituting decoded data from the previous row if the
previous row was not damaged, or a white scan line if the previous row was also
damaged. Default value: 0.

The CCITT fax standard specifies a bi-level picture encoding in terms of
black and white pixels. It does not define a representation for the unen-
coded image data in terms of 0 and 1 bits in memory. However, the
PostScript language (specifically, the image operator) does impose a
convention: Normally, 0 means black and 1 means white. Therefore,
the CCITTFaxEncode filter normally encodes 0 bits as black pixels and 1
bits as white pixels. Similarly, the CCITTFaxDecode filter normally pro-
duces 0 bits for black pixels and 1 bits for white pixels. The BlackIs1
parameter can be used to reverse this convention if necessary.

The fax encoding method is bit-oriented, not byte-oriented. This means
that, in principle, encoded or decoded data might not end at a byte
boundary. The CCITTFaxEncode and CCITTFaxDecode filters deal with
this problem in the following ways:

• Unencoded data are treated as complete scan lines, with unused bits
inserted at the end of each scan line to fill out the last byte. This is
compatible with the convention the image operator uses.

• Encoded data are ordinarily treated as a continuous, unbroken bit
stream. However, the EncodedByteAlign parameter can be used to
cause each encoded scan line to be filled to a byte boundary. This is
not prescribed by the CCITT standard, and fax machines never do
this. But some software packages find it convenient to encode data
this way.

• When a filter reaches EOD, it always skips to the next byte boundary
following the encoded data.

PLRM 2nd Edition January 21, 1994 Language

3.13 Filtered Files Details 137

DCTDecode Filter

The syntax for using the DCTDecode filter is:

source dictionary /DCTDecode filter

This filter decodes gray-scale or color image data in JPEG baseline
encoded format (see the DCTEncode filter). Usually, no parameters are
required—that is, the dictionary operand can be an empty dictionary.
This is because all information required for decoding an image is usu-
ally contained in the JPEG signalling parameters, which accompany the
encoded data in the compressed data stream. The only parameter that is
likely to be needed is ColorTransform (see Table 3.17 on page 138).

The decoded data are a stream of image samples, each of which consists
of 1, 2, 3, or 4 color components, interleaved on a per-sample basis.
Each component value occupies one 8-bit byte. The dimensions of the
image and the number of components per sample depend on
parameters that were specified when the image was encoded. Given
suitable parameters, the image operator can consume data directly from
a DCTDecode filter.

Note An image consisting of 2 components per sample is not directly useful as a
source for the image operator, because the PostScript language does not define
any color spaces that have 2 color components (only 1, 3, and 4). Also, an
image whose components are sent as separate scans instead of interleaved is
not useful, because image requires that components from separate sources be
read in parallel.

DCTEncode Filter

The proper syntax for using the DCTEncode filter is:

target dictionary /DCTEncode filter

This filter encodes gray-scale or color image data in JPEG baseline for-
mat. JPEG is the ISO/CCITT Joint Photographic Experts Group, an organi-
zation responsible for developing an international standard for
compression of color image data. The DCTEncode filter conforms to the
JPEG-proposed standard at the time of publication of this manual (see
the bibliography). DCT refers to the primary technique (discrete cosine
transform) used in the encoding and decoding algorithms. The algo-
rithm can achieve very impressive compression of color images. For
example, at a compression ratio of 10 to 1, there is little or no percepti-
ble degradation in quality.

PLRM 2nd Edition January 21, 1994 Language

138 Chapter 3: Language

Note The compression algorithm is “lossy,” meaning the data produced by the
DCTDecode filter are not exactly the same as the data originally encoded by
the DCTEncode filter. These filters are designed specifically for compression of
sampled continuous-tone images, not for general data compression.

Input to the DCTEncode filter is a stream of image samples, each of
which consists of 1, 2, 3, or 4 color components, interleaved on a per-
sample basis. Each component value occupies one 8-bit byte. The
dimensions of the image and the number of components per sample
must be specified in a dictionary provided as an operand to the filter
operator. This dictionary can also contain other optional parameters
that control the operation of the encoding algorithm. Table 3.17
describes the contents of this dictionary.

To specify the optional parameters properly requires understanding
details of the encoding algorithm. That algorithm is not described here,
but in the JPEG-proposed standard. The DCTDecode and DCTEncode
filters do not support certain features of the standard that are irrelevant
to images following PostScript language conventions. Additionally,
Adobe has made certain choices regarding reserved marker codes and
other optional features of the standard. Contact the Adobe Systems
Developers’ Association for futher information.

Table 3.17 Entries in a DCTEncode dictionary

Key Type Semantics

Columns integer (Required) Width of the image—in other words, samples per scan line.

Rows integer (Required) Height of the image—in other words, the number of scan lines.

Colors integer (Required) Number of color components in the image. It must be 1, 2, 3, or 4.

HSamples array (Optional) Array of Colors integers specifying horizontal sampling factors. The
ith element of the array specifies the sampling factor for the ith color compo-
nent. The allowed sampling factors are 1, 2, 3, and 4. Default value: an array
containing 1 for all components, meaning that all components are to be sam-
pled at the same rate.

When the sampling factors are not all the same, DCTEncode sub-samples the
image for those components whose sampling factors are less than the largest
one. For example, if HSamples is [4 3 2 1] for a four-color image, then for every
4 horizontal samples of the first component, DCTEncode sends only 3 samples
of the second component, 2 of the third, and 1 of the fourth. However,
DCTDecode inverts this sampling process so that DCTDecode produces the same
amount of data as was presented to DCTEncode. In other words, this parameter
affects only the encoded representation, not the unencoded or decoded repre-
sentation. The filters deal correctly with the situation in which the width or
height of the image is not a multiple of the corresponding sampling factor.

PLRM 2nd Edition January 21, 1994 Language

3.13 Filtered Files Details 139

VSamples array (Optional) Array of Colors integers specifying vertical sampling factors. Interpre-
tation and default value are the same as for HSamples.

The JPEG-proposed standard imposes a restriction on the values in the HSamples
and VSamples arrays, taken together. For each color component, multiply its
HSamples value by its VSamples value, then add all of the products together. The
result must not exceed 10.

QuantTables array (Optional) Array of Colors quantization tables. The ith entry in QuantTables is
the table to be used, after scaling by QFactor, for quantization of the ith compo-
nent. As many as four unique quantization tables can be specified, but several
elements of the QuantTables array can refer to the same table.

Each table must be either an array or a string. If it is an array, the elements must
be numbers; if it is a string, the elements are interpreted as integers in the range
0 to 255. In either case, each table must contain 64 numbers organized
according to the zigzag pattern defined by the JPEG-proposed standard. After
scaling by QFactor, every element is rounded to the nearest integer in the range
1 to 255. Default value: quantization tables chosen by Adobe.

QFactor number (Optional) Scale factor applied to the elements of QuantTables. This enables
straightforward adjustment of the tradeoff between image compression and
image quality without respecifying the quantization tables. QFactor must be
positive. A value less than 1 improves image quality but decreases compression.
A value greater than 1 increases compression but degrades image quality. Default
value: 1.0.

HuffTables array (Optional) Array of 2 × Colors encoding tables. The pair of tables at indices 2 × i
and 2 × i + 1 in HuffTables are used to construct Huffman tables for coding of
the ith color component. The first table in each pair is used for the DC coeffi-
cients, the second for the AC coefficients. At most two DC tables and two AC
tables can be specified, but several elements of the HuffTables array can refer to
the same tables. Default value: chosen by Adobe.

Each table must be either an array or a string. If it is an array, the elements must
be numbers; if it is a string, the elements are interpreted as integers in the range
0 to 255. The first 16 values specify the number of codes of each length from 1 to
16 bits. The remaining values are the symbols corresponding to each code; they
are given in order of increasing code length. This information is sufficient to
construct a Huffman coding table according to an algorithm given in the JPEG
proposed standard. A QFactor value other than 1.0 may alter this computation.

ColorTransform integer (Optional) Specifies a transformation to be performed on the sample values:

0 No transformation.

1 If Colors is 3, transform RGB values to YUV before encoding and from YUV
to RGB after decoding. If Colors is 4, transform CMYK values to YUVK
before encoding and from YUVK to CMYK after decoding. This option is
ignored if Colors is 1 or 2.

PLRM 2nd Edition January 21, 1994 Language

140 Chapter 3: Language

If performed, these transformations occur entirely within the DCTEncode and
DCTDecode filters. The RGB and YUV used here have nothing to do with the
color spaces defined as part of the PostScript language’s imaging model. The pur-
pose of converting from RGB to YUV is to separate luminance and chrominance
information (see below).

The default value of ColorTransform is 1 if Colors is 3 and 0 otherwise. In other
words, conversion between RGB and YUV is performed for all 3-component
images unless explicitly disabled by setting ColorTransform to 0. Additionally,
the DCTEncode filter inserts an Adobe-defined marker code in the encoded data
indicating the ColorTransform value used. If present, this marker code overrides
the ColorTransform value given to DCTDecode. Thus, it’s necessary to specify
ColorTransform only when decoding data that does not contain the Adobe-
defined marker code.

The default values for QuantTables and HuffTables are chosen without
reference to the image color space and without specifying any particu-
lar trade-off between image quality and compression. Although they
will work, they will not produce optimal results for most applications.
For superior compression, applications should provide custom
QuantTables and HuffTables arrays rather then relying on the default
values.

Better compression is often possible for color spaces that treat lumi-
nance and chrominance separately than for those that do not. The RGB
to YUV conversion provided by the filters is one attempt to separate
luminance and chrominance. Other color spaces, such as the CIE 1976
(L*a*b*)-space, may also achieve this objective. The chrominance com-
ponents can then be compressed more than the luminance by using
coarser sampling or quantization, with no degradation in quality.

Unlike other encoding filters, the DCTEncode filter requires that a spe-
cific amount of data be written to it: Columns × Rows samples of Colors
bytes each. The filter reaches EOD at that point. It cannot accept further
data, so attempting to write to it will cause an ioerror. The program
must now close the filter file to cause the buffered data and EOD marker
to be flushed to the data target.

SubFileDecode Filter

The syntax for using the SubFileDecode filter is:

source EODcount EODstring /SubFileDecode filter

This filter does not perform data transformation, but it can detect an
EOD condition. Its output is always identical to its input, up to the

PLRM 2nd Edition January 21, 1994 Language

3.13 Filtered Files Details 141

point where EOD occurs. The data preceding the EOD are called a sub-
file of the underlying data source.

The SubFileDecode filter can be used in a variety of ways:

• A subfile can contain data that should be read or executed condition-
ally, depending on information that is not known until execution. If
a program decides to ignore the information in a subfile, it can easily
skip to the end of the subfile by invoking flushfile on the filter file.

• Subfiles can help recover from errors that occur in encapsulated pro-
grams. If the encapsulated program is treated as a subfile, the enclos-
ing program can regain control if an error occurs, flush to the end of
the subfile, and resume execution from the underlying data source.
The application, not the PostScript interpreter, must provide such
error handling; it is not the default error handling provided by the
PostScript interpreter.

• The SubFileDecode filter enables an arbitrary data source (procedure
or string) to be treated as an input file. This use of subfiles does not
require detection of an EOD marker.

The SubFileDecode filter requires two parameters, EODcount and EOD-
string, which specify the condition under which the filter is to recognize
EOD. The filter will allow data to pass through the filter until it has
encountered exactly EODcount instances of the EODstring; then it will
reach EOD.

EODcount must be a non-negative integer. If EODcount is greater than
zero, all input data up to and including that many occurrences of the
EODstring will be passed through the filter and made available for read-
ing. If EODcount is zero, the first occurrence of the EODstring will be
consumed by the filter, but it will not be passed through the filter.

EODstring is ordinarily a string of non-zero length. It is compared with
successive subsequences of the data read from the data source. This
comparison is based on equality of 8-bit character codes so matching is
case-sensitive. Each occurrence of EODstring in the data is counted
once. Overlapping instances of the EODstring will not be recognized.
For example, an EODstring of “eee” will be recognized only once in the
input “XeeeeX”.

The EODstring may also be of length zero, in which case the
SubFileDecode filter will simply pass EODcount bytes of arbitrary data.
This is dependable only for binary data, when suitable precautions have

PLRM 2nd Edition January 21, 1994 Language

142 Chapter 3: Language

been taken to protect the data from any modification by communica-
tion channels or operating systems. Ordinary ASCII text is subject to
modifications such as translation between different end-of-line conven-
tions, which can change the byte count in unpredictable ways.

A recommended value for EODstring is a document structuring com-
ment, such as %%EndBinary. EODstrings containing newline (\n) char-
acters are not recommended. Translating the data between different
end-of-line conventions could subvert the string comparisons.

If EODcount is zero and EODstring is of zero length, detection of EOD
markers is disabled; the filter will not reach EOD. This is useful prima-
rily when using procedures or strings as data sources. It is illegal for
EODcount to be negative.

NullEncode Filter

The syntax for using the NullEncode filter is:

target /NullEncode filter

This is an encoding filter that does not perform data transformation,
and its output is always identical to its input. The purpose of this filter
is to allow an arbitrary data target (procedure or string) to be treated as
an output file.

PLRM 2nd Edition January 26, 1994 Graphics

143

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

CHAPTER 4

Graphics

The PostScript language graphics operators describe the appearance of
pages that are to be reproduced on a raster output device. The facilities
described here are intended for both display and printer applications.

The graphics operators form six major groups:

• Graphics state operators. This group contains operators that manipu-
late the data structure called the graphics state, which is the global
framework in which the other graphics operators execute.

• Coordinate system and matrix operators. The graphics state includes the
current transformation matrix (CTM) that maps coordinates speci-
fied by the PostScript language program into output device coordi-
nates. The operators in this group manipulate the CTM to achieve
any combination of translation, scaling, rotation, reflection, and
skewing of user coordinates onto device coordinates.

• Path construction operators. The graphics state includes the current
path that defines shapes and line trajectories. The operators in this
group begin a new path, add line segments and curves to the current
path, and close the current path. All of these operators implicitly ref-
erence the CTM parameter in the graphics state.

• Painting operators. These operators paint graphical elements, such as
lines, filled areas, and sampled images into the raster memory of the
output device. The painting operators are controlled by the current
path, current color, and many other parameters in the graphics state.

• Character and font operators. These operators select and paint charac-
ters from fonts, or descriptions of typefaces. Because the PostScript
language treats characters as general graphical shapes, many of the
font operators should be grouped with the path construction or

3z

Example 4.0
Table 4.0
Figure 4.0

PLRM 2nd Edition January 26, 1994 Graphics

144 Chapter 4: Graphics

painting operators. However, the data structures and mechanisms for
dealing with character and font descriptions are sufficiently special-
ized that Chapter 5 focuses on them.

• Device setup and output operators. Device setup operators establish the
association between raster memory and a physical output device,
such as a printer or a display. Once a page has been completely
described, executing an output operator transmits the page to the
device.

This chapter presents general information about device-independent
graphics in the PostScript language: how a program describes the
abstract appearance of a page. Rendering—the device dependent part of
graphics—is covered in Chapter 6.

4.1 Imaging Model

The PostScript language’s imaging model is a simple and unified view of
two-dimensional graphics borrowed from the graphic arts. A PostScript
language program builds an image by placing “paint” on a “page” in
selected areas.

• The painted figures may be in the form of letter shapes, general filled
shapes, lines, or digitally sampled representations of photographs.

• The paint may be in color or in black, white, or any shade of gray.

• The paint may take the form of a repeating pattern (Level 2).

• Any of these elements may be clipped to appear within other shapes
as they are placed onto the page.

• Once a page has been built up to the desired form, it may be trans-
mitted to an output device.

The PostScript interpreter maintains an implicit current page that accu-
mulates the marks made by the painting operators. When a program
begins, the current page is completely white. As each painting operator
executes, it places marks on the current page. Each new mark com-
pletely obscures any marks it may overlay. This method is known as a
painting model: No matter what color a mark has—white, black, gray, or
color—it is put onto the current page as if it were applied with opaque

PLRM 2nd Edition January 26, 1994 Graphics

4.1 Imaging Model 145

paint. Once the page has been completely composed, invoking the
showpage operator renders the accumulated marks on the output
media and then clears the current page to white again.

The imaging model applies to raster display devices and printers. How-
ever, there usually is not a separate operation for transmitting the page
to a display device; instead, marks placed on the current page appear on
the display immediately. There are some extensions to the imaging
model to serve the special needs of interactive display applications.
Those extensions are supported by the Display PostScript system and
are documented in Chapter 7.

The principal painting operators, among many others, are as follows:

• fill paints an area.

• stroke paints lines.

• image paints a sampled image.

• show paints character shapes.

The painting operators require various parameters, some explicit and
others implicit. Chief among the implicit parameters is the current path
used by fill, stroke, and show. A path consists of a sequence of con-
nected and disconnected points, lines, and curves that together
describe shapes and their positions. It is built up through the sequential
application of the path construction operators, each of which modifies the
current path in some way, usually by appending one new element.

Path construction operators include newpath, lineto, curveto, arc, and
closepath. None of the path construction operators places marks on the
current page; the painting operators do that. Path construction opera-
tors create the shapes that the painting operators paint. Some opera-
tors, such as ufill and ustroke, combine path construction and painting
in a single operation for efficiency.

Implicit parameters to the painting operators include the current color,
current line thickness, current font (typeface-size combination), and
many others. There are operators that examine and set each implicit
parameter in the graphics state. The values used for implicit parameters
are those in effect at the time an operator is invoked.

PLRM 2nd Edition January 26, 1994 Graphics

146 Chapter 4: Graphics

PostScript language programs contain many instances of the following
typical sequence of steps:

1. Build a path using path-construction operators.

2. Set any implicit parameters if their values need to change.

3. Perform a painting operation.

There is one additional implicit element in the PostScript imaging
model that modifies this description: The current clipping path outlines
the area of the current page on which paint may be placed. Initially,
this clipping path outlines the entire imageable area of the current
page. By using the clip operator, a PostScript language program can
shrink the current clipping path to any shape desired. It is possible for a
painting operator to attempt to place marks outside the current clip-
ping path. Marks falling within the clipping area will affect the current
page; marks falling outside will not.

4.2 Graphics State

The PostScript interpreter maintains a data structure called the graphics
state that holds current graphics control parameters. These parameters
define the global framework in which the graphics operators execute.
For example, the show operator implicitly uses the current font parame-
ter as set in the graphics state, and the fill operator implicitly uses the
current color parameter.

The graphics state is not itself an object. However, it contains many
objects, nearly all of which can be read and altered by special graphics
state operators. For example, the operator setfont changes the current
font parameter in the graphics state, and currentfont reads that param-
eter from the graphics state.

There are two mechanisms for saving and later restoring the entire
graphics state. One is a graphics state stack. The gsave operator pushes a
copy of the entire graphics state onto the graphics state stack. The
grestore operator restores the entire graphics state to its former value
by popping it from the graphics state stack.

The second mechanism uses gstate objects in VM that contain saved cop-
ies of the graphics state. This is a Level 2 feature. The gstate operator
creates a new gstate object. The currentgstate operator copies the entire

PLRM 2nd Edition January 26, 1994 Graphics

4.2 Graphics State 147

graphics state into a gstate object given as an operand. The setgstate
operator replaces the entire graphics state by the value of the supplied
gstate object.

The graphics state stack, with its LIFO (last in, first out) organization,
serves the needs of PostScript programs that are page descriptions. A
well-structured document typically contains many graphical elements
that are essentially independent of each other and sometimes nested to
multiple levels. The gsave and grestore operators can be used to encap-
sulate these elements so they can make local changes to the graphics
state without disturbing the graphics state of the surrounding environ-
ment.

In some interactive applications, however, a program must switch its
attention among multiple, more-or-less independent imaging contexts
in an unpredictable order. This is most conveniently done by creating a
separate gstate object for each one and using setgstate to switch among
them as needed.

Saving a graphics state captures every parameter, including such things
as the current path and current clipping path. For example, if a non-
empty current path exists at the time that gsave, gstate, or
currentgstate is executed, that path will be reinstated by the corre-
sponding grestore or setgstate. Unless this effect is specifically desired,
it’s best to save a graphics state only when the current path is empty
and the current clipping path is in its default state to minimize storage
demands.

Most graphics state parameters are ordinary PostScript language objects.
The operators that set them simply store them, unchanged, for later use
by other graphics operators. However, certain parameters have special
properties or behavior:

• The current path, clipping path, and device parameters are internal
objects that are not directly accessible to a PostScript language
program.

• Most parameters must be of the correct type or have values that fall
into a certain range.

• Parameters that are numbers, such as color, line width, and miter
limit, are forced into legal range, if necessary, and stored as reals. If
they are later read out, they are always reals, regardless of how they
were originally specified. However, they are not adjusted to reflect
capabilities of the raster output device, such as resolution or number

PLRM 2nd Edition January 26, 1994 Graphics

148 Chapter 4: Graphics

of distinguishable colors. Such adjustments are performed by graph-
ics rendering operators, but the adjusted values are not stored back
in the graphics state.

• Certain parameters are composite objects, such as arrays or diction-
aries. In general, graphics operators consult the values of those
objects at unpredictable times, so altering them can have unpredict-
able results. A PostScript language program should treat the values of
graphics state parameters as if they were read-only.

Table 4.1 lists the set of graphics state parameters that are device inde-
pendent and are appropriate to specify in page descriptions. Table 4.2
lists the set of graphics state parameters that are device dependent.
Device-dependent parameters control details of the rendering (scan-
conversion) process. A page description that is intended to be device
independent should not alter these parameters.

Table 4.1 Device-independent parameters of the graphics state

Parameter Type Definition

CTM array Current transformation matrix, which maps positions from user coordinates to
device coordinates. This matrix is modified by each application of the
coordinate system operators. Initial value: a matrix that transforms default user
coordinates to device coordinates.

color (various) The color to use during painting operations. This is interpreted according to any
of several different color spaces. For most color spaces, a color value consists of
one to four numbers. Initial value: black.

color space array (Level 2) Determines how color values are to be interpreted. Initial value:
DeviceGray.

position 2 numbers Location of the current point in user space: the coordinates of the last element of
the current path. Initial value: undefined.

path (internal) The current path as built up by the path construction operators. The current
path is an implicit argument to operators, such as fill, stroke, and clip. Initial
value: empty.

clipping path (internal) A path defining the current boundary against which all output is cropped. Initial
value: the boundary of the entire imageable portion of the output page.

font dictionary The set of graphic shapes (characters) that define the current typeface. Initial
value: an invalid font dictionary.

line width number The thickness (in user coordinate units) of lines to be drawn by the stroke
operator. Initial value: 1.

line cap integer A code that specifies the shape of the endpoints of any open path that is stroked.
Initial value: 0 for a square butt end.

PLRM 2nd Edition January 26, 1994 Graphics

4.2 Graphics State 149

line join integer A code that specifies the shape of joints between connected segments of a
stroked line. Initial value: 0 for mitered joins.

miter limit number The maximum length of mitered line joins for the stroke operator. This limits
the length of “spikes” produced when line segments join at sharp angles. Initial
value: 10 for a miter cutoff below 11 degrees.

dash pattern (several) A description of the dash pattern to be used when lines are painted by the stroke
operator. Initial value: a normal solid line.

stroke adjust boolean (Level 2) Specifies whether to compensate for resolution effects that may be
noticeable when line thickness is a small number of device pixels. Initial value:
installation dependent (typically false for printers, true for displays).

Table 4.2 Device-dependent parameters of the graphics state

Parameter Type Definition

color rendering dictionary (Level 2) Describes how to transform CIE-based color specifications to device
color values. Initial value: installation dependent.

overprint boolean (Level 2) When generating color separations, specifies whether painting on one
separation causes the corresponding areas of other separations to be erased
(false) or left unchanged (true). Initial value: false.

black generation proc (Level 2) Calculates the amount of black to use when converting RGB colors to
CMYK. Initial value: installation dependent.

undercolor removal proc (Level 2) Calculates the reduction in the amount of cyan, magenta, and yellow
components to compensate for the amount of black added by black generation.
Initial value: installation dependent.

transfer proc Transfer function that adjusts device gray or color component values to correct
for non-linear response in a particular device. Support for four transfer functions
is a Level 2 feature. Initial value: installation dependent.

halftone (various) Halftone screen for gray and color rendering, specified either as frequency, angle,
and spot function or as a halftone dictionary. Support for four halftone screens is
a Level 2 feature. Initial value: installation dependent.

halftone phase 2 integers (Display PostScript) A shift in the alignment of halftone and pattern cells in
device space to compensate for window system operations that involve scrolling.
Initial values: 0, 0.

flatness number The accuracy (or smoothness) with which curves are to be rendered on the
output device. This number gives the maximum error tolerance, measured in
output device pixels. Smaller numbers give smoother curves at the expense of
more computation and memory use. Initial value: 1.0.

device (internal) An internal data structure representing the current output device. Initial value:
installation dependent.

PLRM 2nd Edition January 26, 1994 Graphics

150 Chapter 4: Graphics

4.3 Coordinate Systems and Transformations

Paths and shapes are defined in terms of pairs of points on the Carte-
sian plane specified as coordinates. A coordinate pair is a pair of real
numbers x and y that locate a point within a Cartesian (two-axis) coor-
dinate system superimposed on the current page. The PostScript lan-
guage defines a default coordinate system that PostScript language
programs can use to locate any point on the current page.

4.3.1 User Space and Device Space

Coordinates specified in a PostScript language program refer to loca-
tions within a coordinate system that always bears the same relation-
ship to the current page regardless of the output device on which
printing or displaying will be done. This coordinate system is called user
space.

Output devices vary greatly in the built-in coordinate systems they use
to address pixels within their imageable areas. A particular device’s
coordinate system is a device space. A device space origin can be any-
where on the output page. This is because the paper moves through dif-
ferent printers and typesetters in different directions. On displays, the
origin can vary depending on the window system. Different devices
have different resolutions. Some devices even have resolutions that are
different in the x and y directions.

The operands of the path operators are user space coordinates. The
PostScript interpreter automatically transforms user space coordinates
into device space. For the most part, this transformation is hidden from
the PostScript language program. A program must consider device space
only rarely for certain special effects. This independence of user space
from device space is key to the device independent nature of PostScript
language page descriptions.

One can define a coordinate system with respect to the current page by
stating:

• The location of the origin.

• The orientation of the x and y axes.

• The lengths of the units along each axis.

PLRM 2nd Edition January 26, 1994 Graphics

4.3 Coordinate Systems and Transformations 151

Initially, the user space origin is located at the lower-left corner of the
output page or display window, with the positive x axis extending hori-
zontally to the right and the positive y axis extending vertically
upward, as in standard mathematical practice. The length of a unit
along both the x and y axes is 1/72 of an inch. This coordinate system is
the default user space. In default user space, all points within the current
page have positive x and y coordinate values.

Note The default unit size (1/72 of an inch) is approximately the same as a
“point,” a unit used widely in the printing industry. It is not exactly the same
as a point, however; there is no universal definition of a point.

The default user space origin coincides with the lower-left corner of the
physical page. Portions of the physical page may not be imageable on
certain output devices. For example, many laser printers cannot place
marks at the extreme edges of their physical page areas. It may not be
possible to place marks at or near the default user space origin. The
physical correspondence of page corner to default origin ensures that
marks within the imageable portion of the output page will be consis-
tently positioned with respect to the edges of the page.

Coordinates in user space may be specified as either integers or reals.
Therefore, the unit size in default user space does not constrain locations to
any arbitrary grid. The resolution of coordinates in user space is not
related in any way to the resolution of pixels in device space.

The default user space provides a consistent, dependable starting place
for PostScript language programs regardless of the output device used. If
necessary, the PostScript language program may then modify user space
to be more suitable to its needs by applying coordinate transformation
operators, such as translate, rotate, and scale.

What may appear to be absolute coordinates in a PostScript language
program are not absolute with respect to the current page, because they
are described in a coordinate system that may slide around and shrink
or expand. Coordinate system transformation not only enhances device
independence, but is a useful tool in its own right. For example, a page
description originally composed to occupy an entire page may be incor-
porated without change into another page description as just one ele-
ment of the page by shrinking the coordinate system in which it is
drawn.

Conceptually, user space is an infinite plane. Only a small portion of
this plane corresponds to the imageable area of the output device: a rec-
tangular area above and to the right of the origin in default user space.

PLRM 2nd Edition January 26, 1994 Graphics

152 Chapter 4: Graphics

The actual size and position of the area is device and media dependent.
An application can request a particular page size or other media proper-
ties using the Level 2 operator setpagedevice, described in section 4.11,
“Device Setup.”

4.3.2 Transformations

A transformation matrix specifies how to transform the coordinate pairs
of one coordinate space into another coordinate space. The graphics
state includes the current transformation matrix (CTM) that describes the
transformation from user space to device space.

The elements of a matrix specify the coefficients of a pair of linear equa-
tions in x and y that generate a transformed x and y. However, in graph-
ical applications, matrices are not often thought of in this abstract
mathematical way. Instead, a matrix is considered to capture some
sequence of geometric manipulations: translation, rotation, scaling,
reflection, and so on. Most of the PostScript language matrix operators
are organized according to this latter model.

The most commonly used matrix operators are those that modify the
current transformation matrix in the graphics state. These operators do
not create a new transformation matrix from nothing; instead, they
change the existing transformation matrix in some specific way. Opera-
tors that modify user space include the following:

• translate moves the user space origin to a new position with respect
to the current page while leaving the orientation of the axes and the
unit lengths unchanged.

• rotate turns the user space axes about the current user space origin
by some angle, leaving the origin location and unit lengths
unchanged.

• scale modifies the unit lengths independently along the current x
and y axes, leaving the origin location and the orientation of the
axes unchanged.

• concat applies an arbitrary linear transformation to the user coordi-
nate system.

Such modifications have a variety of uses:

PLRM 2nd Edition January 26, 1994 Graphics

4.3 Coordinate Systems and Transformations 153

• Changing the user coordinate system conventions for an entire page. For
example, in some applications it might be convenient to express user
coordinates in centimeters rather than in 72nds of an inch, or it
might be convenient to have the origin in the center of the page
rather than in the lower left corner.

• Defining each graphical element of a page in its own coordinate system,
independent of any other element. The program can then position,
orient, and scale each element to the desired location on the page by
temporarily modifying the user coordinate system. This permits
decoupling the description of an element from the description of its
placement on the page.

Example 4.1 may aid in understanding the second type of modification.
Comments explain what each operator does.

Example 4.1

/box {newpath % Define a procedure to construct a unit square
0 0 moveto % path in the current user coordinate system,
0 1 lineto % with its lower-left corner at the origin.
1 1 lineto
1 0 lineto
closepath
} def

gsave % Save the current graphics state and create a
% new one that we shall then modify.

72 72 scale % Modify the current transformation matrix so
% everything subsequently drawn will be 72 times
% larger; that is, each unit will represent an inch
% instead of 1/72nd of an inch.

box fill % Draw a unit square with its lower-left corner at
% the origin and fill it with black. Because the unit
% size is now one inch, this box is one inch on a side.

2 2 translate % Change the transformation matrix again so
% the origin is at 2", 2" (displaced two inches
% in from the left and bottom edges of the page).

box fill % Draw the box again. This box has its lower-
% left corner two inches up from and two inches
% to the right of the lower-left corner of the page.

grestore % Restore the saved graphics state.
% Now we are back to default user space.

PLRM 2nd Edition January 26, 1994 Graphics

154 Chapter 4: Graphics

Figure 4.1 Two squares produced by Example 4.1

Figure 4.1 is a reduction of the entire page containing the two squares
painted by Example 4.1, along with scales indicating x and y positions
in inches. This shows how coordinates, such as the ones given to the
moveto and lineto graphics operators, are transformed by the current
transformation matrix. By combining translation, scaling, and rotation,
one may use very simple prototype graphics procedures—such as box in
the example—to generate an infinite variety of instances.

4.3.3 Matrix Representation and Manipulation

The descriptions of the coordinate system and matrix operators in
Chapter 8 are easier to understand with some knowledge of the repre-
sentation and manipulation of matrices. What follows is a brief intro-
duction to this topic. It is not essential that you understand the details
of matrix arithmetic on first reading, only that you obtain a clear geo-
metrical model of the effects of the various transformations.

A two-dimensional transformation is described mathematically by a
3 × 3 matrix:

0,0 inches

a b 0
c d 0
tx ty 1

PLRM 2nd Edition January 26, 1994 Graphics

4.3 Coordinate Systems and Transformations 155

In the PostScript language, this matrix is represented as a six-element
array object

[a b c d tx ty]

omitting the matrix elements in the third column, which always have
constant values.

This matrix transforms a coordinate pair (x, y) into another coordinate
pair (x’, y’) according to the linear equations:

The common transformations are easily described in this matrix nota-
tion. Translation by a specified displacement (tx, ty) is described by the
matrix:

Scaling by the factor sx in the x dimension and sy in the y dimension is
accomplished by the matrix:

Rotation counterclockwise about the origin by an angle θ is described
by the matrix:

x' ax cy tx+ +=

y' bx dy ty+ +=

1 0 0
0 1 0
tx ty 1

sx 0 0

0 sy 0

0 0 1

θcos θsin 0

θsin− θcos 0

0 0 1

PLRM 2nd Edition January 26, 1994 Graphics

156 Chapter 4: Graphics

Figure 4.2 Effects of coordinate transformations

Translation Scaling Rotation

A PostScript language program can describe any desired transformation
as a sequence of these operations performed in some order. An impor-
tant property of the matrix notation is that a program can concatenate a
sequence of operations to form a single matrix that embodies all of
those operations in combination. That is, transforming any coordinate
by the single concatenated matrix produces the same result as trans-
forming it by all the original matrices in sequence. Any linear transfor-
mation from user space to device space can be described by a single
transformation matrix, the CTM.

Note Concatenation is performed by matrix multiplication. The order in which
transformations are concatenated is important (technically, matrix operations
are associative, but not commutative). The requirement that matrices conform
during multiplication is what leads to the use of 3 × 3 matrices. Otherwise,
2 × 3 matrices would suffice to describe transformations.

The operators translate, scale, and rotate each concatenate the CTM
with a matrix describing the desired transformation, thus producing a
new matrix that describes the combination of the original and addi-
tional transformations. This matrix is then established as the new CTM:

new CTM = transformation × original CTM

It is sometimes necessary to perform the inverse of a transformation—
that is, to find the user space coordinate that corresponds to a specific
device space coordinate. PostScript language programs explicitly do this
only occasionally, but it occurs commonly in the implementation.

t y

tx

θsy

sx

PLRM 2nd Edition January 26, 1994 Graphics

4.4 Path Construction 157

Not all transformations are invertible in the way just described. For
example, if a matrix contains a, b, c, and d elements that are all zero, all
user coordinates map to the same device coordinate and there is no
unique inverse transformation. This condition produces the error
undefinedresult. Non-invertible transformations aren’t very useful and
generally arise from unintentional operations, such as scaling by zero.

4.4 Path Construction

In the PostScript language, a path defines shapes, trajectories, and
regions of all sorts. Programs use paths to draw lines, specify boundaries
of filled areas, and define templates for clipping other graphics.

A path is composed of straight and curved line segments. These seg-
ments may connect to one another or they may be disconnected. The
topology of a path is unrestricted: It may be concave or convex; it may
contain multiple closed subpaths, representing several areas; and it may
intersect itself in arbitrary ways.

Paths are represented by data structures internal to the interpreter.
Although a path is not directly accessible as an object, a PostScript lan-
guage program directly controls its construction and use. A path is con-
structed by sequential application of one or more path construction
operators. At any time, the path may be read out, or more commonly, be
used to control the application of one of the painting operators
described in section 4.5, “Painting.”

The current path is part of the graphics state. The path construction
operators modify the current path, usually by appending to it, and the
painting operators implicitly refer to the current path. The gsave and
grestore operators respectively save and restore the current path, as
they do all components of the graphics state.

The order of the segments that define a path is significant. A pair of line
segments is said to “connect” only if they are defined consecutively,
with the second segment starting where the first one ends. Non-consec-
utive segments that meet or intersect fortuitously are not considered to
connect.

A subpath of a path is a sequence of connected segments. A path is
made up of one or more disconnected subpaths. There is an operator,
closepath, that explicitly connects the end of a subpath back to its start-
ing point; such a subpath is said to be closed. A subpath that has not
been closed explicitly is open.

PLRM 2nd Edition January 26, 1994 Graphics

158 Chapter 4: Graphics

A program may begin a path by executing the newpath operator. This
initializes the current path to be empty. Some of the painting operators
also initialize the path at the end of their execution. The program builds
up the path by executing one or more of the operators that add seg-
ments to the current path. A program may execute them in any
sequence, but a moveto must come first.

All the points used to describe the path are coordinates in user space.
Each coordinate is transformed by the CTM into device space at the
time the program enters the point into the current path. Changing the
CTM does not cause existing points to move in device space.

The trailing endpoint of the segment most recently entered is referred
to as the current point. If the current path is empty, the current point is
undefined. Most operators that add a segment to the current path start
at the current point. If the current point is undefined, they execute the
error nocurrentpoint.

Following is a list of the most common path operators. There are several
other path construction operators. Complete details are presented in
Chapter 8.

• moveto establishes a new current point without adding a segment to
the path. This begins a new subpath of the current path.

• lineto adds a straight line segment to the path, connecting the previ-
ous current point to the new one.

• arc, arcn, arct, and arcto add an arc of a circle to the current path.

• curveto adds a section of a Bézier cubic curve to the current path.

• rmoveto, rlineto, and rcurveto perform the moveto, lineto, and
curveto operations, but specify new points as displacements in user
space relative to the current point.

• closepath adds a straight line segment connecting the current point
to the starting point of the current subpath (usually the point most
recently specified by moveto), thereby closing the current subpath.

The graphics state also contains a clipping path that defines the regions
of the page that may be affected by the painting operators. Marks fall-
ing inside the area defined by the closed subpaths of this path will be
applied to the page; marks falling outside will not. (Precisely what is

PLRM 2nd Edition January 26, 1994 Graphics

4.4 Path Construction 159

considered to be “inside” a path is discussed in section 4.5, “Painting.”)
The clip operator computes a new clipping path from the intersection
of the current path with the existing clipping path.

Note Remember that the path construction operators do not place any marks on the
page. Only the painting operators do that. The usual procedure for painting a
graphic element on the page is to define that element as a path and then
invoke one of the painting operators. This is repeated for each element on the
page.

A path that is to be used more than once in a page description can be
defined by a PostScript language procedure that invokes the operators
for constructing the path. Each instance of the path may then be con-
structed and painted on the page by a three-step sequence:

1. Modify the CTM, if necessary, by invoking coordinate transforma-
tion operators to properly locate, orient, and scale the path to the
desired place on the page.

2. Call the procedure to construct the path.

3. Execute a painting operator to mark the path on the page in the
desired manner.

In the common situation that the path description is constant, you
may invoke the user path operators (described in section 4.6, “User
Paths”) to combine steps 2 and 3. User paths are a Level 2 feature.

You may encapsulate the entire sequence by surrounding it with gsave
and grestore. A simple illustration of this use appears in the “box”
example of section 4.3, “Coordinate Systems and Transformations.”

A path is unrestricted in its topology. However, because the entire set of
points defining a path must exist as data simultaneously, there is a limit
to the number of segments a path may have. Because several paths may
also exist simultaneously (current path, clipping path, and paths saved
by gsave and currentgstate), this limit applies to the total amount of
storage occupied by all paths. If a path exhausts available storage, a
limitcheck error occurs. The value of the limit is implementation depen-
dent; see Appendix B.

PLRM 2nd Edition January 26, 1994 Graphics

160 Chapter 4: Graphics

As a practical matter, the limits on path storage are sufficiently large
that they do not impose an unreasonable restriction. It is important,
however, that separate elements of a page be constructed as separate
paths with each one painted and then discarded. An attempt to describe
an entire page as a single path is likely to exceed the path storage limit.

4.5 Painting

The painting operators mark graphical shapes on the current page. The
principal, general-purpose painting operators are stroke and fill,
described in this section. More specialized operators include image,
described in section 4.10, “Images,” and the character and font opera-
tors, described in Chapter 5.

The operators and graphics state parameters described here control the
abstract appearance of graphical shapes; they are device independent.
Additional facilities to control graphics rendering in raster memory are
described in Chapter 6. Those facilities are device dependent.

4.5.1 Stroking

The stroke operator draws a line of some thickness along the current
path. For each straight or curved segment in the path, stroke draws a
line that is centered on the segment with sides parallel to the segment.

The settings of graphics state parameters control the results of the
stroke operator. These parameters include CTM, color, line width, line
cap, line join, miter limit, dash, and stroke adjustment (a Level 2 fea-
ture). Graphics state parameters are summarized in section 4.2, “Graph-
ics State.” Details on each of the operators appear in Chapter 8.

stroke treats each subpath of a path separately.

• Wherever two consecutive segments are connected, the joint
between them is treated with the current line join, which may be
mitered, rounded, or beveled (see the description of the setlinejoin
operator).

• If the subpath is open, the unconnected ends are treated with the
current line cap, which may be butt, rounded, or square (see
setlinecap).

PLRM 2nd Edition January 26, 1994 Graphics

4.5 Painting 161

• Points at which unconnected segments happen to meet or intersect
receive no special treatment. In particular, “closing” a subpath with
an explicit lineto rather than with closepath may result in a messy
corner, because line caps rather than a line join are applied in that
case.

A stroke can be made either with a solid line or with a user-specified
dash pattern (see setdash). The color of the line is determined by the
current color or pattern in the graphics state (see setgray, setrgbcolor,
sethsbcolor, setcmykcolor, setcolor, and setpattern; the last three are
Level 2 operators).

A program can request that coordinates and line widths be adjusted
automatically to produce strokes of uniform thickness despite rasteriza-
tion effects. This is a Level 2 feature, controlled by the stroke adjust-
ment parameter (see setstrokeadjust; section 6.5.2, “Automatic Stroke
Adjustment,” gives details of the effects produced).

4.5.2 Filling

The fill operator uses the current color or pattern to paint the entire
region enclosed by the current path. If the path consists of several dis-
connected subpaths, fill paints the insides of all subpaths, considered
together. Any subpaths of the path that are open are implicitly closed
before being filled.

For a simple path, it is intuitively clear what region lies “inside.” How-
ever, for a more complex path—for example, a path that intersects itself
or has one subpath that encloses another—the interpretation of
“inside” is not so obvious. The path machinery uses one of two rules for
determining which points lie inside a path.

The non-zero winding number rule determines whether a given point is
inside a path by conceptually drawing a ray from that point to infinity
in any direction and then examining the places where a segment of the
path crosses the ray. Here’s how it works:

Starting with a count of zero, add one each time a path segment crosses
the ray from left to right and subtract one each time a path segment
crosses the ray from right to left. After counting all the crossings, if the
result is zero then the point is outside the path. Otherwise it is inside.

Note The rule does not specify what to do if a path segment coincides with or is
tangent to the ray. Since any ray will do, one may simply choose a different
ray that does not encounter such problem intersections.

PLRM 2nd Edition January 26, 1994 Graphics

162 Chapter 4: Graphics

With the non-zero winding number rule, a simple convex path yields
inside and outside as you would expect. Now consider a five-pointed
star, drawn with five connected straight line segments intersecting each
other. The entire area enclosed by the star, including the pentagon in
the center, is considered inside by the non-zero winding number rule.
For a path composed of two concentric circles, if they are both drawn in
the same direction, the areas enclosed by both circles are inside, accord-
ing to the rule. If they are drawn in opposite directions, only the
“doughnut” shape between the two circles is inside, according to the
rule; the “doughnut hole” is outside. Figure 4.3 shows the effects of
applying this rule.

Figure 4.3 Non-zero winding number rule

An alternative to the non-zero winding number rule is the even-odd rule.
This rule determines the “insideness” of a point by drawing a ray from
that point in any direction and counting the number of path segments
that the ray crosses. If this number is odd, the point is inside; if even,
the point is outside. Figure 4.4 shows the effects of applying this rule.

Figure 4.4 Even-odd rule

PLRM 2nd Edition January 26, 1994 Graphics

4.5 Painting 163

The even-odd rule yields the same results as the non-zero winding
number rule for paths with simple shapes, but yields different results
for more complex shapes. For the five-pointed star drawn with five
intersecting lines, the even-odd rule considers the triangular points to
be inside, but the pentagon in the center to be outside. For the two con-
centric circles, only the “doughnut” shape between the two circles is
inside, according to the even-odd rule, regardless of whether the circles
are drawn in the same or opposite directions.

The non-zero winding number rule is more versatile than the even-odd
rule and is the standard rule the fill operator uses. The even-odd rule is
occasionally useful for special effects or for compatibility with other
graphics systems. The eofill operator invokes this rule.

The clip operator uses the same rule as the fill operator to determine the
inside of the current clipping path. The eoclip operator uses the same
rule as eofill.

4.5.3 Insideness Testing

It is sometimes useful for a program to test whether a point lies inside a
path or a path intersects another path, without actually painting any-
thing. The Level 2 “insideness” operators can be used for this purpose.
They are useful mainly for interactive applications using the Display
PostScript system, where they can assist in hit detection (see section
7.3.2, “Hit Detection”). However, they have other uses as well.

There are several insideness testing operators that vary according to
how the paths to be tested are specified. All of the operators return a
single boolean result. What it means for a given point to be “inside” a
path is that painting the path (by fill or stroke) would cause the device
pixel lying under the point to be painted. These tests disregard the cur-
rent clipping path.

• infill tests the current path in the graphics state. There are two forms
of infill. One returns true if the device pixel corresponding to a spe-
cific point in user space would be painted by fill with the current
path. The second tests whether any pixels in some aperture would be
painted by fill. The aperture is specified by a user path given as a sepa-
rate operand. See section 4.6, “User Paths.”

• instroke is similar to infill, but it tests pixels that would be painted by
stroke with the current path, using the current stroke-related
parameters in the graphics state (line width, dash pattern, and so
on).

PLRM 2nd Edition January 26, 1994 Graphics

164 Chapter 4: Graphics

• inufill and inustroke are similar to infill and instroke, but they test a
path given as a separate user path operand instead of testing the cur-
rent path in the graphics state.

• ineofill and inueofill are similar to infill and inufill, but their “inside-
ness” test is based on the even-odd rule instead of the non-zero
winding number rule. See section 4.5.2, “Filling.”

4.6 User Paths

A user path is a procedure that consists entirely of path construction
operators and their coordinate operands expressed as literal numbers.
In other words, it is a completely self-contained description of a path in
user space. Several operators combine the execution of a user path
description with painting the resulting path, using it for filling or strok-
ing. User paths are a Level 2 feature.

Example 4.2 illustrates the construction and use of a user path. It
defines a path and paints its interior with the current color.

Example 4.2

{
 ucache % This is optional
 100 200 400 500 setbbox % This is required
 150 200 moveto
 250 200 400 390 400 460 curveto
 400 480 350 500 250 500 curveto
 100 400 lineto
 closepath
} ufill

The tokens enclosed in { and } constitute a user path definition. ucache
must appear first if it is used. The setbbox operator, with its four
numeric operands (integers or reals), must appear after the optional
ucache. The remainder of the user path consists of path construction
operators and their operands in any sensible order. The path is assumed
to begin empty, so the first operator after the setbbox must be an abso-
lute positioning operator (moveto, arc, or arcn).

ufill is a combined path construction and painting operator. It inter-
prets the user path as if it were an ordinary PostScript language proce-
dure being executed with systemdict as the current dictionary; it then
performs a fill. Moreover, it automatically performs a newpath prior to
interpreting the user path and it encloses the entire operation with
gsave and grestore. The overall effect of the preceding example is to

PLRM 2nd Edition January 26, 1994 Graphics

4.6 User Paths 165

define a path and to paint its interior with the current color. It leaves no
side effects in the graphics state or anywhere else, except in raster
memory.

The user path painting operators can be fully described in terms of
other path construction and painting operators. The combined opera-
tors offer several advantages in efficiency and convenience:

• They closely match the needs of many application programs.

• A user path consists of path construction operators and numeric
operands, not arbitrary computations. The user path is self-con-
tained; its semantics are guaranteed not to depend on an unpredict-
able execution environment. Also, the information provided by
setbbox assures that the coordinates of the path will be within pre-
dictable bounds. As a result, interpretation of a user path may be
much more efficient than execution of an arbitrary PostScript lan-
guage procedure.

• Most of the user path painting operators have no effect on the
graphics state. The absence of side effects is a significant reason for
the efficiency of the operations. There is no need to build up an
explicit current path only to discard it after one use. Although the
behavior of the operators can be described as if the path were built
up, painted, and discarded in the usual way, the actual implementa-
tion of the operators is optimized to avoid unnecessary work.

• Because a user path is represented as a procedure object and is self-
contained, the PostScript interpreter can save its output in a cache.
This eliminates redundant interpretation of a path that is used
repeatedly.

4.6.1 User Path Construction

A user path is an array or packed array object consisting of a sequence
of the following operators and their operands:

ucache
llx lly urx ury setbbox

x y moveto
dx dy rmoveto

x y lineto
dx dy rlineto

x1 y1 x2 y2 x3 y3 curveto
dx1 dy1 dx2 dy2 dx3 dy3 rcurveto

PLRM 2nd Edition January 26, 1994 Graphics

166 Chapter 4: Graphics

x y r ang1 ang2 arc
x y r ang1 ang2 arcn

x1 y1 x2 y2 r arct
closepath

The permitted operators are all the standard PostScript operators that
append to the current path, with the exception of arcto and charpath,
which are not allowed. There are two special user path construction
operators, ucache and setbbox.

Note arcto is not allowed because it would push results onto the operand stack.
arct is the same as arcto, except for this effect. charpath is not allowed
because the resulting user path would not be self-contained, but would depend
on the current font.

The permitted operands are literal numbers: integers and reals. The cor-
rect number of operands must be supplied to each operator. The user
path must be structured as follows (any deviation from these rules will
result in a typecheck error when the user path is interpreted):

1. The optional ucache places the user path in a special cache. It speeds
up execution for paths that a program uses frequently. If ucache is
present, it must come first. See section 4.6.3, “User Path Cache.”

2. Next must be a setbbox, which establishes a bounding box in user
space enclosing the entire path.

3. The remainder of the user path must be path construction operators
and their operands. All coordinates must fall within the bounds
specified by setbbox. If they don’t, a rangecheck error will occur
when the user path is interpreted.

The path construction operators in a user path may appear either as
executable name objects, such as moveto, or as operator objects, such as
the value of moveto in systemdict. An application program construct-
ing a user path specifies name objects. However, the program might
happen to apply bind to the user path or to a procedure containing it,
causing the names to be replaced by the operator objects. No advantage
is gained by binding a user path.

The user path painting operators interpret a user path as if systemdict
were the current dictionary (see the definition of uappend). The path
construction operators contained in the user path are guaranteed to
have their standard meanings.

PLRM 2nd Edition January 26, 1994 Graphics

4.6 User Paths 167

Note It is illegal for a user path to contain names other than the standard path
construction operator names. Aliases are prohibited to ensure that the user
path definition is self-contained and its meaning entirely independent of its
execution environment.

4.6.2 Encoded User Paths

An encoded user path is a very compact representation of a user path. It is
an array consisting of two string objects, or an array and a string. The
strings effectively encode the operands and operators of an equivalent
user path procedure, using a compact binary encoding.

The encoded user path representation is accepted and understood by
the user path painting operators, such as ufill. Those operators interpret
the data structure and perform the encoded operations. It does not
make sense to think of “executing” the encoded user path directly.

Note Operator encoding is specialized to user path definitions; it has nothing to do
with the alternative external encodings of the PostScript language, which are
described in section 3.12, “Binary Encoding Details.”

The elements of an encoded user path are:

• A data string or data array containing numeric operands.

• An operator string containing encoded operators.

This two-part organization is for the convenience of application pro-
grams that generate encoded user paths. In particular, operands always
fall on natural addressing boundaries. All the characters in both strings
are interpreted as binary numbers, not as ASCII character codes.

If the first element is a string, it is interpreted as an encoded number
string, whose representation is described in section 3.12.5, “Encoded
Number Strings.” If it is an array, its elements are simply used in
sequence. All elements must be numbers.

The operator string is interpreted as a sequence of encoded path con-
struction operators, one operation code (opcode) per character. Table
4.3 shows the allowed opcode values.

PLRM 2nd Edition January 26, 1994 Graphics

168 Chapter 4: Graphics

Table 4.3 Opcodes for encoded user paths

Opcode Operator Opcode Operator

0 setbbox 6 rcurveto

1 moveto 7 arc

2 rmoveto 8 arcn

3 lineto 9 arct

4 rlineto 10 closepath

5 curveto 11 ucache

32 < n ≤ 255 repetition count: repeat
next code n − 32 times.

Associated with each opcode in the operator string are zero or more
operands in the data string or data array. The order of the operands is
the same as in an ordinary user path. For example, execution of a lineto
(opcode 3) consumes an x operand and a y operand from the data
sequence.

Note If the encoded user path does not conform to the rules described above, a
typecheck error will occur when the path is interpreted. Possible errors include
invalid opcodes in the operator string or premature end of the data sequence.

Example 4.3 shows an encoded version of the user path from Example
4.2 on page 164. It specifies its operand list as an ordinary data array
encoded in ASCII. Example 4.4 shows the same user path with the oper-
ands given as an encoded number string.

Example 4.3

{
 {100 200 400 500
 150 200
 250 200 400 390 400 460
 400 480 350 500 250 500
 100 400 }
 <0B 00 01 22 05 03 0A>
} ufill

Example 4.4

{
 <95200014
 0064 00C8 0190 01F4
 0096 00C8

PLRM 2nd Edition January 26, 1994 Graphics

4.6 User Paths 169

 00FA 00C8 0190 0186 0190 01CC
 0190 01E0 015E 01F4 00FA 01F4
 0064 0190>
 <0B 00 01 22 05 03 0A>
} ufill

The second example illustrates how encoded user paths are likely to be
used. Although it does not appear to be more compact than the first
example in its ASCII representation, it occupies less space in VM and
executes considerably faster. The example shows the operand as a hexa-
decimal literal string for clarity of exposition. An ASCII base-85 string
literal or a binary string token would be more compact.

4.6.3 User Path Cache

Some applications define paths that must be redisplayed frequently or
that are repeated many times. To optimize interpretation of such paths,
the PostScript language provides a facility called the user path cache.
This cache, analogous to the font cache, retains the results from having
interpreted the user path definitions. When the PostScript interpreter
encounters a user path that is already in the cache, it substitutes the
cached results instead of reinterpreting the path definition.

There is a non-trivial cost associated with placing a user path in the
cache: Extra computation is required and existing paths may be dis-
placed from the cache. Because most user paths are used once and
immediately thrown away, it does not make sense to place every user
path in the cache. Instead, the application program must explicitly
identify the user paths that are to be cached. It does so by including the
ucache operator as the first element of the user path definition before
the setbbox sequence, as shown in Example 4.5.

Example 4.5

/Circle1 {ucache –1–1 1 1 setbbox 0 0 1 0 360 arc} cvlit def
Circle1 ufill

The ucache operator notifies the PostScript interpreter that the enclos-
ing user path should be placed in the cache if it is not already there, or
obtained from the cache if it is. This cache management is not per-
formed directly by ucache; instead, it is performed by the painting
operator applied to the user path (ufill in this example). This is because
the results retained in the cache differ according to what painting oper-
ation is performed. User path painting operators produce the same
effects on the current page whether or not the cache is accessed.

PLRM 2nd Edition January 26, 1994 Graphics

170 Chapter 4: Graphics

Note Invoking ucache outside a user path has no effect.

Caching is based on the value of a user path object. That is, two user
paths are considered the same for caching purposes if all elements of
one are equal to the corresponding elements of the other, even if the
objects themselves are not equal. A user path placed in the cache need not
be explicitly retained in VM. An equivalent user path appearing literally
later in the program can take advantage of the cached information. Of
course, if it is known that a given user path will be used many times,
defining it explicitly in VM avoids creating it multiple times.

User path caching, like font caching, is effective across translations of
the user coordinate system, but not across other transformations, such
as scaling or rotation. In other words, multiple instances of a given user
path painted at different places on the page take advantage of the user
path cache when the CTM has been altered only by translate. If the
CTM has been altered by scale or rotate, the instances will be treated as
if they were described by different user paths.

Two other features of Example 4.5 are important to note:

• The user path object is explicitly saved for later use (as the value of
Circle1 in this example). This is done in anticipation of painting the
same path multiple times.

• The cvlit operator is applied to the user path object to remove its exe-
cutable attribute. This ensures that the subsequent reference to
Circle1 pushes the object on the operand stack rather than inappro-
priately executing it as a procedure. It is unnecessary to do this if the
user path is to be consumed immediately by a user path painting
operator, not saved for later use.

Note It is necessary to build the user path as an executable array with { and } rather
than as a literal array with [and] so that the user path construction
operators are not executed while building the array. Executable arrays have
deferred execution.

4.6.4 User Path Operators

There are three categories of user path operators:

• User path painting operators, combining interpretation of a user
path with a painting operation (fill or stroke)—for example, ufill,
ueofill, ustroke.

PLRM 2nd Edition January 26, 1994 Graphics

4.6 User Paths 171

• Some of the insideness testing operators. See section 4.5.3, “Inside-
ness Testing.”

• Miscellaneous operators that involve user paths—for example,
uappend, upath, ustrokepath.

The userpath operand of any of those operators is one of the following:

• Ordinary user path: an array, which need not be executable, whose
length is at least 5.

• Encoded user path: an array of two elements. The first element is
either an array whose elements are all numbers or a string that can
be interpreted as an encoded number string. See section 3.12.5,
“Encoded Number Strings.” The second element is a string that
encodes a sequence of operators, as described in Table 4.3 on page
168.

In either case, the value of the object must conform to the rules for con-
structing user paths, as detailed in preceding sections. That is, the oper-
ands and operators must appear in the correct sequence. If the user
path is malformed, a typecheck error occurs.

Several of the operators take an optional matrix as their top-most oper-
and. This is a six-element array of numbers that describe a transforma-
tion matrix. A matrix is distinguished from a user path, which is also an
array, by the number and types of its elements.

There is no user path clipping operator. Because the whole purpose of
the clipping operation is to alter the current clipping path, there is no
way to avoid building the path. The best way to clip with a user path is

newpath userpath uappend clip newpath

This operation can still take advantage of information in the user path
cache under favorable conditions.

Note The uappend operator and the user path painting operators perform a
temporary adjustment to the current transformation matrix as part of their
execution. This adjustment consists of rounding the tx and ty components of
the CTM to the nearest integer values. This ensures that scan conversion of
the user path produces uniform results when it is placed at different positions
on the page through translation. This is especially important if the user path
is cached. This adjustment is not ordinarily visible to a PostScript language
program and is not mentioned in the descriptions of the individual operators.

PLRM 2nd Edition January 26, 1994 Graphics

172 Chapter 4: Graphics

4.6.5 Rectangles

Rectangles are used very frequently, so it is useful to have a few opera-
tors to paint rectangles directly. This is a convenience to application
programs. Also, knowing that the figure will be a rectangle results in
significantly optimized execution. The rectangle operators are similar to
the user path operators in that they combine path construction with
painting. However, their operands are in a considerably simpler form.

A rectangle is defined in the user coordinate system, just as if it were
constructed as an ordinary path. The Level 2 rectangle operators rectfill,
rectstroke, and rectclip accept three different forms of operands:

• Four numbers: x, y, width, and height, which describe a single rectan-
gle. The rectangle’s sides are parallel to the user space axes. It has cor-
ners located at coordinates (x, y), (x + width, y), (x + width, y + height),
and (x, y + height). Note that width and height can be negative.

• An arbitrarily long sequence of numbers represented as an array.

• An arbitrarily long sequence of numbers represented as an encoded
number string, described in section 3.12.5, “Encoded Number
Strings.”

The sequence in the latter two operand forms must contain a multiple
of four numbers. Each group of four consecutive numbers is interpreted
as the x, y, width, and height values defining a single rectangle. The
effect produced is equivalent to specifying all the rectangles as separate
subpaths of a single combined path that is then operated on by a single
fill, stroke, or clip operator.

The PostScript interpreter draws all rectangles in a counterclockwise
direction in user space, regardless of the signs of the width and height
operands. This ensures that when multiple rectangles overlap, all of
their interiors are treated as “inside” the path according to the non-zero
winding number rule.

4.7 Forms

A form is a self-contained description of any arbitrary graphics, text, or
sampled images that are to be painted multiple times—on each of sev-
eral pages or several times at different locations on a single page. The

PLRM 2nd Edition January 26, 1994 Graphics

4.7 Forms 173

appearance of a form is described by a PostScript language procedure
that executes graphical operators. Language support for forms is a Level
2 feature.

What distinguishes a form from an ordinary procedure is that it is self-
contained and behaves according to certain rules. By defining a form, a
program declares that each execution of the form will produce the same
output. The output depends only on the graphics state at the time the
form is executed. The form’s definition does not refer to variable infor-
mation in dictionaries or elsewhere in VM, and its execution has no
side effects in VM.

These rules permit the PostScript interpreter to save the graphical out-
put of the form in a cache. Later, when the same form is used again, the
interpreter substitutes the saved output instead of re-executing the
form’s definition. This can significantly improve performance when the
form is used many times.

There are various uses for forms:

• As suggested by its name, a form can serve as the template for an
entire page. For example, a program that prints filled-in tax forms
can first paint the fixed template as a form, then paint the variable
information on top of it.

• A form can also be any graphic element that is to be used repeatedly.
For example, in output from computer-aided design systems, it is
common for certain standard components to appear many times. A
company’s logo can be treated as a form.

4.7.1 Using Forms

Two steps are required to use forms:

1. Describe the appearance of the form. This is done by creating a diction-
ary, called a form dictionary, that contains information about the
form. A crucial element of the dictionary is the PaintProc, a Post-
Script language procedure that can be executed to paint the form.

2. Invoke the form. This is accomplished simply by executing the
execform operator with the form dictionary as the operand. Before
doing so, a program should set appropriate parameters in the graph-
ics state; in particular, it should alter the CTM to control the posi-
tion, size, and orientation of the form in user space.

PLRM 2nd Edition January 26, 1994 Graphics

174 Chapter 4: Graphics

Table 4.4 lists the entries in a form dictionary.

Table 4.4 Entries in a form dictionary

Key Type Semantics

FormType integer (Required) Must be 1.

XUID array (Optional) An extended unique ID that uniquely identifies the form; see section
5.8.2, “Extended Unique ID Numbers.” Presence of an XUID in a form dictionary
enables the PostScript interpreter to save cached output from the form for later
use, even when the form dictionary is loaded into VM multiple times (by differ-
ent jobs, for instance). To ensure correct behavior, XUID values must be assigned
from a central registry. This is particularly appropriate for forms treated as
named resources. Forms that are created dynamically by an application program
should not contain XUID entries.

BBox array (Required) Array of four numbers in the form coordinate system giving lower-left
x, lower-left y, upper-right x, and upper-right y of the form’s bounding box. This
bounding box is used to clip the output of the form and to determine its size for
caching.

Matrix matrix (Required) A transformation matrix that maps from the form’s coordinate space
into user space. This matrix is concatenated with the CTM before the PaintProc
is called.

PaintProc procedure (Required) A PostScript language procedure for painting the form (see below).

Implementation any Added by execform. This entry contains data used by the implementation to
support form caching. The type and value of this entry are implementation
dependent.

The form dictionary can contain other constant information that is
required by the PaintProc.

The form is defined in its own coordinate system, the form coordinate
system, which is defined by concatenating Matrix with the CTM each
time execform is executed. The BBox parameter is interpreted in the
form coordinate system; the PaintProc is executed in that coordinate
system.

The execform operator first checks if the form dictionary has previously
been used as an operand to execform. If not, it verifies that the diction-
ary contains the required elements and it makes the dictionary read-
only. It then paints the form, either by invoking the form’s PaintProc or
by substituting cached output produced by a previous execution of the
same form.

PLRM 2nd Edition January 26, 1994 Graphics

4.7 Forms 175

Whenever execform needs to execute the form definition, it:

1. Executes gsave.

2. Concatenates the Matrix entry with the CTM.

3. Clips according to the BBox entry.

4. Executes newpath.

5. Pushes the form dictionary on the operand stack.

6. Executes the form’s PaintProc.

7. Executes grestore.

The PaintProc is expected to consume its dictionary operand and to use
the information at hand to paint the form. It must obey certain guide-
lines to avoid disrupting the environment in which it is invoked.

• It should not execute any of the operators that are unsuitable for use
in encapsulated PostScript files; these are listed in Appendix I.

• It should not execute showpage, copypage, or any device setup
operator.

• Except for removing its dictionary operand, it should leave the
stacks unchanged.

• It should have no side effects beyond painting the form. It should
not alter objects in VM or anywhere else. Due to the effects of cach-
ing, the PaintProc is called at unpredictable times and in unpredict-
able environments. It should depend only on information in the
form dictionary and should produce the same effect every time it is
called.

Form caching is most effective when the graphics state does not change
between successive executions of execform with a given form. Changes
to the translation components of the CTM usually do not influence
caching behavior. Other changes may require the interpreter to re-
execute the PaintProc.

PLRM 2nd Edition January 26, 1994 Graphics

176 Chapter 4: Graphics

4.8 Color Spaces

The PostScript language includes powerful facilities for describing the
colors of graphical objects to be marked on the current page. The color
facilities are divided into two parts:

• Color specification. A PostScript language program can specify abstract
colors in a device-independent way. Colors can be described in any
of a variety of color systems or color spaces. Some color spaces are
related to device color representation (gray scale, RGB, and CMYK);
others are related to human visual perception (CIE based). Certain
special features are also modelled as color spaces: patterns, separa-
tions, and color mapping.

• Color rendering. The PostScript interpreter reproduces colors on the
raster output device by a multi-step process that includes color con-
versions, gamma correction, halftoning, and scan conversion. Cer-
tain aspects of this process are under PostScript language control.
However, unlike the facilities for color specification, the color ren-
dering facilities are device dependent and ordinarily should not be
accessed from a page description.

This section introduces the color specification facilities and describes
how they work. It covers everything that most PostScript language pro-
grams need to specify colors. Chapter 6 describes the facilities to con-
trol color rendering; a program should use those facilities only to
configure new output devices or to achieve special device-dependent
effects.

Figure 4.5 and Figure 4.6 on pages 178 and 179 illustrate the organiza-
tion of the major language features for dealing with color. They show
the division between color specification (device independent) and color
rendering (device dependent).

4.8.1 Types of Color Spaces

As described in section 4.5, “Painting,” marks placed on the page by
operators such as fill and stroke have a color that is determined by the
current color parameter of the graphics state. A color value consists of
one or more color components, which are usually numbers. For example,
a gray value can be specified by a single number, ranging from 0 (black)
to 1 (white). A full color value can be specified in any of several ways. A
common method uses three numbers to specify red, green, and blue
components.

Figure 4.5

Figure 4.6

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 177

In Level 2, color values are interpreted according to the current color
space, which is another parameter of the graphics state. A PostScript
language program first selects a color space by executing the
setcolorspace operator. It then selects color values in that color space
by executing the setcolor operator. Also, there are convenience opera-
tors—setgray, setrgbcolor, sethsbcolor, setcmykcolor, and setpattern—
that select both a color space and a color value in a single step.

In Level 1, this distinction between color spaces and color values is not
explicit, and the set of color spaces is limited. Colors can be specified
only by setgray, setrgbcolor, and sethsbcolor (setcmykcolor is also
available in some implementations). However, in the color spaces that
are supported, the semantics of the color values are consistent between
Level 1 and Level 2.

The image and colorimage operators, introduced in section 4.10,
“Images,” enable sampled images to be painted on the current page.
Each sample of an image is a color value consisting of one or more com-
ponents that are to be interpreted in some color space. Since the color
values come from the image itself, the current color in the graphics
state is not used.

Regardless of whether color values originate from the graphics state or
from a sampled image, all later stages of color processing treat them the
same way. The following sections describe the semantics of color values
that are specified as operands to the setcolor operator, but the same
semantics apply to color values originating as image samples.

There are three categories of color spaces:

• Device color spaces collectively refer to several methods for directly
specifying colors or gray levels that the output device is to produce.
These methods include RGB (red-green-blue), HSB (hue-saturation-
brightness), and CMYK (cyan-magenta-yellow-black).

• CIE (the Commission Internationale de l’Éclairage) has created an inter-
national standard for color specification. Colors can be specified in
the CIE-based color spaces in a way that is independent of the char-
acteristics of any particular output device.

• Special color spaces add special semantics to an underlying color
space. They include facilities for patterns, color mapping, and sepa-
rations.

PLRM 2nd Edition January 26, 1994 Graphics

178 Chapter 4: Graphics

Figure 4.5 Color specification

Color spaces Color valuesSources of
color values

CIEBasedABC Conversion
to internal
X, Y, Z
values

A,B,C

X,Y,Zsetcolor
image

DeviceRGB

HSB to RGB
conversion

DeviceCMYK

DeviceGray

Alternative
color
transform

H,S,B

C,M,Y,K

Gray

R,G,B

C,M,Y,K

Gray

Tint

Another
color space

setcolor
setrgbcolor
image
colorimage

sethsbcolor

setcolor
setcmykcolor
image
colorimage

setcolor
setgray
image

setcolor
image

Indexed Table
lookup

Another
color space

CIE
based
color
spaces

Device
color
spaces

Special
color
spaces

Pattern

setcolor
image

setcolor

Another
color space

Pattern
dictionary

CIEBasedA
A

setcolor
image

Index

R,G,B

Separation

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 179

Figure 4.6 Color rendering

R,G,B
device

Color
Rendering
Dictionary

R,G,B

C,M,Y,K

Gray

Device color
values
(depending on
contents of rendering
dictionary)

To appropriate
device color space

R,G,B

C,M,Y,K

Gray

Conversion
between
Device
Color
Spaces Transfer

Functions
(per
component)

Halftones
(per
component)

monochrome
device

C,M,Y,K
device

monochrome
device
separation

setundercolorremoval
setblackgeneration

sethalftone
settransfer
setcolortransfer

sethalftone
setscreen
setcolorscreen

X,Y,Z

Tint

setcolorrendering

PLRM 2nd Edition January 26, 1994 Graphics

180 Chapter 4: Graphics

Regardless of which method a PostScript language program uses to spec-
ify a color (device, CIE-based, or special color space), rendering that color
on a particular device is under separate control. Rendering is described
in Chapter 6.

The following operators control color space and color value selection:

• setcolorspace sets the color space parameter in the graphics state. Its
operand is an array object. The first element of the array is a name
object that identifies the color space; the remaining elements, if any,
are parameters that further describe the color space as a whole. The
standard color space names are:

DeviceGray CIEBasedABC Pattern
DeviceRGB CIEBasedA Indexed
DeviceCMYK Separation

The number and types of the parameters vary according to the color
space name. For color spaces that do not require parameters, the
operand to setcolorspace can be the color space name instead of an
array. currentcolorspace returns the current color space parameter
(always as an array).

• setcolor sets the current color parameter in the graphics state to a
value that is interpreted according to the current color space.
setcolor requires one or more operands, depending on the color
space; each operand specifies one component of the color value.
currentcolor returns the current color parameter.

• setgray, setrgbcolor, sethsbcolor, setcmykcolor, and setpattern set
the color space implicitly and the current color value as specified by
the operands. currentgray, currentrgbcolor, currenthsbcolor, and
currentcmykcolor return the current color according to an implicit
color space. They perform conversions in certain limited cases if the
current color space differs from the implicit one.

The setcolorspace and setcolor operators sometimes install composite
objects, such as arrays or dictionaries, as parameters in the graphics
state. To ensure predictable behavior, a PostScript language program
should thereafter treat all such objects as if they were read-only.

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 181

In certain circumstances, it is illegal to execute operators that specify
colors or other color-related parameters in the graphics state. This
restriction occurs when defining graphical figures whose colors are to
be specified separately each time they are used. The circumstances are:

• After execution of setcachedevice or setcachedevice2 in the
BuildChar or BuildGlyph procedure of a font dictionary (see section
5.7, “Type 3 Fonts”).

• In the PaintProc procedure of a pattern whose PaintType is 2 (see sec-
tion 4.9, “Patterns”).

In those circumstances, execution of any of the following operators will
cause an undefined error:

colorimage setcolortransfer
image setgray
setblackgeneration sethsbcolor
setcmykcolor setpattern
setcolor setrgbcolor
setcolorrendering setscreen
setcolorscreen settransfer
setcolorspace setundercolorremoval

Note that imagemask is not restricted, because it does not specify col-
ors, but rather designates places where the current color is to be
painted.

4.8.2 Device Color Spaces

The device color spaces enable a page description to specify color values
that are directly related to their representation on an output device. The
color values map directly—or via simple conversions—to the applica-
tion of device colorants, such as quantities of ink or intensities of dis-
play phosphors. This enables a PostScript language program to control
colors precisely for a particular device, but the results produced may not
be consistent between different devices.

The device color spaces are as follows:

• DeviceRGB controls the intensities of red, green, and blue light, the
three primary colors used in displays. Colors in this space can alter-
natively be specified as hue, saturation, and brightness values.

PLRM 2nd Edition January 26, 1994 Graphics

182 Chapter 4: Graphics

• DeviceCMYK controls the concentrations of cyan, magenta, yellow,
and black inks, the four process colors used in printing.

• DeviceGray controls the intensity of achromatic light, on a scale
from black to white.

Although the notion of explicit color spaces is a Level 2 feature, the
operators for specifying colors in the DeviceRGB and DeviceGray color
spaces—setrgbcolor, sethsbcolor, and setgray—are supported by Level
1. The setcmykcolor operator is also supported by some (but not all)
Level 1 implementations.

DeviceRGB Color Space

Colors in the DeviceRGB color space can be specified according to two
color models, called the red-green-blue (RGB) and hue-saturation-bright-
ness (HSB) models. Each of these models can specify any reproducible
color by three numeric parameters, but the numbers mean different
things in the two models. Example 4.6 shows different ways to select
the DeviceRGB color space and a color in that space.

Example 4.6

[/DeviceRGB] setcolorspace red green blue setcolor
/DeviceRGB setcolorspace red green blue setcolor
red green blue setrgbcolor
hue saturation brightness sethsbcolor

In the RGB model, a color is described as a combination of the three
primary colors—red, green, and blue—in particular concentrations. The
intensity of each primary color is specified by a number in the range 0
to 1, where 0 indicates no contribution at all and 1 indicates maximum
intensity of that color.

If all three colors have equal intensity, the perceived result theoretically
is a pure gray on the scale from black to white. If the intensities are not
all equal, the result is some color that is a function of the relative inten-
sities of the primary colors.

In the HSB model, a color is described as a combination of three
parameters called hue, saturation, and brightness. HSB colors are often
illustrated as arranged around a color wheel. The hue parameter specifies
the angular position of a color on this wheel: 0 corresponds to pure red,
1/3 to pure green, 2/3 to pure blue, and 1 to red again. Intermediate val-
ues correspond to mixtures of the adjacent colors.

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 183

• Hue corresponds to the property that is intuitively meant by the
term “color.” Common hues have names such as “yellow” or “blue-
green.”

• Saturation indicates how pure the color is. A saturation of 0 indicates
that none of the color’s hue is visible; the result is a shade of gray. A
saturation of 1 indicates that the color is pure—consists entirely of
the color’s hue. Intermediate values indicate a mixture between a
pure hue and white light.

• Brightness determines how light the color determined by the hue
and saturation will be. A brightness of 0 is always black. A brightness
of 1 sets the lightness of the color to the maximum that the hue-sat-
uration combination can allow. For example, pure red can never be
as light as the brightest white because it is missing two components.

Note HSB is not a color space in its own right. It is simply a convention for
specifying DeviceRGB color values in a different coordinate system.

As shown in Example 4.6, setcolorspace and setcolor select the color
space and color value separately; setrgbcolor and sethsbcolor set them
in combination. Of these operators, only setrgbcolor and sethsbcolor
are supported by Level 1 implementations. For DeviceRGB,
setcolorspace sets the three components of the current color to 0.

When the current color space is DeviceRGB, both currentcolor and
currentrgbcolor return the current color value as red, green, and blue,
regardless of how it was specified. currenthsbcolor returns the current
color value as hue, saturation, and brightness, converting among color
models as necessary. Of these operators, only currentrgbcolor and
currenthsbcolor are supported by Level 1 implementations.

When the current color space is one of the other device color spaces
(DeviceCMYK or DeviceGray), currentcolor returns the current color
value in that color space. currentrgbcolor and currenthsbcolor first
convert the current color value into the DeviceRGB color space. The
conversions are described in section 6.2, “Conversions Among Device
Color Spaces.” These operators cannot convert from CIE-based or spe-
cial color spaces.

DeviceCMYK Color Space

Colors are formed either by adding light sources or by subtracting light
from an illuminating source. Computer displays and film recorders typ-
ically add colors, while printing inks typically subtract colors. These

PLRM 2nd Edition January 26, 1994 Graphics

184 Chapter 4: Graphics

two methods for forming colors give rise to two major complementary
color specifications: the additive RGB specification and the subtractive
CMYK specification. The DeviceCMYK color space allows specifying col-
ors according to the CMYK model.

A color component in a DeviceCMYK color value specifies the amount
of light that component absorbs. In theory, each one of three standard
printing process colors—cyan, magenta, and yellow—absorbs one of the
standard light components—red, green, and blue—respectively. Black, a
fourth standard printing process color, absorbs all components of light
in equal amounts. In this CMYK color specification, each of the four
components is a number between 0 and 1, where 0 represents no ink
(that is, absorbs no light) and 1 represents maximum ink (absorbs all
the light it can). Note that the sense of these numbers is opposite to
that of RGB color components.

Example 4.7 shows different ways to select the DeviceCMYK color space
and a color in that space.

Example 4.7

[/DeviceCMYK] setcolorspace cyan magenta yellow black setcolor
/DeviceCMYK setcolorspace cyan magenta yellow black setcolor
cyan magenta yellow black setcmykcolor

setcolorspace and setcolor select the color space and color value sepa-
rately; setcmykcolor sets them in combination. For DeviceCMYK,
setcolorspace sets the four components of the current color to 0, 0, 0,
and 1.

When the current color space is DeviceCMYK, both currentcolor and
currentcmykcolor return the current color value as cyan, magenta, yel-
low, and black. When the current color space is one of the other device
color spaces (DeviceRGB or DeviceGray), currentcolor returns the cur-
rent color value in that color space. currentcmykcolor converts the cur-
rent color value into the DeviceCMYK color space; the conversions are
described in section 6.2, “Conversions Among Device Color Spaces.”
This operator cannot convert from CIE-based or special color spaces.

setcmykcolor and currentcmykcolor are supported by some, but not all,
Level 1 implementations.

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 185

DeviceGray Color Space

Black, white, and intermediate shades of gray are special cases of full
color. A gray-scale value is described by a single number in the range 0
to 1, where 0 corresponds to black, 1 to white, and intermediate values
to different gray levels. Example 4.8 shows different ways to select the
DeviceGray color space and a color in that space.

Example 4.8

[/DeviceGray] setcolorspace gray setcolor
/DeviceGray setcolorspace gray setcolor
gray setgray

setcolorspace and setcolor select the color space and color value sepa-
rately; setgray sets them in combination. For DeviceGray, setcolorspace
sets the current color to 0.

When the current color space is DeviceGray, both currentcolor and
currentgray return the current color value as a single gray component.
When the current color space is one of the other device color spaces
(DeviceRGB or DeviceCMYK), currentcolor returns the current color
value in that color space. currentgray converts the current color value
into the DeviceGray color space; the conversions are described in sec-
tion 6.2, “Conversions Among Device Color Spaces.” This operator can-
not convert from CIE-based or special color spaces.

setgray and currentgray are supported by all implementations.

4.8.3 CIE-Based Color Spaces

CIE-based color is defined relative to an international standard used in
the graphic arts, television, and printing industries. It enables a page
description to specify color values in a way that is related to human
visual perception. The goal of this standard is for a given CIE-based
color specification to produce consistent results on different output
devices, up to the limitations of each device.

The detailed semantics of the CIE colorimetric system and the theory
on which it is based are beyond the scope of this manual. The bibliogra-
phy lists several books that should be consulted for further informa-
tion.

PLRM 2nd Edition January 26, 1994 Graphics

186 Chapter 4: Graphics

The semantics of the CIE-based color spaces are defined in terms of the
relationship between the space’s components and the tristimulus values
X, Y, and Z of the CIE 1931 (XYZ)-space. Level 2 implementations of
the PostScript language support two CIE-based color spaces named
CIEBasedABC and CIEBasedA. Both CIE-based color spaces are invoked
by

[name dictionary] setcolorspace

where name is one of two CIE-based color space names and dictionary is
a dictionary containing parameters that further characterize the color
space. The key-value pairs in this dictionary have specific interpreta-
tions that vary among the color spaces; some key-value pairs are
required and some are optional.

Having selected a color space, a PostScript language program can then
specify color values using the setcolor operator. Color values in the
CIEBasedABC color space consist of three components; those in the
CIEBasedA color space consist of a single component. Interpretation of
those values depends on the color space and its parameters.

Note To use any of the CIE-based color spaces with the image operator requires
using the 1-operand (dictionary) form of that operator, which causes image to
interpret sample values according to the current color space. See section
4.10.5, “Image Dictionaries.”

CIE-based color spaces are available only in Level 2 implementations.
They are entirely separate from device color spaces. Operators that refer
to device color spaces implicitly, such as setrgbcolor and
currentrgbcolor, have no connection with CIE-based color spaces; they
do not perform conversions between CIE-based and device color spaces.
setrgbcolor changes the color space to DeviceRGB. When the current
color space is a CIE-based or special color space, currentrgbcolor returns
the initial value of the DeviceRGB color space, which has nothing to do
with the current color in the graphics state.

CIEBasedABC Color Space

The CIEBasedABC color space is defined in terms of a two-stage, non-
linear transformation of the CIE 1931 (XYZ)-space. The formulation of
the CIEBasedABC color space models a simple zone theory of color
vision, consisting of a non-linear trichromatic first stage combined with
a non-linear opponent color second stage. This formulation allows col-
ors to be digitized with minimum loss of fidelity; this is important in
sampled images.

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 187

Special cases of CIEBasedABC include a variety of interesting and useful
color spaces, such as the CIE 1931 (XYZ)-space, a class of calibrated RGB
spaces, and a class of opponent color spaces such as the CIE 1976
(L*a*b*)-space and the NTSC, SECAM, and PAL television spaces.

Color values in CIEBasedABC have three components, arbitrarily
named A, B, and C. They can represent a variety of independent color
components, depending on how the space is parameterized. For exam-
ple, A, B, and C may represent:

• X, Y, and Z in the CIE 1931 (XYZ)-space.

• R, G, and B in a calibrated RGB space.

• L*, a*, and b* in the CIE 1976 (L*a*b*)-space.

• Y, I, and Q in the NTSC space.

• Y, U, and V in the SECAM and PAL spaces.

The initial values of A, B, and C are 0 unless the range of valid values for
a color component does not include 0, in which case the nearest valid
value is substituted.

The parameters for the CIEBasedABC color space must be provided in a
dictionary that is the second element of the array operand to the
setcolorspace operator. Table 4.5 describes the contents of this diction-
ary.

Table 4.5 Entries in a CIEBasedABC color space dictionary

Key Type Semantics

RangeABC array (Optional) Array of six numbers [A0 A1 B0 B1 C0 C1] that specify the range of valid
values for the A, B, and C components of the color space—that is, A0 ≤ A ≤ A1,

B0 ≤ B ≤ B1, and C0 ≤ C ≤ C1. Default value: [0 1 0 1 0 1].

DecodeABC array (Optional) Array of three PostScript language procedures [DA DB DC] that decode
the A, B, and C components of the color space into values that are linear with
respect to an intermediate LMN representation; this is explained below. Default
value: the array of identity procedures [{} {} {}].

Each of these procedures is called with an encoded A, B, or C component on the
operand stack and must return the corresponding decoded value. The result
must be a monotonic function of the operand. Because these procedures are
called at unpredictable times and in unpredictable environments, they must
operate as pure functions without side effects.

PLRM 2nd Edition January 26, 1994 Graphics

188 Chapter 4: Graphics

MatrixABC array (Optional) Array of nine numbers [LA MA NA LB MB NB LC MC NC] that specify the
linear interpretation of the decoded A, B, and C components of the color space
with respect to the intermediate LMN representation. Default value: the identity
matrix [1 0 0 0 1 0 0 0 1].

The transformation defined by the DecodeABC and MatrixABC entries is:

In other words, the A, B, and C components of the color space are first decoded
individually by the DecodeABC procedures. The results are treated as a three ele-
ment vector and multiplied by MatrixABC (a three by three matrix) to provide
the L, M, and N components of the intermediate LMN representation.

RangeLMN array (Optional) Array of six numbers [L0 L1 M0 M1 N0 N1] that specify the range of
valid values for the L, M, and N components of the intermediate LMN
representation—that is, L0 ≤ L ≤ L1, M0 ≤ M ≤ M1, and N0 ≤ N ≤ N1. Default
value: [0 1 0 1 0 1].

DecodeLMN array (Optional) Array of three PostScript language procedures [DL DM DN] that decode
the L, M, and N components of the intermediate LMN representation into values
that are linear with respect to the CIE 1931 (XYZ)-space. This is explained below.
Default value: the array of identity procedures [{} {} {}].

Each of these procedures is called with an encoded L, M, or N component on the
operand stack and must return the corresponding decoded value. The result
must be a monotonic function of the operand. Because these procedures are
called at unpredictable times and in unpredictable environments, they must
operate as pure functions without side effects.

MatrixLMN array (Optional) Array of nine numbers [XL YL ZL XM YM ZM XN YN ZN] that specify the
linear interpretation of the decoded L, M, and N components of the intermediate
LMN representation with respect to the CIE 1931 (XYZ)-space. Default value:
the identity matrix [1 0 0 0 1 0 0 0 1].

The transformation defined by the DecodeLMN and MatrixLMN entries is:

WhitePoint array (Required) Array of three numbers [XW YW ZW] that specify the CIE 1931 (XYZ)-
space tristimulus value of the diffuse white point. This is explained below. The
numbers XW and ZW must be positive and YW must be equal to 1.

BlackPoint array (Optional) Array of three numbers [XB YB ZB] that specify the CIE 1931 (XYZ)-
space tristimulus value of the diffuse black point. These numbers must be non-
negative. Default value: [0 0 0].

L DA A() LA× DB B() LB× DC C() LC×+ +=

M DA A() MA× DB B() MB× DC C() MC×+ +=

N DA A() NA× DB B() NB× DC C() NC×+ +=

X DL L() XL× DM M() XM× DN N() XN×+ +=

Y DL L() YL× DM M() YM× DN N() YN×+ +=

Z DL L() ZL× DM M() ZM× DN N() ZN×+ +=

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 189

The WhitePoint and BlackPoint entries control the overall effect of the
CIE-based gamut mapping function described in section 6.1, “CIE-
Based Color to Device Color.” Typically, the colors specified by
WhitePoint and BlackPoint are mapped nearly to the lightest and the
darkest achromatic colors that the output device is capable of rendering
in a way that preserves color appearance and visual contrast.

WhitePoint is assumed to represent the diffuse, achromatic highlight,
and not a specular highlight. Specular highlights, achromatic or other-
wise, are often reproduced lighter than the diffuse highlight. BlackPoint
is assumed to represent the diffuse, achromatic shadow. Its value is typ-
ically limited by the dynamic range of the input device. In images pro-
duced by a photographic system, the values of WhitePoint and
BlackPoint vary with exposure, system response, and artistic intent;
hence, their values are image dependent.

The following PostScript language program fragments illustrate various
interesting and useful special cases of CIEBasedABC.

Example 4.9 establishes the CIE 1931 (XYZ)-space with the CCIR XA/11
recommended white point.

Example 4.9

[/CIEBasedABC <<
/RangeABC [0 0.9505 0 1 0 1.0890]
/RangeLMN [0 0.9505 0 1 0 1.0890]
/WhitePoint [0.9505 1 1.0890]

>>] setcolorspace

Example 4.10 establishes a calibrated RGB color space with the CCIR
XA/11 recommended phosphor set, white point, and opto-electronic
transfer function.

Example 4.10

[/CIEBasedABC <<
/DecodeLMN [{1 0.45 div exp} bind dup dup]
/MatrixLMN [0.4124 0.2126 0.0193 0.3576 0.7152 0.1192

0.1805 0.0722 0.9505]
/WhitePoint [0.9505 1 1.0890]

>>] setcolorspace

In many cases, the parameters of calibrated RGB color spaces are speci-
fied in terms of the CIE 1931 chromaticity coordinates (xR, yR), (xG, yG),
(xB, yB) of the red, green, and blue phosphors, respectively, and the
chromaticity (xW, yW) of the diffuse white point corresponding to some

PLRM 2nd Edition January 26, 1994 Graphics

190 Chapter 4: Graphics

linear RGB value (R, G, B), where usually R = G = B = 1. Note that stan-
dard CIE notation uses lower-case letters to specify chromaticity coordi-
nates and upper-case letters to specify tristimulus values. Given this
information, MatrixLMN and WhitePoint can be found as follows:

Example 4.11 establishes the CIE 1976 (L*a*b*)-space with the CCIR
XA/11 recommended white point. The a* and b* components,
although theoretically unbounded, are defined to lie in the useful range
−128 to +127. The transformation from L*, a*, and b* component val-
ues to CIE 1931 (XYZ)-space tristimulus values X, Y, and Z is defined as:

z yW xG xB−() yR xR xB−() yG xR xG−() yB×+×−×()×=

YL

yR

R

xG xB−() yW xW xB−() yG xW xG−() yB×+×−×

z
×=

XL YL

xR

yR

×= ZL YL

1 xR−

yR

1−

 ×=

YM

yG

G
−

xR xB−() yW xW xB−() yR xW xR−() yB×+×−×

z
×=

XM YM

xG

yG

×= ZM YM

1 xG−

yG

1−

 ×=

YN

yB

B

xR xG−() yW xW xG−() yR xW xR−() yG×+×−×

z
×=

XN YN

xB

yB

×= ZN YN

1 xB−

yB

1−

 ×=

XW R XL G XM B XN×+×+×=
YW R YL G YM B YN×+×+×=
ZW R ZL G ZM B ZN×+×+×=

X XW g
L* 16+

116
a*

500
+()×=

Z ZW g
L* 16+

116
b*

200
−()×=

Y YW g
L* 16+

116
()×=

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 191

where the function g(x) is defined as:

Example 4.11

[/CIEBasedABC <<
/RangeABC [0 100 −128 127 −128 127]
/DecodeABC [{16 add 116 div} bind {500 div} bind {200 div} bind]
/MatrixABC [1 1 1 1 0 0 0 0 −1]
/DecodeLMN

[{dup 6 29 div ge {dup dup mul mul}
{4 29 div sub 108 841 div mul} ifelse 0.9505 mul} bind

{dup 6 29 div ge {dup dup mul mul}
{4 29 div sub 108 841 div mul} ifelse} bind

{dup 6 29 div ge {dup dup mul mul}
{4 29 div sub 108 841 div mul} ifelse 1.0890 mul} bind]

/WhitePoint [0.9505 1 1.0890]
>>] setcolorspace

CIEBasedA Color Space

The CIEBasedA color space is the one-dimensional and usually achro-
matic analog of CIEBasedABC. Color values in CIEBasedA have a single
component, arbitrarily named A. It can represent a variety of color
components, depending on how the space is parameterized. For exam-
ple, A may represent:

• The luminance Y component of the CIE 1931 (XYZ)-space.

• The gray component of a calibrated gray space.

• The CIE 1976 psychometric lightness L* component of the CIE 1976
(L*a*b*)-space.

• The luminance Y component of the NTSC, SECAM, and PAL televi-
sion spaces.

The initial value of A is 0 unless the range of valid values does not
include 0, in which case the nearest valid value is substituted.

g x() x3=

g x()
108
841

x
4

29
−()×=

if x
6

29
≥

otherwise

PLRM 2nd Edition January 26, 1994 Graphics

192 Chapter 4: Graphics

The parameters for the CIEBasedA color space must be provided in a
dictionary that is the second element of the array operand to the
setcolorspace operator. Table 4.6 describes the contents of this diction-
ary.

Table 4.6 Entries in aCIEBasedA color space dictionary

Key Type Semantics

RangeA array (Optional) Array of two numbers [A0 A1] that specify the range of valid values for
the A component of the color space—that is, A0 ≤ A ≤ A1. Default value: [0 1].

DecodeA procedure (Optional) PostScript language procedure DA that decodes the A component of
the color space into a value that is linear with respect to an intermediate LMN
representation. See DecodeABC in Table 4.5. Default value: the identity proce-
dure {}.

MatrixA array (Optional) Array of three numbers [LA MA NA] that specify the linear interpreta-
tion of the decoded A component of the color space with respect to the interme-
diate LMN representation. Default value: the matrix [1 1 1].

The transformation defined by the DecodeA and MatrixA entries is:

See MatrixABC in Table 4.5.

RangeLMN array (Optional) Array of six numbers [L0 L1 M0 M1 N0 N1] that specify the range of
valid values for the L, M, and N components of the intermediate LMN
representation—that is, L0 ≤ L ≤ L1, M0 ≤ M ≤ M1, and N0 ≤ N ≤ N1. Default
value: [0 1 0 1 0 1].

DecodeLMN array (Optional) Array of three PostScript language procedures [DL DM DN] that decode
the L, M, and N components of the intermediate LMN representation into values
that are linear with respect to the CIE 1931 (XYZ)-space. See DecodeLMN in
Table 4.5.

MatrixLMN array (Optional) Array of nine numbers [XL YL ZL XM YM ZM XN YN ZN] that specify the
linear interpretation of the decoded L, M, and N components of the intermediate
LMN representation with respect to the CIE 1931 (XYZ)-space. See MatrixLMN in
Table 4.5.

WhitePoint array (Required) Array of three numbers [XW YW ZW] that specify the CIE 1931 (XYZ)-
space tristimulus value of the diffuse white point. See WhitePoint in Table 4.5.

BlackPoint array (Optional) Array of three numbers [XB YB ZB] that specify the CIE 1931 (XYZ)-
space tristimulus value of the diffuse black point. See BlackPoint in Table 4.5.

L DA A() LA×=

M DA A() MA×=

N DA A() NA×=

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 193

The following PostScript language program fragments illustrate various
interesting and useful special cases of CIEBasedA.

Example 4.12 establishes a space consisting of the Y dimension of the
CIE 1931 (XYZ)-space with the CCIR XA/11 recommended white point.

Example 4.12

[/CIEBasedA <<
/MatrixA [0.9505 1 1.0890]
/RangeLMN [0 0.9505 0 1 0 1.0890]
/WhitePoint [0.9505 1 1.0890]

>>] setcolorspace

Example 4.13 establishes a calibrated gray space with the CCIR XA/11
recommended white point and opto-electronic transfer function.

Example 4.13

[/CIEBasedA <<
/DecodeA {1 0.45 div exp} bind
/MatrixA [0.9505 1 1.0890]
/RangeLMN [0 0.9505 0 1 0 1.0890]
/WhitePoint [0.9505 1 1.0890]

>>] setcolorspace

Example 4.14 establishes a space consisting of the L* dimension of the
CIE 1976 (L*a*b*)-space with the CCIR XA/11 recommended white
point.

Example 4.14

[/CIEBasedA <<
/RangeA [0 100]
/DecodeA

{16 add 116 div dup 6 29 div ge {dup dup mul mul}
{4 29 div sub 108 841 div mul} ifelse} bind

/MatrixA [0.9505 1 1.0890]
/RangeLMN [0 0.9505 0 1 0 1.0890]
/WhitePoint [0.9505 1 1.0890]

>>] setcolorspace

PLRM 2nd Edition January 26, 1994 Graphics

194 Chapter 4: Graphics

4.8.4 Special Color Spaces

Special color spaces add special semantics to an underlying color space.
There are three special color spaces: Pattern, Indexed, and Separation.
All of the special color spaces are Level 2 features.

Pattern Color Space

The Pattern color space enables painting with a “color” defined as a
pattern, a graphical figure used repeatedly to cover the areas that are to
be painted. Section 4.9, “Patterns,” describes how patterns are defined
and used.

Indexed Color Space

The Indexed color space provides a color map or color table that allows a
PostScript language program to use small integers to select from a table
of arbitrary colors in some other color space. With the Indexed color
space, a program can, for example, use image samples that are 8-bit
index values rather than 24-bit RGB color values. For each sample, the
PostScript interpreter uses the sample value to index into the color table
and uses the color value it finds there. This technique can reduce con-
siderably the amount of data required to represent a sampled image.

An Indexed color space is installed as follows:

[/Indexed base hival lookup] setcolorspace

In other words, the operand to setcolorspace is a four-element array.
The first element is the color space name Indexed; the remaining ele-
ments are the parameters base, hival, and lookup, which the Indexed
color space requires. setcolorspace sets the current color to 0.

The base parameter is an array or name that identifies the base color
space. This is the space in which the color values in the table are to be
interpreted. It can be any device or CIE-based color space, but not a spe-
cial color space (Pattern, Indexed, or Separation). For example, if the
base color space is DeviceRGB, the values in the table are to be inter-
preted as red, green, and blue components. If the base color space is
CIEBasedABC, the values are to be interpreted as A, B, and C compo-
nents. The base parameter should be constructed just as if it were to be
used as an operand to setcolorspace.

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 195

The hival parameter is an integer that specifies the maximum valid
index value. In other words, the color table is to be indexed by integers
in the range 0 to hival, inclusive. hival can be no greater than 4095,
which is what would be required to index a table with 12-bit color sam-
ple values.

The color table is described by the lookup parameter, which can be
either a procedure or a string. It provides the mapping between the val-
ues of index and the colors in the base color space.

If lookup is a procedure, the PostScript interpreter calls it to transform an
index value into corresponding color component values in the base
color space. The procedure is called with the index on the operand
stack and must return the color component values in a form acceptable
to the setcolor operator in the base color space. The number of compo-
nents and interpretation of the component values depends on the base
color space. Since the lookup procedure is called by the setcolor and
image operators at unpredictable times, it must operate as a pure func-
tion, without side effects. It must be able to return color component
values for any integer between 0 and hival, inclusive.

If lookup is a string object, it must be of length m × (hival + 1), where m is
the number of color components in the base color space. Each byte in
the string is interpreted as an integer. To look up an index, the PostScript
interpreter multiplies index by m and uses the result to access the lookup
string. The m bytes located starting at that position in the string are
interpreted as coded values for the m color components of the base
color space. Those bytes are treated as 8-bit integers in the range 0 to
255, which are then divided by 255, yielding component values in the
range 0 to 1.

Example 4.15 illustrates specification of an Indexed color space that
maps 8-bit index values to 3-component color values in the DeviceRGB
color space.

Example 4.15

[/Indexed /DeviceRGB 255
 <000000 FF0000 00FF00 0000FF B57342 ... >
] setcolorspace

The example shows only the first five color values in the lookup string;
there should be 256 color values and the string should be 768 charac-
ters long. Having established this color space, the program can now
specify single-component color values in the range 0 to 255. For exam-
ple, a color value of 4 selects an RGB color whose components are

PLRM 2nd Edition January 26, 1994 Graphics

196 Chapter 4: Graphics

coded as the hexadecimal integers B5, 73, and 42. Dividing these by
255 yields a color whose red, green, and blue components are .710,
.451, and .259, respectively.

Note To use the Indexed color space with the image operator requires using the
1-operand (dictionary) form of that operator, which causes image to interpret
sample values according to the current color space. See section 4.10.5, “Image
Dictionaries.”

Although the Indexed color space is mainly useful for images, you can
use index values with the setcolor operator. For example,

 123 setcolor

selects the same color as does an image sample value of 123. An index
component should be an integer in the range 0 to hival, inclusive. If
index is a real number, it is truncated to an integer. If it is outside the
range 0 to hival, it is clipped to the nearest bound.

Separation Color Space

Color output devices produce full color by combining primary or process
colors in varying amounts. In a display, the primaries consist of red,
green, and blue phosphors. In a printer, they consist of cyan, magenta,
yellow, and sometimes black inks.

When the showpage or copypage operator is executed, most devices
produce a single composite page on which all primary colors have been
combined. However, some devices, such as typesetters, produce a col-
lection of pages, one for each primary or process color. These pages are
called separations. Each separation is a monochromatic rendition of the
page for a single primary color. When the separations are later com-
bined—on a printing press, for example—and the proper inks or other
colorants are applied to them, a full-color page results.

There are situations in which it is desirable to produce additional sepa-
rations to control the application of special colorants, often called spot
colors. There are many colors and other effects that cannot be achieved
by combining the primary colors. Examples include metallic and fluo-
rescent colors and special textures.

The Separation color space provides a means for a PostScript language
program to specify that additional separations are to be produced or
special colors are to be applied. Those separations or colors are identi-

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 197

fied by name. When the current color space is a particular named
separation, the current color is a single-component value, called a tint,
that controls application of colorant for that separation only.

The effect of using the Separation color space depends on the nature
and configuration of the device. Only a few devices, such as typesetters,
support the production of arbitrary separations. Some other color print-
ing devices support one or more special colorants that are to be applied
to the composite page in addition to the primary colorants. In such
devices, “separations” are not actually separate pages. Most devices do
not support separations at all. The Separation color space provides pre-
dictable behavior when a program requests separations that the device
can’t produce.

A Separation color space is installed as follows:

[/Separation name alternativeSpace tintTransform] setcolorspace

In other words, the operand to setcolorspace is a four-element array.
The first element is the color space name Separation. The remaining
elements are the parameters name, alternativeSpace, and tintTransform,
which the Separation color space requires.

A color value in a Separation color space consists of a single tint compo-
nent in the range 0 to 1. The value 0 represents application of the min-
imum amount of colorant to the separation; 1 represents application of
the maximum amount. Tints are treated as subtractive colors; this is the
same as the convention for DeviceCMYK color components, but oppo-
site the one for DeviceRGB and DeviceGray. The setcolor operator sets
the current color in the graphics state to a tint value; the initial value is
1. A sampled image with single-component samples can also be treated
as a source of tint values.

Note To use the Separation color space with the image operator requires using the
1-operand (dictionary) form of that operator, which causes image to interpret
sample values according to the current color space. See section 4.10.5, “Image
Dictionaries.”

The name parameter, a name or string object, specifies the name of the
separation or colorant. The names of separations are arbitrary, and
there can be an arbitrary number of separations, subject to implementa-
tion limits. Name and string objects can be used interchangeably. Some
separation names contain spaces or other special characters, so strings
may be more convenient.

PLRM 2nd Edition January 26, 1994 Graphics

198 Chapter 4: Graphics

At the moment setcolorspace is executed, the device determines if it
can produce the named separation. If it can, setcolorspace ignores the
alternativeSpace and tintTransform parameters. Subsequent painting oper-
ations apply colorant to the named separation according to the sup-
plied tint values, as explained above.

If the device cannot produce the named separation, setcolorspace
arranges instead for subsequent painting operations to be performed in
an alternative color space. This enables the special colors to be approxi-
mated by colors in some device or CIE-based color space, which are
then rendered using the usual primary or process colors. The way this
works is as follows:

• The alternativeSpace parameter must be an array or name object that
identifies the alternative color space. This can be any device or CIE-
based color space, but not a special color space (Pattern, Indexed, or
Separation). The alternativeSpace parameter should be constructed
just as if it were to be used as an operand to setcolorspace.

• The tintTransform parameter must be a procedure. During subsequent
painting operations, the PostScript interpreter calls this procedure to
transform a tint value into color component values in the alternative
color space. The procedure is called with tint on the operand stack
and must return the color component values in a form acceptable to
the setcolor operator in the alternative color space. The number of
components and interpretation of the component values depends
on the alternative color space. Since the tintTransform procedure is
called by the setcolor and image operators at unpredictable times, it
must operate as a pure function without side effects.

Example 4.16 illustrates specification of a Separation color space that is
intended to produce a separation named AdobeGreen. If the device can-
not produce an AdobeGreen separation, the program selects
DeviceCMYK as the alternative color space, and it provides a
tintTransform procedure that maps tint values linearly into shades of a
CMYK color value that approximates the “Adobe green” color.

Example 4.16

[/Separation (AdobeGreen) /DeviceCMYK
 {dup .84 mul exch 0 exch dup .44 mul exch .21 mul}
] setcolorspace

For convenience, the separation names Cyan, Magenta, Yellow, and
Black correspond to the conventional subtractive device’s cyan,
magenta, yellow, and black colorants, respectively. The names Red,

PLRM 2nd Edition January 26, 1994 Graphics

4.8 Color Spaces 199

Green, and Blue correspond to the conventional additive device’s red,
green, and blue primaries, respectively. This enables a program to select
one of the device’s primary colors as if it were a separation.

Note Tint values are always subtractive, even if the device produces output for the
named component by an additive method. The value 0 represents the lightest
color; 1 represents the darkest color.

The separation named All refers to all separations that are produced,
including both process color separations and specific named separa-
tions that have been requested previously. When the current color
space is the All separation, painting operators apply tint values to all
separations instead of to only one. This is useful for purposes such as
painting registration marks in the same place on every separation. Ordi-
narily, a program should do this as the last step of composing a page,
immediately before executing showpage, when the set of separations
the device will produce has been completely determined.

The separation named None will never be produced. If the device is
producing separations, none of them will be marked. In other words,
painting on the separation named None does not change the current
page. All implementations support the separation named None, even if
they do not support any other named separations. The alternativeSpace
and tintTransform parameters are ignored, though dummy values must
still be provided.

The graphics state contains an overprint parameter, controlled by the
setoverprint operator. This parameter controls an aspect of color render-
ing, not of color specification. However, it applies only when separations
are being produced, so it is described here.

When the device produces separations, the overprint parameter indi-
cates if painting on one separation causes the corresponding areas of
other separations—unrelated to the current color space—to be erased.
To “erase” an area means to paint it with a tint value of 0.

If overprint is false, painting in a Separation color space causes corre-
sponding areas of all other separations, including the ones for the pri-
mary colors, to be erased. Painting in any other color space, which is
rendered onto the primary separations, causes the corresponding areas
of all non-primary separations to be erased. If overprint is true, these
erasing actions are not performed. Whatever was previously painted on
the other separations is left undisturbed.

PLRM 2nd Edition January 26, 1994 Graphics

200 Chapter 4: Graphics

The effect of the overprint parameter becomes apparent when the sepa-
rations are combined. If overprint is false, the color at any position on
the page is whatever was painted there last. This is consistent with the
normal opaque painting model of the PostScript language. If overprint
is true, the color at some position may be a function of colors painted
by several painting operations on different separations. The effect pro-
duced by such “overprinting” is device dependent and is not defined by
the PostScript language. The default value of the overprint parameter is
false.

When the device is not producing separations, the value of the over-
print parameter has no effect on the current page.

4.9 Patterns

When operators such as fill, stroke, and show paint areas of the page
with the current color, they ordinarily apply a single color that covers
the areas uniformly. Sometimes it is desirable to apply “paint” that con-
sists of a repeating figure instead of a simple color. Such a repeating fig-
ure is called a pattern.

The ability to paint with patterns is a Level 2 feature. With some effort,
it is possible to achieve a limited form of patterns in Level 1 by defining
them as characters in a special font and showing them repeatedly.
Another technique—defining patterns as halftone screens—is not rec-
ommended, because the effect produced is device dependent.

“Painting with a pattern” means replicating a small graphical figure
(called a pattern cell) at fixed intervals in x and y to cover the areas to be
painted. The effect is as if one were to paint the figure on the surface of
a clear glass tile, lay down copies of the tile in an array covering an area
to be painted, and trim the tiles’ edges to the boundaries of the area.
Laying down copies of a pattern cell to fill an area is called tiling.

Patterns are quite general, and there are many uses for them. The
appearance of a pattern cell is defined by an arbitrary PostScript lan-
guage procedure. It can include graphical elements such as filled areas,
text, and sampled images. The shape of a pattern cell need not be rec-
tangular, and the spacing of tiles can differ from the size of the pattern
cell. Patterns can be used to create various graphical textures, such as
weaves, brick walls, and similar geometrical tilings.

PLRM 2nd Edition January 26, 1994 Graphics

4.9 Patterns 201

4.9.1 Using Patterns

Painting with a pattern is a four-step procedure:

1. Describe the prototype pattern. This is done by creating a dictionary,
called a pattern dictionary, that contains information about the
pattern. A crucial element of the dictionary is the PaintProc, a Post-
Script language procedure that can be executed to paint a single
pattern cell.

2. Instantiate the pattern. The makepattern operator copies a prototype
pattern dictionary and produces an instance of the pattern that is
locked to current user space. In other words, the size of a pattern cell
and the phase of the tiling in device space are determined by the
CTM at the time makepattern is executed. The pattern is unaffected
by subsequent changes to the CTM or to other graphics state
parameters.

3. Select the pattern as the current color. There is a special color space,
named Pattern, whose color values are pattern dictionaries instead
of the numeric color values used with other color spaces. The
setcolorspace and setcolor operators set the color space and color
value separately; the convenience operator setpattern installs a
pattern as the current color in a single step.

4. Invoke painting operators, such as fill, stroke, imagemask, or show. All
areas that normally would be painted with a uniform color are
instead tiled with the pattern cell. To accomplish this, the PostScript
interpreter calls the pattern dictionary’s PaintProc (with the graphics
state altered in certain ways) to obtain the pattern cell. It then paints
this cell on the current page as many times as necessary. To optimize
execution, the interpreter maintains a cache of recently used pattern
cells.

4.9.2 Pattern Dictionaries

Table 4.7 lists the entries in a pattern dictionary. All entries except
Implementation can appear in a prototype pattern dictionary (operand
to makepattern). The pattern dictionary returned by makepattern con-
tains an Implementation entry as well as the others.

PLRM 2nd Edition January 26, 1994 Graphics

202 Chapter 4: Graphics

Table 4.7 Entries in a pattern dictionary

Key Type Semantics

PatternType integer (Required) Must be 1.

XUID array (Optional) An extended unique ID that uniquely identifies the pattern; see section
5.8.2, “Extended Unique ID Numbers.” Presence of an XUID in a pattern
dictionary enables the PostScript interpreter to save cached instances of the
pattern cell for later use, even when the pattern dictionary is loaded into VM
multiple times—by different jobs, for instance. To ensure correct behavior, XUID
values must be assigned from a central registry. This is particularly appropriate
for patterns treated as named resources. Patterns that are created dynamically by
an application program should not contain XUID entries.

PaintType integer (Required) Determines how the color of the pattern cell is to be specified. The
choices are:

1 Colored pattern. The PaintProc itself specifies the colors used to paint the
pattern cell.

2 Uncolored pattern. The PaintProc does not specify any color information.
Instead, the entire pattern cell is painted with a separately specified color
each time the pattern is used. Essentially, PaintProc describes a stencil
through which the current color is to be poured. PaintProc must not
execute operators that specify colors or other color-related parameters in
the graphics state; otherwise, an undefined error will occur (see section
4.8.1, “Types of Color Spaces”). Use of the imagemask operator is permitted,
however, because it does not specify any color information.

TilingType integer (Required) Controls adjustments to the tiling to quantize it to the device pixel
grid. The choices are:

1 Constant spacing. Pattern cells are spaced consistently—that is, by a multiple
of a device pixel. To achieve this, makepattern may need to distort the
pattern slightly by making small adjustments to XStep, YStep, and the
transformation matrix. The amount of distortion does not exceed one
device pixel.

2 No distortion. The pattern cell is not distorted, but the spacing between
pattern cells may vary by as much as one device pixel in both x and y
dimensions when the pattern is painted. This achieves the spacing
requested by XStep and YStep on average, but not for individual pattern
cells.

3 Constant spacing and faster tiling. Like TilingType 1, but with additional
distortion of the pattern cell permitted to enable a more efficient
implementation.

BBox array (Required) An array of four numbers in the pattern cell coordinate system, giving
lower-left x, lower-left y, upper-right x, and upper-right y of the pattern cell
bounding box. This bounding box is used to clip the pattern cell and to
determine its size for caching.

PLRM 2nd Edition January 26, 1994 Graphics

4.9 Patterns 203

XStep number (Required) The desired horizontal spacing between pattern cells, measured in the
pattern cell coordinate system. Note that XStep and YStep may differ from the
dimensions of the pattern cell implied by the BBox entry. This enables tiling
with irregularly shaped figures. XStep and YStep may be either positive or
negative, but not zero.

YStep number (Required) The desired vertical spacing between pattern cells, measured in the
pattern cell coordinate system.

PaintProc procedure (Required) A PostScript language procedure for painting the pattern cell (see
below).

Implementation any This entry is inserted by makepattern. Its value consists of information used by
the interpreter to achieve proper tiling of the pattern. The type and value of this
entry are implementation dependent.

The pattern dictionary can contain other constant information that is
required by the PaintProc.

The pattern cell is described in its own coordinate system, the pattern
coordinate system, which is defined by concatenating the matrix operand
of makepattern with the CTM at the time makepattern is executed. The
XStep, YStep, and BBox parameters are interpreted in the pattern coor-
dinate system; the PaintProc is executed in that coordinate system.

The placement of pattern cells in the tiling is based on the location of
one key pattern cell, which is then displaced by multiples of XStep and
YStep to replicate the pattern cell. The origin of the key pattern cell
coincides with the origin of the coordinate system defined by concate-
nating matrix with CTM at the time makepattern is executed. The phase
of the tiling can be controlled by the translation components of the
matrix operand. This tiling is frozen; that is, whenever the pattern dic-
tionary created by makepattern is used for painting, the same tiling is
used, regardless of intervening changes to the CTM.

In Display PostScript systems, there is a halftone phase parameter that
controls the placement of halftone cells relative to device space. This is
to support operations such as scrolling (see section 7.3.3, “Halftone
Phase”). Changing the halftone phase also alters the placement of pat-
terns by the same amount. This applies only to patterns subsequently
painted using existing pattern dictionaries—those created by
makepattern before the halftone phase was changed. It does not affect
the placement of newly created patterns.

PLRM 2nd Edition January 26, 1994 Graphics

204 Chapter 4: Graphics

To paint with a pattern, one must first establish the pattern dictionary
as the current color in the graphics state; this is described in section
4.9.3, “Pattern Color Space.” Subsequent painting operations will tile
the painted areas with the pattern cell that is described in the diction-
ary. Whenever it needs to obtain the pattern cell, the interpreter:

1. Executes gsave.

2. Installs the graphics state that was in effect at the time makepattern
was executed, with certain parameters altered as documented in the
operator description for makepattern.

3. Pushes the pattern dictionary on the operand stack.

4. Executes the pattern’s PaintProc.

5. Executes grestore.

The PaintProc is expected to consume its dictionary operand and to use
the information at hand to paint the pattern cell. It must obey certain
guidelines to avoid disrupting the environment in which it is invoked.

• It should not execute any of the operators that are unsuitable for use
in encapsulated PostScript files; these are listed in Appendix I.

• It should not execute showpage, copypage, or any device setup
operator.

• Except for removing its dictionary operand, it should leave the
stacks unchanged.

• It should have no side effects beyond painting the pattern cell. It
should not alter objects in VM or anywhere else. Due to the effects of
caching, the PaintProc is called at unpredictable times and in unpre-
dictable environments. It should depend only on information in the
pattern dictionary and it should produce the same effect every time
it is called.

4.9.3 Pattern Color Space

There is a special color space called Pattern whose “color values” are
specified as pattern dictionaries. Selecting a pattern as the current color
is a two-step process:

PLRM 2nd Edition January 26, 1994 Graphics

4.9 Patterns 205

1. Execute setcolorspace to set the current color space to Pattern.

2. Execute setcolor with a pattern dictionary operand (and possibly
other operands) to select that pattern as the current color.

Section 4.8, “Color Spaces,” gives general information about color
spaces and color values. Details of the Pattern color space and color
value specifications appear below.

The initial color value in a pattern color space selected by setcolorspace
is a null object, which is treated as if it were a pattern dictionary whose
PaintType is 1 and whose PaintProc is an empty procedure. Painting
with this pattern does not produce any marks on the current page.

A convenience operator, setpattern, combines the two steps for select-
ing a pattern. It takes a pattern dictionary as an operand, selects the
Pattern color space, and sets the pattern as the current color. Details of
its behavior depend on the value of the PaintType entry in the pattern
dictionary. setpattern is the normal method for selecting patterns. For
the purpose of exposition, the descriptions below specify the color
space and color value separately, even though it is rarely necessary to do
so.

Colored Patterns

A colored pattern is one whose color is self-contained. As part of painting
the pattern cell, the PaintProc explicitly sets the colors of all graphical
elements it paints. A single pattern cell can contain elements that are
painted different colors. It can also contain sampled gray-scale or color
images.

When used with colored patterns, the Pattern color space requires no
additional parameters. The color space operand to setcolorspace can be
either the name Pattern or a one-element array containing the name
Pattern. The Pattern color space can also have a parameter, the underly-
ing color space, as a second element of the array. This is required when
using uncolored patterns, but is ignored when using colored patterns.

A color value operand to setcolor in this space has a single component,
a pattern dictionary whose PaintType is 1. Example 4.17 establishes a
colored pattern as the current color, where pattern is a type 1 pattern
dictionary.

PLRM 2nd Edition January 26, 1994 Graphics

206 Chapter 4: Graphics

Example 4.17

[/Pattern] setcolorspace % Alternatively, /Pattern setcolorspace
pattern setcolor

Subsequent executions of painting operators, such as fill, stroke, show,
and imagemask, use the pattern to tile the areas to be painted.

Note The image operator in its 5-operand form and the colorimage operator use a
predetermined color space (DeviceGray, DeviceRGB, or DeviceCMYK) for
interpreting their color samples, regardless of the current color space. A
pattern color space has no effect on those operators. The 1-operand
(dictionary) form of image is not allowed, because numeric color components
are not meaningful in a pattern color space. The imagemask operator is
allowed, because the image samples do not represent colors, but rather
designate places where the current color is to be painted.

Example 4.18 defines a colored pattern and then uses it to paint a rec-
tangle and a character.

Example 4.18

<< % Begin prototype pattern dictionary
 /PaintType 1 % Colored pattern
 /PatternType 1 /TilingType 1
 /BBox [0 0 60 60]
 /XStep 60 /YStep 60
 /star { % Private procedure used by PaintProc
 gsave
 0 12 moveto 4 { 144 rotate 0 12 lineto } repeat closepath fill
 grestore
 }
 /PaintProc {
 begin % Push pattern on dictionary stack
 0.3 setgray % Set color for dark gray stars
 15 15 translate star 30 30 translate star
 0.7 setgray % Set color for light gray stars
 –30 0 translate star 30 –30 translate star
 end
 }
>> % End prototype pattern dictionary
matrix % Identity matrix
makepattern % Instantiate the pattern
/Star4 exch def

120 120 184 120 4 copy % 2 copies of rectangle operands
/Pattern setcolorspace
Star4 setcolor rectfill % Fill rectangle with stars
0 setgray rectstroke % Stroke black outline

PLRM 2nd Edition January 26, 1994 Graphics

4.9 Patterns 207

/Times-Roman 270 selectfont
160 100 translate
0.9 setgray 0 0 moveto (A) show % Paint character with gray
Star4 setpattern 0 0 moveto (A) show % Paint character with stars

Figure 4.7 Output from Example 4.18

The pattern consists of four stars in two different colors. The PaintProc
specifies the colors of the stars. There are several features of Example
4.18 that are noteworthy:

• After constructing the prototype pattern dictionary, the program
immediately invokes makepattern on it. The value that it assigns to
Star4 is the instantiated pattern returned by makepattern. There is no
need to save the prototype pattern unless the program desires to
instantiate it in multiple ways, perhaps with different sizes or orien-
tations.

• The program illustrates both methods of selecting a pattern for
painting. The first time, it invokes the setcolorspace and setcolor
operators separately. The second time, it invokes the convenience
operator setpattern. Note that the occurrences of setgray also
change the color space to DeviceGray.

����
����
QQQQ
QQQQ
¢¢¢¢
¢¢¢¢A
����
����
����
����

QQQQ
QQQQ
QQQQ
QQQQ

¢¢¢¢
¢¢¢¢
¢¢¢¢
¢¢¢¢

PLRM 2nd Edition January 26, 1994 Graphics

208 Chapter 4: Graphics

• The rectangle and the letter A are painted with the same pattern (the
pattern dictionary returned by a single execution of makepattern).
The patterns align even though the CTM is altered between the two
uses of the pattern.

• The pattern cell does not completely cover the tile. There are areas of
the tile (the spaces between the stars) that are not painted. When the
pattern is used as a color, the stars are painted, but the background
shows through the areas between the stars. The appearance of the
letter A demonstrates this: It is painted once with gray and again
with the star pattern. The gray shows between the stars.

Uncolored Patterns

An uncolored pattern is one that does not have any inherent color.
Instead, the color must be specified separately whenever the pattern is
used. This provides a way to tile different regions of the page with
pattern cells having the same shape but different colors. The pattern’s
PaintProc does not explicitly specify any colors; it cannot use the image
or colorimage operators, but it can use the imagemask operator.

When used with uncolored patterns, the Pattern color space requires a
parameter: an array or name that identifies the underlying color space in
which the actual color of the pattern is to be specified. A color value to
be given to setcolor in this Pattern color space has at least two compo-
nents: a color value in the underlying color space, given as one or more
numbers, and a pattern dictionary whose PaintType is 2.

Example 4.19 establishes an uncolored pattern as the current color,
using DeviceRGB as the underlying color space. The values r, g, and b
specify a color in the underlying color space; pattern is a type 2 pattern
dictionary.

Example 4.19

[/Pattern [/DeviceRGB]] setcolorspace
r g b pattern setcolor

Subsequent executions of painting operators, such as fill, stroke, show,
and imagemask, use the pattern to tile the areas to be painted. They
paint the pattern cells with the color value described by r, g, and b.

Note The underlying color space of a Pattern color space cannot itself be a Pattern
color space.

PLRM 2nd Edition January 26, 1994 Graphics

4.9 Patterns 209

Example 4.20 defines an uncolored pattern and then uses it to paint a
rectangle and a circle with different colors applied through the pattern.

Example 4.20

<< % Begin prototype pattern dictionary
 /PaintType 2 % Uncolored pattern
 /PatternType 1 /TilingType 1
 /BBox [–12 –12 12 12]
 /XStep 30 /YStep 30
 /PaintProc {
 pop % Pop pattern dictionary
 0 12 moveto 4 { 144 rotate 0 12 lineto } repeat closepath
 fill
 }
>> % End prototype pattern dictionary
matrix % Identity matrix
makepattern % Instantiate the pattern
/Star exch def

140 110 170 100 4 copy % 2 copies of rectangle operands
0.9 setgray rectfill % Fill rectangle with gray
[/Pattern /DeviceGray] setcolorspace
1 Star setcolor rectfill % Fill rectangle with white stars
225 185 60 0 360 arc % Build circular path
0 Star setpattern gsave fill grestore % Fill circle with black stars
0 setgray stroke % Stroke black outline

Figure 4.8 Output from Example 4.20

���
���
���
���
���

PLRM 2nd Edition January 26, 1994 Graphics

210 Chapter 4: Graphics

The pattern consists of a single star, which the PaintProc paints without
first specifying a color. Most of the remarks after Example 4.18 on page
206 also apply to Example 4.20. Additionally:

• The program paints the rectangle twice, first with gray, then with the
pattern. To paint with the pattern, it supplies two operands to
setcolor: the number 1, designating white in the DeviceGray color
space, and the pattern dictionary.

• The program paints the circle with the same pattern, but with the
color set to 0 (black). Note the use of setpattern in this instance. It
inherits parameters from the existing color space (see the setpattern
operator description for details).

4.10 Images

The PostScript language’s painting operators include general facilities
for dealing with sampled images. A sampled image (or just “image” for
short) is a rectangular array of sample values, each representing some
color. This image may approximate the appearance of some natural
scene obtained through a television camera or a color input scanner, or
it may be generated synthetically.

Figure 4.9 Typical sampled image

An image is defined by a sequence of samples obtained by scanning the
image rectangle in row or column order. Each sample in the array con-
sists of 1, 3, or 4 components (for example, representing gray-scale,
RGB, or CMYK color). Each component consists of a 1-, 2-, 4-, 8-, or 12-
bit integer, permitting the representation of 2, 4, 16, 256, or 4096 differ-
ent values for each component.

PLRM 2nd Edition January 26, 1994 Graphics

4.10 Images 211

Level 1 and Level 2 implementations of the PostScript language differ in
the facilities they offer for images:

• Most Level 1 implementations support only gray-scale images—that
is, ones whose image samples consist of a single gray component.
These can be painted by means of the 5-operand form of the image
operator. Image samples must consist of 1, 2, 4, or 8 bits per compo-
nent (12-bit components are not supported). The image source data
must be provided by a procedure. Direct use of files or strings as data
sources is not supported.

• A few Level 1 implementations have been extended to support color
images containing 3 or 4 components per sample interpreted as RGB
or CMYK. These can be painted by means of the colorimage opera-
tor. The Level 1 products containing this feature are primarily color
printers. They also support the setcmykcolor operator and 4-color
rendering features.

• Level 2 implementations support all the features of Level 1. Addi-
tionally, they support image dictionaries, which are a more general
means for specifying parameters to the image operator. The image
operator has a 1-operand form in which the operand is an image dic-
tionary. Other features available only in Level 2 include interpreta-
tion of sample values in any color space (CIE-based, for instance),
12-bit component values, direct use of files or strings as data sources,
and additional decoding and rendering options.

• All implementations support the imagemask operator, which paints
the current color through a mask specified as a bitmap (see section
4.10.6, “Masks”). However, specification of its operands using an
image dictionary is supported only in Level 2.

There are often several ways to paint a given image, depending on what
level of language features are to be used. Fortunately, most of the
semantics of images do not depend on how painting is invoked or how
operands are represented. In the sections that follow, frequent reference
is made to specific features, such as colorimage or image dictionaries.
Refer to the above summary to determine which features are supported
in a particular implementation.

4.10.1 Image Parameters

The properties of an image—resolution, orientation, scanning order,
and so on—are entirely independent of the properties of the raster out-
put device on which the image is to be rendered. The PostScript inter-

PLRM 2nd Edition January 26, 1994 Graphics

212 Chapter 4: Graphics

preter usually renders an image by a sampling and halftoning
technique that attempts to approximate the color values of the source
as accurately as possible. The accuracy depends on the resolution and
other properties of the raster output device.

To paint an image, a PostScript language program must specify four
interrelated items:

• The format of the source image: number of columns (width), num-
ber of rows (height), number of components, and number of bits per
component.

• A data source capable of providing the image sample data, which
consist of height × width × components × bits/component bits of infor-
mation.

• The correspondence between coordinates in user space and coordi-
nates in the source image space, defining the region of user space
that will receive the image.

• The mapping from component values in the source image to compo-
nent values in the current color space.

The PostScript language program entirely controls these four aspects of
image specification.

4.10.2 Sample Data Representation

The source format for an image can be described by four parameters:
width, height, components, and bits/component. A PostScript language pro-
gram specifies width, height, and bits/component explicitly. The inter-
preter infers the components parameter, as follows:

• With the 5-operand form of the image operator and with
imagemask, components is always 1.

• With the 1-operand (image dictionary) form of the image operator,
components is the number of components in the current color space.
See section 4.8, “Color Spaces.”

• With the colorimage operator, components is specified explicitly as
the ncomp operand.

PLRM 2nd Edition January 26, 1994 Graphics

4.10 Images 213

Image data are represented as a stream of characters—specifically, 8-bit
integers in the range 0 to 255, obtained from some data source
(returned from a procedure or read from a file or string). These charac-
ters represent a continuous bit stream, with the high-order bit of each
character first. This bit stream is in turn divided into units of bits/compo-
nent bits each, ignoring character boundaries. 12-bit sample values
straddle character boundaries; other sizes never do. Each unit encodes a
color component value, given high-order bit first.

Each row of the source image begins on a character boundary. If the number
of data bits per row is not a multiple of 8, the end of the row must be
padded with extra bits to fill up the last character. The PostScript inter-
preter ignores these bits.

Each source sample component is an integer in the range 0 to 2n – 1,
where n is the number of bits per component. The PostScript interpreter
maps this to a color component value (equivalent to what could be
used with operators such as setgray or setcolor) by one of two methods:

• With the 5-operand form of image, and with all forms of
colorimage, the integer 0 maps to the number 0.0, the integer 2n – 1
maps to the number 1.0, and intermediate values map linearly to
numbers between 0.0 to 1.0.

• With the 1-operand (dictionary) form of image, the mapping is spec-
ified explicitly by the Decode entry in the image dictionary.

• With imagemask, image samples do not represent color values, so
mapping is not relevant. See section 4.10.6, “Masks.”

The imaging operators (image, colorimage, and imagemask) can obtain
source data from any of three types of objects:

• Procedure. Whenever the interpreter requires additional data, it calls
the procedure, which is expected to return a string containing some
more data. The amount of data returned by each call is arbitrary.
However, returning one or more complete scan lines at a time sim-
plifies programming, especially when reading image data that appear
in-line in a PostScript language program. This is the only type of data
source permitted by Level 1 implementations.

• File. The interpreter simply reads data from the file as necessary. Note
that the file can be a filtered file that performs some form of decoding
or decompression (see section 3.8.4, “Filters”). This type of data
source is a Level 2 feature.

PLRM 2nd Edition January 26, 1994 Graphics

214 Chapter 4: Graphics

• String. The interpreter simply reads data from the string, reusing it as
many times as is necessary to provide the amount of data that the
imaging operation expects. This type of data source is a Level 2 fea-
ture, though equivalent behavior can be obtained with Level 1 by
providing a procedure that simply returns the same string each time
it is called.

Data sources for images are much the same as data sources for filters.
For further elaboration on the semantics of data sources, see section
3.13.1, “Data Sources and Targets.” When reading from a data source
causes a PostScript language procedure to be invoked, that procedure
must not do anything to disturb the ongoing imaging operation—for
example, alter the graphics state or image dictionary, or initiate a new
imaging operation.

A data source can end prematurely. This occurs if a procedure returns a
string of length zero or a file encounters end-of-file. If a data source
ends before all source samples have been read, the remainder of the
image that would have been painted by the missing samples is left
unpainted. If the last source row is incomplete—that is, the data source
ends in mid-row—the partial source row may be discarded and not
painted.

When there are multiple components per sample (components is greater
than 1), the source data can be organized in one of two ways:

• Single data source. All components are obtained from the same
source, interleaved on a per-sample basis. For example, in a 3-com-
ponent RGB image, the red, green, and blue components for one
sample are followed by the red, green, and blue components for the
next sample.

• Multiple data sources. Each component is obtained from a separate
source—for example, all red components from one source, all green
components from a second, all blue components from a third. The
three sources must be of the same type and must actually be inde-
pendent—for example, three different files, or three procedures
using different strings to buffer the data, because the interpreter
reads from them in parallel. If the data sources are procedures, all of
them must return strings of the same length on any given call.

PLRM 2nd Edition January 26, 1994 Graphics

4.10 Images 215

A PostScript language program specifies which organization to use by
means of the multi operand of colorimage or the MultipleDataSources
entry in the image dictionary. Figure 4.10 illustrates some typical orga-
nizations for data sources. It also shows the image sample decode map-
ping operation.

Figure 4.10 Image data organization and processing

4.10.3 Source Coordinate System

The image operators impose a coordinate system on the source image.
They consider the source image to be a rectangle that is height units
high and width units wide. Each sample occupies one square unit. The
origin (0, 0) is in the lower-left corner. x values range from 0 to width
inclusive, and y values range from 0 to height inclusive.

The image operators assume that they receive sample data from their
data source in x-axis major indexing order. The coordinate of the lower-
left corner of the first sample is (0, 0), of the second (1, 0), and so on

Data source*

Data source*

Data source*

Data source*

Single component image

Decode Color values
Image samples

Multiple component image (e.g., RGB), single source

Image samples interleaved
...RGBRGB...

Decode R

Decode G

Decode B

R

G

B

R

G

B

Color values

Decode R

Decode G

Decode B

Color values

Multiple component image (e.g. RGB), separate sources

R image samples

G image samples

B image samples
Data source*

Independent

* Data source is a single file, procedure, or string.

R

G

B

PLRM 2nd Edition January 26, 1994 Graphics

216 Chapter 4: Graphics

through the last sample of the first row, whose lower-left corner is at
(width – 1, 0) and whose lower-right corner is at (width, 0). The next
samples after that are at coordinates (0, 1), (1, 1), and so on, until the
final sample of the image, whose lower-left corner is at (width – 1,
height – 1) and whose upper-right corner is at (width, height).

Figure 4.11 illustrates the organization of the source coordinate system.
The numbers inside the squares indicate the order of the samples,
counting from 0.

Figure 4.11 Source image coordinate system

The source coordinate system and scanning order imposed by the
image operators do not preclude using different conventions in the
actual source image. Coordinate transformation can map other conven-
tions into the PostScript language convention.

The correspondence between this source image coordinate system (or
image space) and user space is specified by a special matrix. This matrix
is provided in one of two ways:

• In the 5-operand forms of image and imagemask and in all forms of
colorimage, there is a separate matrix operand.

• In image dictionaries, there is a required ImageMatrix entry.

This matrix defines a mapping from user space to image space. That is, a
user space coordinate transformed by the matrix yields an image space
coordinate. There are four points in user space that map to the coordi-
nates of the four corners of the image in image space. This is a general

h

h–1

1

2

0
0 1 2 w–1 w

(h–1)w (h–1)w+1 hw–1

w w+1 2w–1

0 1 w–1

PLRM 2nd Edition January 26, 1994 Graphics

4.10 Images 217

linear transformation that can include translation, rotation, reflection,
and shearing (see section 4.3, “Coordinate Systems and Transforma-
tions”).

Figure 4.12 Mapping the source image

Although it’s possible to map directly from current user space to image
space by appropriate definition of the image matrix, it’s easier to think
about the transformation by dividing it into two steps:

1. The image matrix maps the unit square of user space, bounded by
(0, 0) and (1, 1) in user space, to the boundary of the source image in
image space.

2. The CTM maps the unit square of user space to the rectangle or par-
allelogram on the page that is to receive the image.

This is just a convention, but it is a useful one that is recommended (see
Figure 4.12). With this convention, the image matrix is used solely to
describe the image itself, independent of how it is to be positioned, ori-
ented, and scaled on a particular page. It defines an idealized image
space consisting of a unit square that corresponds to the PostScript lan-
guage’s conventions for coordinate system and scanning order. A pro-
gram can then map this idealized image space into current user space
by altering the CTM in straightforward ways.

An image that happens to use the PostScript language conventions
(scanning left-to-right, bottom-to-top) can be described by the image
matrix

[width 0 0 height 0 0]

0
0 w

h

0,1 1,1

0,0 1,0

unit square
in user space

current page

source image

image
matrix CTM

PLRM 2nd Edition January 26, 1994 Graphics

218 Chapter 4: Graphics

An image that is scanned left-to-right, top-to-bottom (a commonly
used order) is described by the image matrix

[width 0 0 –height 0 height]

Images scanned in other common orders can be described in similar
ways.

An image that has been mapped into the unit square this way can then
be placed on the output page in the desired position, orientation, and
size by invoking the PostScript operators that transform user space:
translate, rotate, and scale.

For example, to map such an image into a rectangle whose lower-left
corner is at (100, 200), is rotated 45 degrees counterclockwise, and is
150 units wide and 80 high, a program can execute

100 200 translate 45 rotate 150 80 scale

before invoking the image, colorimage, or imagemask operator. This
works for any image that has been mapped into the unit square by an
appropriate image matrix. Of course, if the aspect ratio (ratio of width
to height) of the source image in this example were different from the
ratio 150:80, the result would be distorted.

Note Although images themselves are always rectangular, you can clip an image to
any desired shape by establishing a clipping path using the clip operator
before invoking image, colorimage, or imagemask.

4.10.4 Images and Color Spaces

The color samples in an image are interpreted according to some color
space (see section 4.8, “Color Spaces”). The color space to be used
depends on how imaging is invoked:

• The 5-operand form of the image operator always interprets color
samples according to the DeviceGray color space, regardless of the
current color space. It does not alter the current color space parame-
ter in the graphics state.

• The colorimage operator always interprets color samples according
to the DeviceGray, DeviceRGB, or DeviceCMYK color space, depend-
ing on whether its ncomp operand is 1, 3, or 4. It neither reads nor
alters the current color space parameter in the graphics state.

PLRM 2nd Edition January 26, 1994 Graphics

4.10 Images 219

• The 1-operand (dictionary) form of the image operator interprets
color samples according to the current color space. The number of
components per sample and the interpretation of the component
values depend on the color space. This form of image can be used
with any color space except Pattern.

• The imagemask operator always interprets its source data as a mask
for applying the current color in the current color space (see section
4.10.6, “Masks”). This works for any color space.

4.10.5 Image Dictionaries

In Level 2, the image and imagemask operators, but not colorimage,
have a 1-operand form in which all imaging parameters are bundled
together as an image dictionary operand. This arrangement provides
more flexibility than the 5-operand form of image or any form of
colorimage. The following features can be accessed only by means of
image dictionaries:

• Use of arbitrary color spaces, such as CIEBasedABC or Separation.

• User-defined decoding of image sample values.

• Interpolation between samples.

An image dictionary contains various entries, some of which are
required and some optional. Table 4.8 describes the semantics of each
of the image dictionary entries. There are many relationships among
these entries. The current color space may limit the choices for various
entries in the image dictionary. Attempting to use an image dictionary
in which required entries are missing or of the wrong type will cause a
typecheck error. Attempting to use an image dictionary whose entries
are inconsistent with each other or with the current color space will
result in a rangecheck error.

Table 4.8 Entries in an image dictionary

Key Type Semantics

ImageType integer (Required) Must be 1.

Width integer (Required) Width of the source image in samples.

Height integer (Required) Height of the source image in samples.

ImageMatrix array (Required) An array of six numbers that define a transformation from current user
space to image source space.

PLRM 2nd Edition January 26, 1994 Graphics

220 Chapter 4: Graphics

MultipleDataSources boolean (Optional) The value true indicates that the image data are provided through
multiple data sources, one per color component. The value false indicates that
the image data for all color components are packed into one data stream,
interleaved on a per-sample basis. MultipleDataSources must be false or absent
in an image dictionary used with imagemask. Default value: false.

DataSource (various) (Required) If MultipleDataSources is false or is not present, the value of
DataSource must be a single data source (file, procedure, or string). If
MultipleDataSources is true, DataSource must be an array of data sources; the
length of the array must be the same as the number of components in the
current color space.

BitsPerComponent integer (Required) Specifies the number of bits used to represent each color component.
The number must be 1, 2, 4, 8, or 12. Only a single number may be specified.
The number of bits is the same for all color components. BitsPerComponent
must be 1 in an image dictionary used with imagemask.

Decode array (Required) An array of numbers. The length of the array must be twice the
number of color components in the current color space. This describes how to
map image sample values into the range of values appropriate for the current
color space (see below).

Interpolate boolean (Optional) If present with the value true, requests that image interpolation be
performed (see below). Default value: false.

The following sections describe the semantics of some of these entries
in more detail. All of this information applies to image dictionaries
used with the image operator. Most of it also applies to image dictionar-
ies used with the imagemask operator. See section 4.10.6, “Masks.”

Decode

The bit stream of image data is initially decomposed into integers
between 0 and 2n – 1, where n is the value of BitsPerComponent. There
is one of these integers for each component of a given color sample.
The number of components depends on the current color space.

The Decode array specifies a linear mapping of an integer component
value to a number that would be appropriate as an operand to setcolor
in the current color space. For each color component, Decode specifies
a minimum and maximum output value for the mapping. The linear
mapping is defined as:

o Dmin i
Dmax Dmin−

2n 1−
×+=

PLRM 2nd Edition January 26, 1994 Graphics

4.10 Images 221

where

n is the value of BitsPerComponent;
i is the input value, in the range 0 to 2n – 1;
Dmin and Dmax are the parameters in the Decode array;
o is the output value, to be interpreted as a color component.

In other words, an input value of zero will be mapped to Dmin, an input
value of 2n – 1 will be mapped to Dmax, and intermediate input values
will be linearly mapped to values between Dmin and Dmax.

The numbers in the Decode array are interpreted in pairs, with succes-
sive pairs applying to successive components of the current color space
in their standard order. Table 4.9 lists recommended Decode arrays for
use with the various color spaces.

Table 4.9 Typical Decode arrays

Color space Decode array

DeviceGray [0 1]

DeviceRGB [0 1 0 1 0 1]

DeviceCMYK [0 1 0 1 0 1 0 1]

CIEBasedABC [0 1 0 1 0 1]

CIEBasedA [0 1]

Separation [0 1]

Indexed [0 N] where N = 2n – 1

Pattern (image is not permitted)

For most color spaces, the Decode arrays listed above map into the full
range of allowed component values. For the CIEBasedABC and
CIEBasedA color spaces, the suggested Decode array maps to compo-
nent values in the range 0.0 to 1.0. This is typical for the class of cali-
brated gray or RGB color spaces, but the appropriate values actually
depend on how the color spaces have been parameterized. For the
Indexed color space, the suggested Decode array ensures component
values that index a color table are passed through unchanged.

PLRM 2nd Edition January 26, 1994 Graphics

222 Chapter 4: Graphics

It is possible to specify a mapping that inverts sample color intensities
by specifying a Dmin value which is greater than the Dmax. For example,
if the current color space is DeviceGray and the Decode array is [1 0], an
input value of 0 will be mapped to 1.0 (white), while an input value of
2n – 1 will be mapped to 0.0 (black).

The Dmin and Dmax parameters for a color component are not required
to fall within the range of values allowed for that component. For
instance, if an application uses 6-bit numbers as its native image sample
format, it can send those samples to the PostScript interpreter in 8-bit
format, setting the two unused high-order bits of each sample to zero.
When imaging that data, it should specify a Decode array of
[0 4.04762], which maps the input values 0 to 63 into the range 0.0 to
1.0. If an output value falls outside the range allowed for a component,
the value will be automatically adjusted to the nearest allowed value.

Interpolate

When the resolution of a source image is significantly lower than the
resolution of the device, each source sample covers many device pixels.
This can result in a “jaggy” appearance of binary images or a “blocky”
appearance of continuous-tone images.

These visual artifacts can be reduced by applying an image interpolation
algorithm during rendering. Instead of painting all of the pixels cov-
ered by a source sample with the same color, it attempts to make a
smooth transition between adjacent sample values.

Setting the Interpolate entry to true in the image dictionary for either
image or imagemask enables image interpolation. The default is not to
interpolate. Enabling interpolation may increase the time required to
render the image.

4.10.6 Masks

The image and colorimage operators are consistent with other painting
operators in that all areas of a page affected by an image are marked as
though by opaque paint (see section 4.1, “Imaging Model”). Any por-
tion of an image, whether black, white, color, or gray, completely
obscures any marks that previously existed in the same place on the
page.

PLRM 2nd Edition January 26, 1994 Graphics

4.10 Images 223

There is a special variant of a binary image, called a mask, whose prop-
erties are quite different. Whereas an image is opaque, a mask is par-
tially transparent. The imagemask operator applies masks.

The samples of a mask do not represent colors; they designate places on
the page that should be marked with the current color in the current
color space or not marked at all. The places that are not marked retain
their former color values. One should think of pouring paint “through”
a mask, where a 1 sample permits the paint to reach the page, but a 0
blocks it, or vice versa.

Masks are most often useful for painting characters represented as bit-
maps. Ordinarily, when painting such characters, one wants the “black”
bits of the character to be transferred to the page, but the “white” bits,
which are really just background, to be left alone.

Note For reasons discussed in section 5.5, “Font Cache,” imagemask rather than
image should almost always be used to paint bitmap characters.

A program invokes imagemask in much the same way as image; most
of the parameters have equivalent meanings. As with image, there is a
5-operand form supported by all implementations and a 1-operand
image dictionary form, which is a Level 2 feature. imagemask differs
from image in the following significant ways:

• The number of components per sample is always 1, regardless of the
current color space, because sample values for imagemask do not
represent color values.

• The number of bits per component is always 1. When an image dic-
tionary is used with imagemask, the BitsPerComponent entry must
be 1.

• The 5-operand form of imagemask includes a polarity operand that
determines how the source samples are to be interpreted. If polarity is
false, 0 designates a painted sample and 1 designates an unpainted
sample. If polarity is true, 1 designates a painted sample and 0 desig-
nates an unpainted sample. The 1-operand form of imagemask uses
the Decode entry in the image dictionary for the same purpose.
Decode arrays of [0 1] and [1 0] correspond to polarity values of false
and true, respectively.

PLRM 2nd Edition January 26, 1994 Graphics

224 Chapter 4: Graphics

4.10.7 Using Images

This section contains some simple examples that demonstrate typical
uses of images. The examples are incomplete; they cannot show the
image data itself, since it is very bulky. For further information about
the imaging operators themselves, see the operator descriptions in
Chapter 8.

Monochrome Image

Example 4.21 uses the image operator to paint a gray-scale image, using
facilities available in Level 1 implementations.

Example 4.21

/picstr 256 string def % String to hold image data

45 140 translate % Locate lower-left corner of image
132 132 scale % Map image to 132 unit square

256 256 8 % Dimensions of source image
[256 0 0 –256 0 256] % Map unit square to source
{currentfile % Read image data from program file
 picstr readhexstring pop}
image

4c47494b4d4c524c4d50535051554c5152 ...
...Total of 131072 hex digits of image data, representing 65536 samples...

This program paints an image consisting of 256 × 256 samples at 8 bits
per sample. It positions the image with its lower-left corner at (45, 140)
in current user space and scales it to a width and height of 132 user
space units. The image data are represented with the first sample in the
upper-left corner, so the program uses the image matrix to match its
coordinate system with the normal PostScript language convention. See
section 4.10.3, “Source Coordinate System.”

The image data appear in-line in the PostScript language program. This
is the most common way to access image data in a document. Only
occasionally will a program refer to image data stored elsewhere—in a
file, for instance. The image data are represented in hexadecimal, not 8-
bit binary, so as to maximize portability of the document.

The program specifies a data source which is a procedure. Each time the
procedure is called by image, it executes readhexstring to read one row
of image sample data into a string, which it then returns to image. It

PLRM 2nd Edition January 26, 1994 Graphics

4.10 Images 225

reuses this string during every call. It is not necessary to read one row at
a time, but doing so simplifies programming. If the procedure reads
multiple rows at a time, or an amount of data that is not a multiple of
the image’s width, it must take special care not to read past the end of
the image data the last time it is called by image. Doing so would cause
some program text following the image data to be lost.

With most images, it’s very important to read the image data incremen-
tally, as shown in this example. Attempting to read the entire image
into a single string or to represent it as a PostScript language string lit-
eral would run the risk of exceeding implementation limits or exhaust-
ing available VM.

Color Image with Single Source

As indicated earlier, color images with multiple components per sample
can be organized in two ways: interleaved components obtained from a
single source, or separate components obtained from separate sources.
The first organization is the only one that is useful for images whose
data are provided in-line in a PostScript language program. The second
organization is limited to situations in which the separate components
are stored elsewhere, such as in separate files that can be read in
parallel.

Example 4.22 illustrates use of the colorimage operator to paint an
image consisting of interleaved RGB data from a single source. This
example works in Level 2 implementations, and also in those Level 1
implementations that have the CMYK color extensions.

Example 4.22

/picstr 768 string def % String to hold 256 RGB samples
45 140 translate % Locate lower-left corner of image
132 132 scale % Map image to 132 unit square

256 256 8 % Dimensions of source image
[256 0 0 –256 0 256] % Map unit square to source
{currentfile % Read image data from program file
 picstr readhexstring pop}
false 3 % Single data source, 3 colors
colorimage

94a1bec8c0b371a3a5c4d281...
...393216 hex digits of image data, representing 65536 samples...

PLRM 2nd Edition January 26, 1994 Graphics

226 Chapter 4: Graphics

This colorimage example is superficially similar to the image example
given earlier. The major change is that two additional operands are sup-
plied to colorimage, specifying that the image has a single data source
and 3 components. The image data consists of 8-bit red, green, and blue
color components for each sample in turn.

Image Dictionary

Example 4.23 is a program that produces the same output as Example
4.22, but uses an image dictionary and other features available only in
Level 2.

Example 4.23

/DeviceRGB setcolorspace % How color values will be interpreted
45 140 translate % Locate lower-left corner of image
132 132 scale % Map image to 132 unit square
<< % Start image dictionary
 /ImageType 1
 /Width 256 /Height 256 % Dimensions of source image
 /BitsPerComponent 8
 /Decode [0 1 0 1 0 1] % Decode color values in normal way
 /ImageMatrix [256 0 0 –256 0 256] % Map unit square to source
 /DataSource currentfile /ASCIIHexDecode filter

% Obtain in-line data through filter
>> % End image dictionary
image

94a1bec8c0b371a3a5c4d281...
...393216 hex digits of image data, representing 65536 samples...

In this program, the image data source is a file instead of a procedure.
The file is a filtered file that converts the hexadecimal encoded data from
currentfile to binary form. For an explanation of this and an example of
how to obtain image data that has been compressed, see section 3.8.4,
“Filters.”

4.11 Device Setup

This section explains the PostScript language facilities for setting up a
raster output device in order to fulfill the processing requirements of a
page description. Setting up a raster output device (hereafter, simply
device) includes:

• Selecting the proper input media.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 227

• Establishing a default transformation matrix from user space to
device space, along with other device dependent rendering
parameters for producing output on the media.

• Selecting processing options, such as multiple copies, or special fea-
tures of the output device, such as duplex printing (2-sided).

Once a device has been set up, a PostScript language program can
describe a sequence of pages. For each page in turn, the program paints
the current page in raster memory with everything that is to appear on
it—text, graphics, and images. It then executes the showpage operator
to cause the page to be produced. showpage transmits the contents of
raster memory to the physical output device, then erases the current
page and partially resets the graphics state in preparation for the next
page.

This model is appropriate to PostScript language programs that are page
descriptions. A page description is intended to produce a sequence of
pages on a page device, usually causing the page images to appear on
physical media, such as sheets of paper. On the other hand, this model
is not appropriate for applications that use the PostScript language to
control the appearance of a display interactively (see Chapter 7).

Level 1 and Level 2 implementations of the PostScript language differ in
the facilities they offer for setting up a device to meet the requirements
of a page description.

• Level 1 implementations provide a collection of device control oper-
ators, defined in a special dictionary named statusdict. The contents
of statusdict are product dependent, although an attempt has been
made to maintain a consistent specification for common features.
statusdict features are not described in this manual, but in the docu-
mentation for each product. Application programs desiring to use
statusdict features can extract information from PostScript printer
description (PPD) files. Specifications for those files are available from
Adobe Systems Developers’ Association.

• Level 2 implementations support a page device setup operator
named setpagedevice. This operator provides a standard framework
for specifying the requirements of a page description and for control-
ling both standard and optional features of a device. Although the
page device facilities are oriented toward devices that produce hard
copy, such as printers or typesetters, the setpagedevice operator
exists in all Level 2 implementations.

PLRM 2nd Edition January 26, 1994 Graphics

228 Chapter 4: Graphics

The remainder of this section describes the page device setup facilities
supported by Level 2.

4.11.1 Using Page Devices

In the following discussion, the term media indicates the physical mate-
rial on which the output appears (paper, transparency material, film, a
virtual page on a display, or whatever). Most of the processing options
are oriented toward printers that produce paper output, so “paper” is a
good universal material to envision when you read “media.”

Many products have special hardware features, such as multiple paper
trays with different sizes of paper, duplex printing, collation, finishing
options, and so on. The PostScript interpreter supports the special fea-
tures of each product. It knows what features are currently available
and ready for use. The setpagedevice operator is the way a page descrip-
tion specifies its processing requirements and selects optional features.
Also, setpagedevice is the way a user or system administrator specifies
default device setup or configuration parameters to be used when a
page description doesn’t specify them.

Not all features are available in all products. setpagedevice provides a
uniform framework for specifying processing requirements and
options. It uses a standard syntax to request features supported by all
devices, such as selecting a page size, and features supported only by
some devices, such as duplex printing. setpagedevice also provides a
standard mechanism for determining what to do when a page descrip-
tion makes requests the device can’t fulfill. A page description must
contain the minimum required device setup information, because
including such information limits the set of devices on which the
document can be printed.

It is useful, at least in concept, to envision two separate tasks when
printing from an application:

1. Generate the device-independent page description.

2. Request that the page description be printed on a particular device.
At this point, the user should have an opportunity to add processing
options, including device-dependent ones, to the page description.

Even if a single application provides both of these functions, it is best to
maintain this distinction. Most applications have an option to store the
generated page description in a file for later use. That file should not
contain unnecessary device-dependent processing options. The distinc-

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 229

tion between document generation and document printing is essential
when using PostScript language programs for document storage and
interchange.

While there is no clear division between device-independent processing
requests and device-dependent ones, you should keep in mind the
important goal of producing device-independent page descriptions.
One important criterion to apply is whether a particular feature is
inherently a part of the document specification or only a processing
option. For example, the page size—in particular, the aspect ratio
between width and height—is an important part of the document spec-
ification, because the application generating the document must make
formatting decisions based on the page size. On the other hand, the
number of copies to be printed or the color of the paper to be used are
not an inherent part of the document description, but rather are pro-
cessing options.

4.11.2 Page Device Dictionary

The current internal state of a page device is modelled as a dictionary
containing some number of key-value pairs. The keys in the dictionary
represent particular device features or processing options; the values
represent the current settings of those features or options. This diction-
ary is not directly accessible to a PostScript language program, but it can
be altered and read by the setpagedevice and currentpagedevice opera-
tors.

The operand of setpagedevice is a dictionary supplying information in
the form of key-value pairs that request particular device features or
processing options. The dictionary is simply a container that can hold
multiple key-value pairs to be supplied in a single call to setpagedevice.
The interpreter uses the information in the dictionary to alter its inter-
nal device state, but it does not retain the dictionary. The
currentpagedevice operator returns a dictionary describing the current
state of the page device using the same key-value organization.

Executing setpagedevice alters the PostScript interpreter’s internal
device state. Its effects are cumulative over multiple executions. That is,
setpagedevice merges new requests into the existing state of the device.
The effect of specifying a particular key-value pair persists through sub-
sequent calls to setpagedevice until overridden explicitly or until the
device is restored to some previous state by restore, grestore,
grestoreall, or setgstate. This cumulative behavior also applies recur-
sively (to one level) to the contents of subsidiary dictionaries that are

PLRM 2nd Edition January 26, 1994 Graphics

230 Chapter 4: Graphics

the values of the keys Policies, InputAttributes, and OutputAttributes. It
does not apply to the contents of other entries whose values happen to
be dictionaries.

Since the effects of setpagedevice are cumulative, a PostScript language
program can make independent calls to setpagedevice, each requesting
particular features or processing options, but leaving the settings for
other features undisturbed. This allows different options to be specified
at different times; in particular:

1. When an application generates a page description, it can include a
call to setpagedevice specifying parameters, such as PageSize and
ImagingBBox, that reflect assumptions the application has made in
formatting the document.

2. When a user requests printing, an additional call to setpagedevice
can be prepended to the page description to specify processing
options, such as NumCopies, Duplex, or MediaColor.

3. The person who is operating the printer can invoke setpagedevice,
as part of an unencapsulated job, to configure the available input
media (InputAttributes), to establish policies for dealing with unsat-
isfied requests (Policies), and to establish default values for other
device options.

For certain options, there is a “null” value that indicates absence of any
request or preference for the value of that option. In all cases, the null
object (value of null in systemdict) is used for this purpose. For exam-
ple, a MediaColor value of null indicates that no specific paper color has
been requested. Null values are permitted only for certain features; see
the tables in section 4.11.3, “Semantics of Specific Entries.”

Omitting a particular key in a dictionary passed to setpagedevice has
an effect different from providing that key with a null value. The
absence of the key allows the value to be inherited from the previous
state of the device. The presence of the key with a null value causes the
value in the device to be set to null, cancelling any previous request for
that feature.

The dictionary returned by currentpagedevice always contains an entry
for every feature supported by that specific device. For some features,
the value might be null, indicating that the feature is supported, but no
request has been made for that feature yet.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 231

If the dictionary passed to setpagedevice includes any requests that the
device cannot satisfy, the PostScript interpreter invokes a uniform pol-
icy for determining what to do. This policy is based on information in
the Policies sub-dictionary of the page device dictionary. Policies can be
altered by setpagedevice. For example, if a program requests duplex
printing on a device that doesn’t support it, the policy existing at that
time may be either to ignore the request (print simplex) or to generate a
configurationerror (reject the job).

If a device does not support a particular feature, setpagedevice does not
recognize any request to specify a value for that feature. For example, if
a device does not have a duplexing mechanism, setpagedevice does not
recognize the key Duplex, even if the request is to set the value of
Duplex to false, which indicates no duplexing. Instead, it consults
Policies to determine what to do. This behavior might seem surprising,
but it is necessitated by the fact that the set of device features is open-
ended.

A page device is only one of several kinds of raster output devices. Other
devices include the cache device to put characters into the font cache
and the null device to discard output entirely. These are set, usually tem-
porarily, by the setcachedevice and nulldevice operators. A Display
PostScript system provides one or more window devices that allow paint-
ing onto various portions of a display. Ordinarily, a window device is
not a page device; however, Display PostScript products often provide a
preview capability that emulates a page device using a display window. If
setpagedevice is executed when the current device is not a page device,
the effect produced is device dependent.

Note The setpagedevice operator is a page-oriented operator used to control the
output processing of one or more pages of a page description. Any call to
setpagedevice implicitly performs erasepage and initgraphics; thus, it must
precede the descriptions of the pages to be affected.

4.11.3 Semantics of Specific Entries

The following tables describe the entries in a page device dictionary
that have been defined at the time of publication of this manual. In the
future, other entries will be defined to satisfy requirements for new pro-
cessing options or product features. Once defined in any product, a
given key will always be used for the same feature in any subsequent
products that support it.

Note Not all keys listed in the tables are recognized by all products. Consult each
product’s documentation to see exactly which keys it recognizes.

PLRM 2nd Edition January 26, 1994 Graphics

232 Chapter 4: Graphics

The entries are divided into four categories. This classification is not
rigid; entries in different categories can sometimes interact with each
other. However, organizing the entries this way facilitates understand-
ing their purpose.

• Input media selection entries (Table 4.10) provide information that
can be used to select the appropriate type of paper or other media.
The PageSize entry should be specified by the application generating
the page description. Other entries should generally be specified
only when printing is requested. There is a fairly elaborate interac-
tion among these entries. See section 4.11.4, “Media Selection.”

• Processing and output entries (Table 4.11) specify how pages are to be
rendered onto the media and how the media are to be processed
thereafter. The ImagingBBox entry should be specified by the appli-
cation generating the page description. Other entries should gener-
ally be specified only when printing is requested.

• Roll media entries (Table 4.12) provide additional information that is
usually relevant only to devices that feed media from a continuous
roll, such as film in a typesetter.

• Policy and special action entries (Table 4.13) specify how requests for
unsupported features are to be handled and define special actions to
be performed when the device is installed and before and after each
page is printed.

The PostScript language does not prescribe a default value for any entry.
The usual default value for optional features is either false or null, but
this is not invariably the case in all products. A PostScript language pro-
gram can change the defaults by executing setpagedevice as part of an
unencapsulated job.

Table 4.10 Input media selection entries

Key Type Semantics

PageSize array Defines the overall page size that was assumed during generation of the page
description. PageSize is an array of two numbers, [width height], indicating the
width and height of the assumed page, expressed in units of the default user
coordinate system (1/72 inch). These are the overall dimensions of the page,
including borders, if any. In other words, the lower-left corner and upper-right
corner of the assumed physical page are at user space coordinates (0, 0) and
(width, height), respectively.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 233

setpagedevice uses PageSize with MediaColor, MediaWeight, MediaType,
InputAttributes, ManualFeed, and Policies to select the appropriate medium.
Section 4.11.4, “Media Selection,” describes the matching rules that are used.

setpagedevice attempts to match the size requirements of the pages with the
media sizes currently available. Each media size is considered to be available in
either of two orientations. Whether the media size is expressed as [width height]
or [height width] is immaterial insofar as matching is concerned. Likewise, the
orientation of media in the printing mechanism is unspecified and varies from
one device to another. The PostScript interpreter takes care of setting up the
transformation from user space to device space so the long and short dimensions
specified by PageSize are oriented with the long and short dimensions of the
physical media.

If a PageSize of [a b] specifies a “portrait” orientation (that is, a < b), then a
PageSize of [b a] specifies a “landscape” orientation of the same size page.
setpagedevice follows a rule that allows the portrait and landscape orientations
of a given size page to be related to each other. The default user space in the
landscape orientation will be rotated 90 degrees counterclockwise with respect
to the default user space in the portrait orientation. This relationship holds only
between the two orientations of the same size media. No such relationship is
guaranteed between different media.

The tolerance for matching PageSize with an available media size is ±5 default
user space units in either dimension. A match falling within this tolerance is
considered to be exact. Failure to match any available media within this toler-
ance triggers the PageSize recovery policy specified in Policies.

MediaColor string or null Specifies the color of the media. If MediaColor is not null, setpagedevice com-
pares it with the MediaColor values, if any, in the InputAttributes entries for all
media that it considers. See section 4.11.4, “Media Selection.”

MediaWeight number or null Specifies the weight of the media. If MediaWeight is not null, setpagedevice
compares it with the MediaWeight values, if any, in the InputAttributes entries
for all media that it considers. See section 4.11.4, “Media Selection.” Weight is
expressed in grams per square meter. “Basis weight” or “ream weight” in pounds
can be converted to grams per square meter by multiplying by 3.76; 10-pound
paper is approximately 37.6 grams per square meter.

MediaType string or null Specifies the type of the media. If MediaType is not null, setpagedevice com-
pares it with the MediaType values, if any, in the InputAttributes entries for all
media that it considers. See section 4.11.4, “Media Selection.” The value of
MediaType is an arbitrary string that can identify such things as preprinted
forms or other media attributes not covered by size, color, or weight.

InputAttributes dictionary Contains an entry for each source of input media currently available for use by
this device—for example, each input paper tray in a printer. The sources are arbi-
trarily numbered by integers. Those integers are the keys for entries in the
InputAttributes dictionary.

The value of each entry is a dictionary describing the media currently available
from that physical source. Keys used in these dictionaries include PageSize,
MediaColor, MediaWeight, and MediaType, which have the same meanings as

PLRM 2nd Edition January 26, 1994 Graphics

234 Chapter 4: Graphics

the corresponding keys described above. Two other entries, Priority and
MatchAll, control details of the matching algorithm. See section 4.11.4, “Media
Selection,” for a complete description of how this matching is done.

Changes to the contents of the InputAttributes dictionary are cumulative. That
is, the InputAttributes entries in a setpagedevice request are merged with the
existing InputAttributes entries for the current device. However, the sub-diction-
aries that are the values of InputAttributes entries are not merged.

ManualFeed boolean If true, input media are drawn from the manual feed position. If false, automatic
feeding takes place. Setting ManualFeed to true is an assertion that the person
operating the device will manually feed media that conform to the specified
attributes—PageSize, MediaColor, MediaWeight, and MediaType. Thus, those
attributes are not used to select from available media sources as is done normally.
Their values may be presented to the user as an aid in selecting the correct
media. In products that offer more than one manual feeding mechanism, the
attributes may select among them.

Table 4.11 Processing and output entries

Key Type Semantics

ImagingBBox array or null Optional page bounding box. If not null, the value is an array of four numbers in
the default user coordinate system stating lower-left x, lower-left y, upper-right x,
and upper-right y of the page image bounding box. This defines a rectangle,
which should lie within the boundaries of the page specified by PageSize. When
a PostScript language program specifies an ImagingBBox, it asserts that it will
not paint any marks outside this rectangle. Any marks that do fall outside the
rectangle may or may not be painted.

Although the information provided by ImagingBBox is optional, specifying it
can improve performance by freeing raster memory for other purposes. If an
application knows that unpainted borders appear on all pages, it should specify
an appropriate value for ImagingBBox. The effect of specifying ImagingBBox is
not necessarily the same as executing clip. ImagingBBox should not be used for
purposefully clipping page content.

An ImagingBBox value of null requests the largest bounding box that is possible
for the given PageSize. This may not enclose the entire page; many devices are
incapable of placing marks close to the edges of the media. If a program specifies
PageSize, but chooses not to provide ImagingBBox information, it should
explicitly set ImagingBBox to null to prevent an inappropriate value from being
inherited from the previous device state.

OutputType string or null OutputType is analogous to the input MediaType, but for output. If not null, the
value is an arbitrary string that requests special output treatment, such as plac-
ing the finished media into a selected output tray. This is used in conjunction
with OutputAttributes to make such a selection.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 235

OutputAttributes dictionary Contains an entry for each media destination currently available for use by this
device—for example, each output paper tray in a printer. The destinations are
arbitrarily numbered by integers. Those integers are the keys for entries in the
OutputAttributes dictionary.

OutputAttributes has the same structure and analogous function as the
InputAttributes dictionary. The matching is somewhat simpler because the only
key considered in the match is OutputType. See section 4.11.4, “Media Selec-
tion.”

NumCopies integer or null If NumCopies is not null, it specifies the number of copies to produce. This value
applies to each page individually or to the entire document, depending on the
setting of Collate. A null value indicates that showpage and copypage should
consult the value of #copies in the current dictionary stack each time they are
executed (this is compatible with the convention used by Level 1 implementa-
tions). See the showpage operator description.

Collate boolean Determines how the output is to be organized when multiple copies are
requested (by NumCopies or #copies) for a multiple-page document. Output
consists of “sets” of pages that are delivered together. If Collate is true, a set con-
sists of one copy of all pages of the document. If Collate is false, a set consists of
all copies of one page of the document. This concept of a “set” is also used by
the Jog, CutMedia, and AdvanceMedia features.

How collation is performed is device-dependent. If the device has a physical
sorter and the number of copies requested is no greater than the number of bins
in the sorter, the sorter handles the collation. Otherwise, the interpreter may
need to reorder the output in order to deliver all pages of a set together. In the
latter case, a Collate value of true implies that the interpreter must store the
results of executing the entire page description in order to deliver multiple cop-
ies correctly ordered. This use of Collate is supported by relatively few products
and is subject to resource limits in products that do support it.

If Collate is true, a set can span multiple invocations of setpagedevice within a
single job, so long as NumCopies doesn’t change and the device is physically
capable of delivering the output sorted that way. If that is not possible, multiple
invocations of setpagedevice within a job will cause multiple documents to be
produced.

Duplex boolean If true, the pages are printed duplex—that is, each pair of consecutive pages is
printed on opposite sides of a single sheet of paper. If false, the pages are printed
simplex—one side only.

When a duplex device is activated, it always prints the first page on a new sheet
of paper. When the device is deactivated, it automatically delivers the last sheet
if it has been printed on only one side. Device activation and deactivation are
explained in section 4.11.6, “BeginPage and EndPage.”

Tumble boolean When Duplex is true, Tumble specifies how the page images on opposite sides of
a sheet are oriented with respect to each other. If Tumble is false, the default user
spaces of the two pages are oriented such that the highest values of y in the two
spaces lie along the same edge of the media. If Tumble is true, the default user
spaces are oriented such that the highest values of y lie along opposite edges of

PLRM 2nd Edition January 26, 1994 Graphics

236 Chapter 4: Graphics

the media. Informally, a Tumble value of false produces output suitable for bind-
ing on the left or right; true produces output suitable for binding at the top or
bottom.

Note that Tumble is defined in terms of default user space—the user space estab-
lished by setpagedevice. The orientation of default user space with respect to
the media is determined by the PageSize and Orientation entries, possibly
altered by the Install procedure. Consistent results are obtained across all prod-
ucts that support duplexing, regardless of how the media move through the
mechanism. However, if the page description alters user space by executing oper-
ators such as rotate, the visual orientation of the material printed on the page
may differ from the orientation of default user space.

OutputFaceUp boolean If true, pages are stacked so the back side of page n is placed against the front side
of page n − 1. If false, pages are stacked so the front side of page n is placed
against the back side of page n − 1. These are the effects usually achieved by
“face up” and “face down” stackers, respectively. Most products support only
one stacking method; the value of OutputFaceUp indicates which method that
is. Relatively few products allow both values of OutputFaceUp to be specified.

Jog integer Requests that output pages be “jogged”—physically shifted in the output tray—
at specific times indicated by an integer code:

0 Don’t jog pages at all.

1 Jog at device deactivation. The notion of “device deactivation” is explained
in section 4.11.6, “BeginPage and EndPage.”

2 Jog at the end of the job. The notion of a “job” is explained in section
3.7.7, “Job Execution Environment.” Jogging between jobs is controlled by
the value of Jog for the page device that is current between jobs. Thus, this
feature can be turned on or off only by executing setpagedevice as part of
an unencapsulated job.

3 Jog after each set. The notion of a “set” is explained in the description of
the Collate entry.

Separations boolean If true, the device should produce each page by printing multiple color separa-
tions—one for each device colorant (primary or spot color). If false, the device
should produce each page as a single composite page with all the colors, if any,
combined on the same page. Color separations are explained in section 4.8,
“Color Spaces.”

The availability of this feature is product dependent. Most products cannot pro-
duce separations.

HWResolution array Array of two numbers, [x y], that indicates resolution of the physical device in
pixels per inch along the x and y dimensions of device space. Most products sup-
port only a single resolution. The few products that permit the resolution to be
varied usually support only certain specific resolutions, not arbitrary ones.

Margins array Array of two numbers, [x y], that relocates the page image on the media by x
device units in the direction of the device x coordinate and by y device units in
the direction of the device y coordinate. This positioning is usually accom-
plished by device-dependent means that are independent of the graphics state

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 237

(the CTM in particular). The range and precision of the parameter values may be
restricted by the physical implementation. The purpose of Margins is to com-
pensate for mechanical misadjustments in the device, not to perform purposeful
positioning of output in a page description.

NegativePrint boolean If true, the device should produce a negative image of the page. This is accom-
plished by device-dependent means that are independent of the graphics state
(the transfer functions in particular). NegativePrint inverts the entire page, per-
haps including portions that lie outside the imageable area or that are generated
by means independent of the PostScript interpreter. This feature is supported
only by certain products, such as typesetters, that produce output intended for
further photographic processing.

MirrorPrint boolean If true, the device should produce a page image that is reflected along one of the
axes of device space. This is usually accomplished by device-dependent means
that are independent of the graphics state (the CTM in particular). This feature is
supported only by certain products, such as typesetters, that produce output
intended for further photographic processing. For example, when output is pro-
duced on transparent film, MirrorPrint controls whether the page image should
be viewed with the film emulsion face up or face down.

Table 4.12 Roll media entries

Key Type Semantics

Orientation integer For roll media, pages have no inherent orientation, so PageSize may not unam-
biguously select the orientation of the page image on the medium. The
Orientation entry selects one of four orientations:

0 Normal default orientation for the specified PageSize.

1 Rotate the image on the medium 90 degrees counterclockwise with respect
to the default orientation.

2 Rotate the image 180 degrees counterclockwise.

3 Rotate the image 270 degrees counterclockwise.

CutMedia integer Indicates when to cut the medium. Valid codes are:

0 Don’t cut the medium.

1 Cut the medium at device deactivation.

2 Cut the medium at the end of the job.

3 Cut the medium after each set.

4 Cut the medium after each showpage or copypage.

See Jog for an explanation of the terminology.

AdvanceMedia integer Indicates when to advance the medium by an extra amount—that is, in addition
to the amount occupied by the page images themselves. Valid codes are:

0 Don’t advance the medium.

PLRM 2nd Edition January 26, 1994 Graphics

238 Chapter 4: Graphics

1 Advance the medium at device deactivation.

2 Advance the medium at the end of the job.

3 Advance the medium after each set.

4 Advance the medium after each showpage or copypage.

See Jog for an explanation of the terminology.

AdvanceDistance integer Indicates the distance, in default user space units, to advance the medium when
it is advanced as controlled by AdvanceMedia.

Table 4.13 Policy and special action entries

Key Type Semantics

Policies dictionary Contains feature-policy pairs that specify what setpagedevice should do when a
feature request cannot be satisfied. It contains an overall policy and can option-
ally contain individual policies for specific named features. A policy is an integer
that specifies a choice of one of several ways to handle an unsatisfied request. See
section 4.11.5, “Policies,” for an explanation of how this dictionary is used.

Changes to the contents of Policies are cumulative; setpagedevice adds new
entries to the ones already present.

Install procedure Executed to install values in the graphics state during each invocation of set-
pagedevice. setpagedevice calls this procedure after setting up the device and
installing it as the current device in the graphics state, but before executing the
implicit erasepage and initgraphics.

This procedure can execute graphics state operators to install device-dependent
parameters, such as halftone, color rendering, flatness, and so on. It can also
alter the CTM. The resulting CTM becomes the default device matrix used by
defaultmatrix, initmatrix, and initgraphics. The procedure cannot usefully alter
most of the device-independent parameters, such as current path or color,
because initgraphics resets those parameters to standard values. The Install pro-
cedure should not do anything besides alter parameters in the graphics state.

BeginPage procedure Executed at the beginning of each page. This occurs at the end of setpagedevice,
at the end of each showpage or copypage, and during any operation that acti-
vates a page device, such as a grestore that reinstates a page device different
from the existing one. When BeginPage is called, the graphics state has been ini-
tialized and the current page has been erased, if appropriate. BeginPage is sup-
plied an integer on the operand stack indicating how many times showpage has
been invoked since the current device was activated. See section 4.11.6,
“BeginPage and EndPage.”

EndPage procedure Executed at the end of each page. This occurs at the beginning of each
showpage or copypage, and also when the current page device is about to be
deactivated (replaced by a different page device). EndPage is supplied two inte-
gers on the operand stack: a count of previous showpage executions for this
device and a code indicating the condition under which this call is being made.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 239

EndPage must return a boolean value specifying whether to transmit the page
image to the physical output device. See section 4.11.6, “BeginPage and
EndPage.”

4.11.4 Media Selection

A page description specifies its processing requirements by including
appropriate entries in the dictionary it passes to setpagedevice. Certain
of these entries—PageSize, MediaColor, MediaWeight, and Media-
Type—control the selection of input media. Another entry—
OutputType—controls the disposition of the media after they have
been printed. This section describes how setpagedevice uses this infor-
mation to determine the physical media source and destination to be
used in the device.

A given product supports one or more physical sources and one or more
physical destinations for media. These sources and destinations are
often called “trays” or “positions.” They are arbitrarily numbered by
small integers. A particular integer usually refers to a specific physical
location in the hardware, though it might refer to some logical capabil-
ity such as a pair of trays that contain the same media and are used
alternately. The correspondence between numbers and positions is
product dependent; it is not described in this manual but in product
documentation.

The device includes two special dictionaries, InputAttributes and
OutputAttributes, that describe the attributes of each of the sources and
destinations, respectively. This information is discovered automatically
by the implementation or is configured manually by a human operator
or system administrator. setpagedevice matches the media
requirements specified by the page description against the attributes
described in InputAttributes and OutputAttributes to determine which
media source and destination to select.

The keys in the InputAttributes dictionary are integers representing
media sources. The value of each entry is a dictionary containing key-
value pairs describing the attributes of the media currently available
from that source. The keys used in this dictionary are PageSize, Media-
Color, MediaWeight, and MediaType. These keys have the same mean-
ings as the corresponding ones described in Table 4.10 on page 232, but
they specify the actual attributes of the media instead of the
requirements of the page description.

PLRM 2nd Edition January 26, 1994 Graphics

240 Chapter 4: Graphics

OutputAttributes is treated similarly, but its entries contain only the
OutputType attribute. A page description can request a specific
OutputType, which setpagedevice matches against the OutputType
attributes of entries in OutputAttributes to determine which destina-
tion to select. OutputAttributes and OutputType are supported only in
those products that provide choices for output handling.

A simple example illustrates the most common use of this approach for
input media selection. (Output selection works analogously.) Suppose
the current value of the InputAttributes dictionary for the device is:

<<
 0 << /PageSize [612 1008] >>
 1 << /PageSize [612 792] >>
>>

In other words, the product has two paper trays. Tray 0 contains legal-
size (8.5 × 14 inch) paper; tray 1 contains letter-size (8.5 × 11 inch)
paper. Now suppose a page description executes:

<< /PageSize [612 792] >> setpagedevice

The PageSize request to setpagedevice matches the PageSize attribute
for media source 1, and there are no non-matching requests. Therefore,
setpagedevice selects tray 1.

Matching Requests With Attributes

Each time setpagedevice is executed, it uses the following algorithm to
match media requests with media attributes in order to select a source
and destination.

1. Merge the entries in the setpagedevice operand dictionary with the
ones in the existing state of the device, as described in section
4.11.2, “Page Device Dictionary.” The resulting set of key-value pairs
is considered together, without regard to which ones are specified in
the setpagedevice operand dictionary and which ones are inherited
from the existing state of the device.

2. Collect together those of the PageSize, MediaColor, MediaWeight,
and MediaType entries whose values are not null and treat them as
an “input media request.” Ignore the entries whose values are null.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 241

3. Enumerate the entries in the InputAttributes dictionary. Each entry’s
key is an integer identifying a media source; its value is a dictionary
containing the attributes of the media. For each entry in the input
media request (step 2), compare its value with the corresponding
media attribute. If all the values are equal, we say that the media
request matches the media source. (PageSize values are compared
with a tolerance of ±5 units in each dimension.)

4. If the result of step 3 is that the media request matches exactly one
media source, select that source. If there is more than one match,
select the source with the highest priority (see Priority, below). If
there are no matches at all, consult Policies to determine what to do
(see section 4.11.5, “Policies”).

5. Similarly, perform steps 2 through 4 to select a media destination,
using the OutputType entry as an “output media request” and the
OutputAttributes dictionary as a description of the attributes of the
available destinations.

For example, consider a product with two paper trays. Tray 0 contains
white letter-size (8.5 × 11 inches) office paper and tray 1 contains a
much less expensive letter-size paper (also 8.5 × 11 inches). The
InputAttributes dictionary in the device state might be as follows:

<<
 0 << /PageSize [612 792] /MediaColor (white) /MediaType (office) >>
 1 << /PageSize [612 792] >>
 /Priority [1 0]
>>

(How the InputAttributes dictionary got to be this way is discussed
later, as is the meaning of the Priority entry.)

Note In each InputAttributes entry, PageSize is required, but other attributes are
optional. A non-null media request will not match an InputAttributes entry in
which the corresponding attribute is absent. In the example above, only
PageSize is given for source 1 and MediaWeight is not given for either source.

If a page description now executes

<< /PageSize [612 792] /MediaColor (white) >> setpagedevice

then setpagedevice will select input tray 0. This is because the PageSize
and MediaColor entries in the setpagedevice request match only the
attributes given in entry 0 of the InputAttributes dictionary. The values

PLRM 2nd Edition January 26, 1994 Graphics

242 Chapter 4: Graphics

of MediaType and MediaWeight in the request are null (assuming that
non-null values haven’t been inherited from the existing state of the
device). A null value in a request means “don’t care.”

Given the same InputAttributes, execution of

<< /PageSize [612 792] /MediaColor (red) >> setpagedevice

will not match either tray. The requested MediaColor does not match
the MediaColor attribute for tray 0. The MediaColor for tray 1 is
unknown and therefore does not satisfy a request for a specific color.

Now consider what happens during execution of

<< /PageSize [612 792] >> setpagedevice

This request matches both tray 0 and tray 1 (again, assuming that non-
null values for MediaColor, MediaType, or MediaWeight haven’t been
inherited from the existing state of the device). In this situation, if a
Priority entry exists in the InputAttributes dictionary, setpagedevice
consults it to determine which tray to select. If Priority is not present,
setpagedevice chooses one of the matching trays arbitrarily.

The value of Priority is an array of integers. The first integer in the array
represents the highest-priority media source; subsequent integers repre-
sent media sources in decreasing priority. When a setpagedevice
request matches two or more media sources, setpagedevice chooses the
one whose number appears earliest in the Priority array. If none of the
matching sources appears in the array, setpagedevice chooses among
them arbitrarily.

The effect of the InputAttributes definition given in the example above
is that a document requesting a MediaColor of white or a MediaType of
office (or both) will be printed on paper from tray 0, but a document
not requesting either of those attributes will be printed on the less
expensive paper from tray 1.

Certain media are special-purpose, such as company letterhead or pre-
printed forms. Such media should be selected only if a page description
specifically requests all the attributes of the media. For example, com-
pany letterhead should be selected only if a program requests company
letterhead. If a program simply requests letter-size paper, it’s inappropri-
ate for setpagedevice to satisfy this request by selecting company letter-
head, even if company letterhead happens to be the only available
media of the correct size.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 243

Suppose the available media consist of legal-size paper in tray 0 and
company letterhead (letter-size) in tray 1. The InputAttributes diction-
ary for the device might be something like this:

<<
 0 << /PageSize [612 1008] >>
 1 << /PageSize [612 792] /MediaType (letterhead) /MatchAll true >>
>>

The special MatchAll attribute in entry 1 indicates that media source 1
can satisfy only requests for all the source’s attributes. That is,

<< /PageSize [612 792] /MediaType (letterhead) >> setpagedevice

will select media source 1, but

<< /PageSize [612 792] >> setpagedevice

will not select either media source. (Information in the Policies diction-
ary determines what to do when there is no match with any available
media; see section 4.11.5, “Policies.”)

The precise semantics of MatchAll are as follows. If MatchAll is present
in an InputAttributes entry and its value is true, a setpagedevice request
will match that entry only if it specifies matching (non-null) values for
all the attributes present in the entry (except the MatchAll attribute
itself). If MatchAll is false or absent, a setpagedevice request will match
the entry if it specifies any subset of the entry’s attributes and leaves the
others null (indicating “don’t care”).

Note All implementations of setpagedevice support media selection by means of
the PageSize, MediaColor, MediaWeight, and MediaType input attributes,
whether or not the product can sense those media attributes automatically. In
some products, other attributes also influence media selection. In such
products, those attributes can appear in the InputAttributes dictionary as
well.

Managing InputAttributes and OutputAttributes

The InputAttributes and OutputAttributes dictionaries are part of the
state of the device and can be altered by executing setpagedevice. How-
ever, a page description should never do this. These dictionaries are
intended to describe the attributes of the available media sources and
destinations. They should be changed only by a human operator or sys-
tem management software in control of the physical device.

PLRM 2nd Edition January 26, 1994 Graphics

244 Chapter 4: Graphics

Some products can sense the attributes of the available media sources
and destinations automatically. For example, many printers can sense
the size of paper installed in an input paper tray. Some printers can
sense other attributes as well, usually by reading coded tags attached to
the trays.

When an implementation can sense media attributes, it automatically
updates the contents of the InputAttributes and OutputAttributes dic-
tionaries to reflect the physical state of the hardware. How and when
this is done is product dependent, but the following conventions are
typical.

• At the beginning of a job (see section 3.7.7, “Job Execution Environ-
ment”), the job server senses the attributes of all available media
sources and destinations. It then executes setpagedevice to update
the InputAttributes and OutputAttributes dictionaries.

• Additionally, the job server selects a default media source and desti-
nation. These defaults are used if a page description fails to specify
its media requirements. (Non-null attributes of the default media
will be inherited during a setpagedevice request that does not
explicitly override those attributes.) How defaults are selected is
product-dependent; a common method is to use the first element of
the Priority array if one is present.

• Execution of setpagedevice at other times may also result in
InputAttributes and OutputAttributes being updated to reflect the
state of the hardware. In particular, this occurs if a Policies recovery
policy specifies interaction with a human operator and the operator
installs different media (see section 4.11.5, “Policies”). It can occur at
other times as well.

Some products cannot sense media attributes automatically, or they can
sense PageSize but not other attributes. For such products, explicit exe-
cution of setpagedevice is required to update InputAttributes and
OutputAttributes whenever media are changed. This is usually done by
a system management program submitted by a human operator and
executed as an unencapsulated job. Some products provide a “front
panel” user interface to accomplish this.

Changes to the contents of the InputAttributes and OutputAttributes
dictionaries are cumulative. setpagedevice combines the key-value
pairs supplied to it with those in the existing state of the device, replac-
ing or adding entries as appropriate. However, this cumulative behavior
does not extend to the contents of the sub-dictionaries that are the val-

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 245

ues of individual entries in InputAttributes and OutputAttributes. For
example, suppose the contents of the device’s InputAttributes diction-
ary are as follows:

<<
 0 << /PageSize [612 1008] >>
 1 << /PageSize [612 792] /MediaType (letterhead) /MatchAll true >>
>>

If a program executes

<< /InputAttributes <<
 1 << /PageSize [612 792] >>
 /Priority [1 0]
>> >> setpagedevice

then the device’s InputAttributes dictionary becomes

<<
 0 << /PageSize [612 1008] >>
 1 << /PageSize [612 792] >>
 /Priority [1 0]
>>

In other words, entry 0 is left undisturbed, entry 1 is replaced by the
one given to setpagedevice, and the new Priority entry is inserted. Note
that the value of entry 1 is not merged but is simply replaced.

Note If an entry in InputAttributes or OutputAttributes has a null value instead of
a dictionary, it indicates an input or output position that is unavailable for
use—for example, no paper tray is installed. If a single execution of
setpagedevice includes changes to InputAttributes or OutputAttributes as
well as requests for other features, the merging of these dictionaries occurs
before processing of other features.

4.11.5 Policies

When a page description makes a request that the device cannot satisfy,
setpagedevice consults the Policies dictionary to determine what to do.
Inability to satisfy a request arises in two situations.

• The device does not support the requested feature at all—for exam-
ple, duplex printing is requested but the device has no duplex capa-
bility. The key Duplex is not defined in the device dictionary; the
implementation has no idea what Duplex means. If a request
includes an entry with the key Duplex, setpagedevice treats it as a
request for an unknown feature—even if the requested value is false.

PLRM 2nd Edition January 26, 1994 Graphics

246 Chapter 4: Graphics

• The device supports the requested feature but cannot achieve the
requested value at the moment—for example, an A4-size page is
requested when the A4 paper tray is not currently installed.

Policies is a dictionary that is part of the state of the device. For most
entries in this dictionary, the key is the name of a feature; the value is
an integer code specifying a policy for handling unsatisfied requests for
that feature. For most features, there are three policy choices: generate
an error (configurationerror), ignore the request, or interact with a
human operator. For PageSize requests, there are additional policy
choices. Table 4.14 describes the entries that can appear in the Policies
dictionary.

Table 4.14 Entries in the Policies dictionary

Key Type Semantics

PolicyNotFound integer Specifies the policy to use when a requested feature (other than PageSize) can-
not be satisfied and the feature’s name is not present as a key in the Policies dic-
tionary. The policy is an integer code with the following meanings.

0 Generate a configurationerror—that is, do not attempt recovery but simply
abandon execution of setpagedevice, leaving the current device undis-
turbed. configurationerror is a standard PostScript language error, much
the same as undefined or typecheck. Before generating the error,
setpagedevice inserts an errorinfo entry into the $error dictionary. Error
handling in general and errorinfo in particular are described in section
3.10, “Errors.”

1 Ignore the feature request. This is the usual default policy in most prod-
ucts.

2 Interact with a human operator or print manager to determine what to do.
The semantics of this policy vary among different products and environ-
ments. Some products issue a message (on a front panel, for instance) indi-
cating an operator action that is required, then wait for confirmation.
Other products have no ability to interact with an operator and generate a
configurationerror in this case. The details are product dependent.

any feature name integer Specifies the policy to use when a specific named feature (other than PageSize)
cannot be satisfied. The policy is an integer code whose meaning is as specified
above for PolicyNotFound.

Any key that can appear in a dictionary supplied to setpagedevice may also be
used as a key in the Policies dictionary. This is not limited to keys recognized by
the implementation but may include any key. That is, setpagedevice consults
Policies the same way for an unknown feature as it does for a known feature
whose requested value cannot be achieved.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 247

PageSize integer Specifies the recovery policy to use when the PageSize cannot be matched
(within a tolerance of ±5 units) with any available media. The policy is an inte-
ger code with the following meanings.

0 Generate a configurationerror, as described above for PolicyNotFound. This
is the usual default policy in most products.

1 Ignore the requested PageSize.

2 Interact with a human operator or print manager, as described above for
PolicyNotFound.

3 Select the nearest available medium and adjust the page to fit. This adjust-
ment is described below.

4 Select the next larger available medium and adjust the page to fit.

5 Select the nearest available medium but do not adjust the page.

6 Select the next larger available medium but do not adjust the page.

PolicyReport procedure Called upon successful completion of setpagedevice if it needed to consult
Policies in order to handle one or more unsatisfied feature requests. This proce-
dure can report the actions that were taken or perform alternative actions.
PolicyReport is described below. The default value of PolicyReport is {pop}.

The Policies dictionary is part of the state of the device and can be
altered by executing setpagedevice. Ordinarily, a page description com-
posed by an application program should not do this; policies should be
changed only by a human operator or by system management software
in control of the physical device. However, if a user requests special pol-
icies when submitting a print job, it’s appropriate for print manager
software to insert a setpagedevice command to change Policies at the
beginning of the page description. For example, the user might con-
sider it essential that a particular job use certain features; if the features
aren’t available, the job should be rejected instead of being executed
with the feature requests ignored.

Changes to the contents of the Policies dictionary are cumulative.
setpagedevice combines the key-value pairs supplied to it with those in
the existing state of the device, replacing or adding entries as appropri-
ate. If a single invocation of setpagedevice includes changes to Policies
as well as requests for other features, the merging of Policies entries
occurs before the processing of other features. Thus, the revised Policies
dictionary is consulted to determine policy if one of the other feature
requests can’t be satisfied. For example,

<< /Duplex true
 /Policies << /Duplex 0 >>
>> setpagedevice

PLRM 2nd Edition January 26, 1994 Graphics

248 Chapter 4: Graphics

requests duplex printing and generates a configurationerror if the
device doesn’t support duplex printing.

Policies and Media Selection

If a media request fails to match any of the available media sources or
destinations described in InputAttributes or OutputAttributes,
setpagedevice consults Policies in an attempt to make an alternative
media selection. For each relevant media request (PageSize, Media-
Color, MediaWeight, and MediaType for a source; OutputType for a
destination), if the value of the corresponding entry in Policies is 1
(ignore), setpagedevice replaces the media request with null. It then
repeats the matching algorithm (steps 2 through 4 on page 240).

Note Ignoring media requests cannot result in selection of a media source or
destination that has a MatchAll attribute of true.

If this second attempt at media selection succeeds, the resulting device
dictionary contains null values for all the media requests other than
PageSize that were ignored. If PageSize was ignored, the resulting
device dictionary contains the PageSize of the media source that was
actually selected.

If the second attempt at media selection fails, the next action depends
on whether any of the non-matching requests have a corresponding
Policies entry of 2 (interact with a human operator or print manager). If
so, setpagedevice performs such interaction, which may cause new
media to be installed and InputAttributes or OutputAttributes to be
updated. It then restarts the media selection process from the begin-
ning. If no Policies entry specifies user interaction or if user interaction
is not possible, setpagedevice terminates unsuccessfully and generates
a configurationerror.

For PageSize, there are additional policy choices that permit compro-
mises to be made in matching the requested page size to the set of avail-
able media. These include all four combinations of the following pair of
choices:

• Select an alternative medium that is either nearest in size or the next
larger size to the requested PageSize.

• Either adjust the page (by scaling and centering) to fit the alternative
medium or perform no adjustment.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 249

The nearest size is the one closest in area to the requested size. The next
larger size is the one that is at least as large as the requested size in both
width and height and is smallest in area. If the policy is to select the
next larger size but no larger size is available, the nearest size is used.

Once an alternative medium has been selected, the adjustment option
determines how the page image is to be placed on the medium—in
other words, how the CTM defining the device’s default user space is to
be computed.

To adjust the page means to scale the page image (if necessary) to fit the
medium, then center the image on the medium. In more detail, adjust-
ment consists of the following two steps.

1. If the selected medium is smaller than the requested PageSize in
either dimension, scale the page image to fit the medium in the most
restrictive dimension. Scaling is the same in both dimensions so as
to preserve the page’s aspect ratio (height to width). No scaling is
performed if the selected medium is at least as large as the requested
PageSize in both dimensions.

2. Center the page image on the medium along both dimensions.

The effect of this adjustment is to set up a “virtual page” conforming to
the requested PageSize (scaled down if necessary), centered on the
physical medium. The origin of user space is the lower-left corner of the
virtual page, not of the physical medium. The PageSize in the resulting
device dictionary is the PageSize that was requested, not that of the
physical medium.

In the case where the page is not adjusted, the default user space is not
scaled and is aligned with its origin at the lower-left corner of the
medium. The effect is precisely as if the medium’s PageSize had been
requested in the first place. If the actual PageSize is smaller than the
requested one along either dimension, the page image will be clipped.

The limited set of built-in policies for handing unsatisfied requests can
be augmented by judicious use of the PolicyReport procedure in the
Policies dictionary (described below). Additional adjustments to the
CTM can be implemented as part of the Install procedure in the device
dictionary.

PLRM 2nd Edition January 26, 1994 Graphics

250 Chapter 4: Graphics

PolicyReport

The Policies dictionary contains an entry whose key is PolicyReport and
whose value is a procedure. Upon successful completion, setpagedevice
calls the PolicyReport procedure if it needed to consult Policies during
its execution to determine how to handle one or more unsatisfied
requests. setpagedevice does not call PolicyReport if it was able to sat-
isfy all requests without consulting Policies or if it terminated unsuc-
cessfully with a configurationerror.

Before calling PolicyReport, setpagedevice constructs a dictionary and
pushes it on the operand stack. The dictionary contains one entry for
each requested feature that was initially unsatisfied. The key is the
name of the feature that was requested; the value is the integer policy
code that was obtained from Policies. The PolicyReport procedure is
expected to consume this dictionary from the stack.

For example, suppose a setpagedevice request includes:

• A request for Duplex that cannot be met, and the Policies entry for
Duplex is 1 (ignore the request).

• A PageSize request that doesn’t match any available media, and the
Policies entry for PageSize is 5 (select the nearest available medium
and don’t adjust).

Then upon successful completion, setpagedevice calls the PolicyReport
procedure with the operand stack containing:

<< /Duplex 1 /PageSize 5 >>

At the time setpagedevice calls PolicyReport, it has completed setting
up the new page device and installing it as the current device in the
graphics state. It has also called the device’s BeginPage procedure (see
section 4.11.6, “BeginPage and EndPage”). Thus, executing current-
pagedevice within the PolicyReport procedure will return the newly
installed device’s dictionary. It is permissible for the PolicyReport proce-
dure to execute setpagedevice recursively.

There are two main uses for a PolicyReport procedure.

• It can transmit a notification to the human operator or print man-
ager, warning that one or more requests were unsatisfied and that
substitute actions have been taken.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 251

• It can inspect the resulting device dictionary and perhaps make addi-
tional alterations. This provides additional flexibility when the stan-
dard set of policy choices is found to be inadequate.

4.11.6 BeginPage and EndPage

The BeginPage and EndPage entries in the device dictionary are Post-
Script language procedures that are called each time showpage and
copypage are executed and also at certain other times. The interpreter
calls BeginPage before beginning to execute the description of each
page and EndPage after execution of each page has finished. With suit-
able definitions, these procedures can

• Cause multiple virtual pages within a document to be printed on a
single physical page (“2-up” or “n-up” printing).

• Shift the positions of even- and odd-page images differently for bind-
ing.

• Add marks to each page that either underlay or overprint the mate-
rial provided by the page description.

Note Use of BeginPage and EndPage to achieve effects spanning multiple pages
sacrifices whatever page independence the document may have. In general, a
page description should not include definitions of BeginPage or EndPage in
its invocations of setpagedevice. Instead, a print manager should prepend
such commands to the page description when printing is requested.

The interpreter calls the current device’s BeginPage procedure at the
beginning of executing each page. Precisely,

• setpagedevice calls BeginPage as its last action before returning.
(However, if it calls PolicyReport, it does so after calling BeginPage.)
This indicates the beginning of the first page to be rendered on the
device.

• showpage and copypage call BeginPage as their last action before
returning. This indicates the beginning of the next page, following
the one that showpage or copypage has just ended.

• Operators that reactivate an existing page device call BeginPage as
their last action before returning. Device activation and deactivation
are explained later.

PLRM 2nd Edition January 26, 1994 Graphics

252 Chapter 4: Graphics

When BeginPage is called, the graphics state has been initialized and
the current page erased, if appropriate, in preparation for beginning
execution of the PostScript language commands describing a page. The
operand stack contains an integer stating the number of executions of
showpage (but not copypage) that have occurred since the device was
activated. That is, the operand is 0 at the first call to BeginPage, 1 at the
call that occurs during the first showpage, and so on. The BeginPage
procedure is expected to consume this operand. The procedure is per-
mitted to alter the graphics state and to paint marks on the current
page.

The interpreter calls the current device’s EndPage procedure at the end
of executing each page. Precisely,

• showpage and copypage call EndPage as their first action. This indi-
cates the end of the preceding page.

• Operators that deactivate the device call EndPage as their first
action. Device activation and deactivation are explained later.

When EndPage is called, the PostScript language commands describing
the preceding page have been completely executed, but the contents of
raster memory have not yet been transferred to the medium and the
graphics state is undisturbed. The operand stack contains two integers:

• The number of executions of showpage (but not copypage) that
have occurred since the device was activated, not including this one.
That is, the operand is 0 at the call to EndPage during the first
showpage, 1 during the second showpage, and so on.

• A code indicating the circumstance under which EndPage is being
called: 0 during showpage, 1 during copypage, 2 during device deac-
tivation (see below).

The EndPage procedure is expected to consume these operands. The
procedure is permitted to alter the graphics state and to paint marks on
the current page; such marks are added to the page just completed.
EndPage must return a boolean result specifying the disposition of the
current page:

• The value true means transfer the contents of raster memory to the
medium. Then, if showpage is being executed, execute the equiva-
lent of initgraphics and erasepage in preparation for the next page.
(The latter actions are not performed during copypage.)

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 253

• The value false means do not transfer the contents of raster memory
to the medium or erase the current page. (If showpage is being exe-
cuted, initgraphics is still performed.)

The normal definition of EndPage returns true during showpage or
copypage (code 0 or 1) but false during device deactivation (code 2).
That is, normally every showpage and copypage causes a physical page
to be produced, but an incomplete last page (not ended by showpage or
copypage) produces no output. Other behavior can be obtained by
defining EndPage differently.

The state of any device, including a page device, is represented as an
internal object that is an element of the graphics state. Each execution
of a device setup operator—setpagedevice, nulldevice, setcachedevice,
and perhaps others in a Display PostScript system—creates a new
instance of an internal device object (hereafter, simply “device”). Multi-
ple devices can refer to the same physical resource, such as a print
engine, perhaps with different values of device parameters such as
PageSize or feature settings.

Only one device is active at any given time, namely the current device
in the graphics state. However, there can be multiple inactive devices
that belong to copies of the graphics state that have been saved by save,
gsave, or currentgstate. An inactive device can be reactivated when a
saved graphics state is reinstated by execution of restore, grestore,
grestoreall or setgstate. When a device is reactivated, it brings its
device parameters with it.

When setpagedevice is executed or when restore, grestore, grestoreall
or setgstate causes a page device to be deactivated and a different page
device to be activated, the interpreter

1. Calls the EndPage procedure of the device that is being deactivated,
passing it a reason code of 2. At the time this call is made, the cur-
rent device in the graphics state is still the old device. This enables
any necessary cleanup actions to be performed, such as printing an
incomplete “n-up” page.

2. Performs any actions that the Jog, AdvanceMedia, and CutMedia
entries indicate are to be done upon device deactivation. Also, if
Duplex is true and the last sheet has been printed on only one side,
the sheet is delivered at this time.

PLRM 2nd Edition January 26, 1994 Graphics

254 Chapter 4: Graphics

3. Calls the BeginPage procedure of the device that is being activated.
At the time this call is made, the current device in the graphics state
is the new one. Its count of previous showpage executions is reset to
zero.

The above actions occur only when switching from a page device to a dif-
ferent page device (however, setpagedevice always calls BeginPage).
They do not occur when switching to or from other kinds of devices,
such as the ones set up by the nulldevice and setcachedevice operators.
Usually, those devices are installed temporarily. For example,
setcachedevice and the operations for rendering a character into the
font cache are bracketed by gsave and grestore, thereby reinstating the
page device that was previously in effect. The page device’s BeginPage
and EndPage procedures are not called in such cases and the current
page is not erased or otherwise disturbed.

A few examples illustrate this distinction. Example 4.24 switches
between two page devices. All of the activations and deactivations
cause the devices’ BeginPage and EndPage procedures to be called, as
described above.

Example 4.24

dict1 setpagedevice % BeginPage for device 1
gsave
dict2 setpagedevice % EndPage for device 1, BeginPage for device 2
grestore % EndPage for device 2, BeginPage for device 1

In Example 4.25, on the other hand, temporary activation of the null
device does not cause the page device’s EndPage procedure to be called,
nor does reactivation of the page device cause its BeginPage procedure
to be called. In fact, the state of the page device is not disturbed in any
way, since the null device is not a page device.

Example 4.25

dict3 setpagedevice % BeginPage for device 3
gsave
nulldevice
grestore

It is possible to switch devices in an order that prevents a page device’s
EndPage procedure from ever being called. Example 4.26 switches from
a page device to a null device without saving a graphics state that refers
to the page device. Thus, there is no possibility of reactivating the page
device in order to call its EndPage procedure. This sequence of opera-
tions is not recommended.

PLRM 2nd Edition January 26, 1994 Graphics

4.11 Device Setup 255

Example 4.26

gsave
dict4 setpagedevice % BeginPage for device 4
nulldevice
grestore

Example 4.27 shows the skeleton structure of a simple two-page
document. For completeness, it includes the recommended document
structuring conventions, which are explained in Appendix G. The com-
ments to the right indicate the points at which the interpreter calls
BeginPage and EndPage and the arguments it passes to each.

Example 4.27

%!PS-Adobe-3.0
...Document prolog...
%%BeginSetup
%%BeginFeature: *Duplex
<< /Duplex true >> setpagedevice % 0 BeginPage
%%EndFeature
%%BeginFeature: *PageSize Letter
<< /PageSize [612 792] /ImagingBBox null >> setpagedevice

% 0 2 EndPage 0 BeginPage
%%EndFeature
%%EndSetup
%%Page: 1 1
save
...PostScript language description for page 1...
restore
showpage % 0 0 EndPage 1 BeginPage
%%Page: 2 2
save
...PostScript language description for page 2...
restore
showpage % 1 0 EndPage 2 BeginPage
%%EOF
...Job server executes restore, which deactivates the page device...

% 2 2 EndPage

PLRM 2nd Edition January 26, 1994 Graphics

256 Chapter 4: Graphics

PLRM 2nd Edition January 21, 1994 Fonts

257

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

CHAPTER 5

Fonts

This chapter describes the special facilities in the PostScript language
for dealing with text—more generally, with characters from fonts. A
character is a general graphical shape and is subject to all graphical
manipulations, such as coordinate transformation. Because of the
importance of text in most page descriptions, the PostScript language
provides higher-level facilities that permit a program to describe, select,
and render characters conveniently and efficiently.

The first section is a general description of how fonts are organized and
accessed. This description covers all normal uses of fonts that are
already installed.

The information in subsequent sections is somewhat more complex,
but it is required only by programs with sophisticated needs. It dis-
cusses the organization of font dictionaries, the encoding scheme that
maps character codes to character names and descriptions, the metric
information available for fonts, and the operation of the font cache.
Finally, it describes how to construct new base and composite fonts.

Details of the individual PostScript operators are given in Chapter 8. All
facilities are supported by Level 1 implementations except for the ones
specifically documented as Level 2 features. Some of the Level 2 features
are also available as part of composite font or Display PostScript
extensions; for details, consult Appendix A.

5.1 Organization and Use of Fonts

Sets of characters are organized into fonts. A font for use with the Post-
Script interpreter is prepared in the form of a program. When such a
font program is introduced into a PostScript interpreter, its execution
causes a font dictionary to come into existence and to be associated with
a font name.

Example 5.0
Table 5.0
Figure 5.0

PLRM 2nd Edition January 21, 1994 Fonts

258 Chapter 5: Fonts

In the PostScript language, the term font refers to a font dictionary,
through which the PostScript interpreter obtains definitions that gener-
ate character shapes. The interpreter uses a character’s code to select the
definition that represents the character. A character’s definition is a pro-
cedure that executes graphics operations to produce the character’s
shape. The procedure is usually encoded in a special compact represen-
tation. To render a character, the PostScript interpreter executes this
procedure.

If you have experience with scan conversion of general shapes, you may
be concerned about the amount of computation that this description
seems to imply. However, this is only the abstract behavior of character
shapes and font programs, not how they are implemented. In fact, the
PostScript font machinery works very efficiently.

5.1.1 Basic Text Setting

Example 5.1 illustrates the most straightforward use of a font. Suppose
you wish to place the text ABC, 10 inches from the bottom of the page
and 4 inches from the left edge, using 12-point Helvetica.

Example 5.1

/Helvetica findfont
12 scalefont setfont
288 720 moveto
(ABC) show

The four lines of this program perform the following steps:

1. Select the font to use.

2. Scale it to the desired size and install it as the current font in the
graphics state.

3. Specify a starting position on the page.

4. Paint a string of characters there.

The following paragraphs explain these operations in more detail.

Each PostScript implementation includes a collection of fonts that are
either built-in or can be obtained automatically from sources such as
disks or cartridges. A user can download additional fonts, and a Post-
Script language program can define special fonts for its own use. The
interpreter maintains a font directory associating the names of fonts,

PLRM 2nd Edition January 21, 1994 Fonts

5.1 Organization and Use of Fonts 259

which are name objects, with their definitions, which are font diction-
aries. The findfont operator takes the name of the font and returns on
the operand stack a font dictionary containing all information the Post-
Script interpreter needs to render any of that font’s characters.

A font specifies the shapes of its characters for one standard size. This
standard is so arranged that the nominal height of tightly-spaced lines
of text is 1 unit. In the default user coordinate system, this means the
standard character size is one unit in user space, or 1/72 of an inch. The
standard size font must then be scaled to be usable.

The scalefont operator scales the characters in a font without affecting
the user coordinate system. scalefont takes two operands: the original
font dictionary and the desired scale factor. It returns a new font dic-
tionary that renders character shapes in the desired size. It is possible to
scale the user coordinate system with the coordinate system operators,
but it is usually more convenient to encapsulate the desired size in the
font dictionary. Another operator, makefont, applies more complicated
linear transformations to a font.

In Example 5.1, the scalefont operator scales the Helvetica font left on
the stack by findfont to a 12-unit size and returns the scaled font on the
operand stack. The setfont operator establishes the resulting font dic-
tionary as the current font in the graphics state.

Once the font has been selected, scaled, and set, it can be used to paint
characters. The moveto operator (described in section 4.4, “Path Con-
struction”) sets the current position to the specified x and y coordi-
nates—in units of 1/72 inch—in the default user coordinate system.
This determines the position on the page at which to begin painting
characters.

The show operator takes a string from the operand stack and renders it
using the current font. The show operator treats each element of the
string (an integer in the range 0 to 255) as a character code. Each code
selects a character description in the font dictionary; the character
description is executed to paint the desired character on the page. This
is the behavior of show for base fonts, such as ordinary Roman text
fonts. Its behavior is more complex for composite fonts, described in
section 5.9, “Composite Fonts.”

PLRM 2nd Edition January 21, 1994 Fonts

260 Chapter 5: Fonts

Note What these steps produce on the page is not a 12-point character, but rather a
12-unit character, where the unit size is that of the user space at the time the
characters are rendered on the page. If the user space is later scaled to make
the unit size one centimeter, showing characters from the same 12-unit font
will generate results that are 12 centimeters high.

5.1.2 Selecting Fonts

Example 5.1 used PostScript operators in a direct way. It is usually desir-
able to define procedures to help the application that is generating the
text. To illustrate this point, assume that an application is setting many
independently positioned text strings and requires switching frequently
among three fonts: Helvetica, Helvetica-Oblique, and Helvetica-Bold,
all in a 10-point size. Example 5.2 shows the programming to do this.

Example 5.2

/FSD {findfont exch scalefont def} bind def % In the document prolog: define
/SMS {setfont moveto show} bind def % some useful procedures
/MS {moveto show} bind def

/F1 10 /Helvetica FSD % At the start of the script: set up
/F2 10 /Helvetica-Oblique FSD % commonly used font dictionaries
/F3 10 /Helvetica-Bold FSD

(This is in Helvetica.) 10 78 F1 SMS % In the body of the script: show
(And more in Helvetica.) 10 66 MS % some text
(This is in Helvetica-Oblique.) 10 54 F2 SMS
(This is in Helvetica-Bold.) 10 42 F3 SMS
(And more Helvetica-Bold.) 10 30 MS

Figure 5.1 Results of Example 5.2

There are several features of Example 5.2 that are noteworthy. The
document prolog defines three procedures:

This is in Helvetica.

This is in Helvetica-Oblique.
This is in Helvetica-Bold.

And more in Helvetica.

And more Helvetica-Bold.

PLRM 2nd Edition January 21, 1994 Fonts

5.1 Organization and Use of Fonts 261

• FSD takes a variable name, a scale factor, and a font name. It gener-
ates a font dictionary described by the font name and scale factor,
then executes def to associate the font dictionary with the variable
name. This assists in setting up fonts.

• SMS takes a string, a pair of coordinates, and a font dictionary; it
shows the string starting at those coordinates, using the specified
font.

• MS takes a string and a pair of coordinates. It shows the string at
those coordinates, using the current font.

At the beginning of the document script, the program sets up font dic-
tionaries and associates them with the names F1, F2, and F3. The body
of the script sets text using the procedures and font dictionaries defined
earlier. This example avoids switching fonts when it’s unnecessary to do
so; taking care in this respect is important for efficient execution.

Many applications must switch frequently among arbitrarily named
fonts, where the names and sizes are not known in advance. To facili-
tate this, the Level 2 operator selectfont combines the actions of the
findfont, scalefont (or makefont), and setfont operators. selectfont
saves information from one call to the next to avoid calling findfont or
performing the scalefont or makefont computations unnecessarily. In
the common case of selecting a font and size combination that has
been used recently, selectfont works with great efficiency.

5.1.3 Achieving Special Graphical Effects

Normal uses of show and other character painting operators cause
black-filled characters to be painted. By combining font operators with
general graphics operators, one can obtain other effects.

The color used for painting characters is determined by the current
color in the graphics state. The default color is black, but other colors
may be obtained by executing setgray or some other color-setting oper-
ator before painting characters. Example 5.3 paints characters in 50 per-
cent gray.

Example 5.3

/Helvetica-Bold findfont 48 scalefont setfont
20 40 moveto
.5 setgray
(ABC) show

PLRM 2nd Edition January 21, 1994 Fonts

262 Chapter 5: Fonts

Figure 5.2 Characters painted in 50 percent gray

More general graphical manipulations can be performed by treating the
character outline as a path instead of immediately painting it. charpath
is a path construction operator that appends the outlines of one or
more characters to the current path in the graphics state.

This is useful mainly with characters that are defined as outlines (as all
Type 1 fonts are). Paths derived from characters defined as strokes can
be used in limited ways. It is not possible to obtain paths for characters
defined as images or bitmaps; charpath produces an empty path. Also, a
path consisting of the outlines of more than a few characters is likely to
exceed the limit on number of path elements (see Appendix B). If possi-
ble, it is best to deal with only one character’s path at a time.

Example 5.4 uses character outlines as a path to be stroked. This pro-
gram uses charpath to obtain the outlines for the string of characters
ABC in the current font. The false operand to charpath is explained in
the description of charpath in Chapter 8. The program then strokes this
path with a line 2 points thick, rendering the characters’ outlines on
the page.

Example 5.4

/Helvetica findfont 48 scalefont setfont
20 38 moveto
(ABC) false charpath
2 setlinewidth stroke

ABC

PLRM 2nd Edition January 21, 1994 Fonts

5.1 Organization and Use of Fonts 263

Figure 5.3 Character outlines treated as a path

Example 5.5 obtains the characters’ path as before, then establishes it as
the current clipping path. All subsequent painting operations will mark
the page only within this path. This state persists until some other clip-
ping path is established—for example, by the grestore operator.

Example 5.5

/Helvetica findfont 48 scalefont setfont
newpath 20 40 moveto (ABC) false charpath clip
...Graphics operators to draw a starburst...

Figure 5.4 Graphics clipped by a character path

5.1.4 Character Positioning

A character’s width is the amount of space the character occupies along
the baseline of a line of text. In other words, it is the distance the cur-
rent point moves when the character is shown. Note that the width is
distinct from the dimensions of the character outline (see section 5.4,
“Font Metric Information”).

ABC

PLRM 2nd Edition January 21, 1994 Fonts

264 Chapter 5: Fonts

In some fonts, the width is constant; it does not vary from character to
character. Such fonts are called fixed-pitch or monospaced. They are used
mainly for typewriter-style printing. However, most fonts used for high-
quality typography associate a different width with each character.
Such fonts are called proportional fonts or variable-pitch fonts. In either
case, the show operator positions consecutive characters of a string
according to their widths.

The width information for each character is stored in the font diction-
ary. A PostScript language program can use any of several character
painting operators—show, xshow, yshow, xyshow, widthshow, ashow,
awidthshow—to obtain a variety of width modification effects. If neces-
sary, it can execute stringwidth to obtain the width information itself.

The standard operators for setting text (show and its variants) are
designed on the assumption that characters are ordinarily shown with
their standard metrics. (See section 5.4, “Font Metric Information”).
However, means are provided to vary the metrics in certain limited
ways. For example, the ashow operator systematically adjusts the
widths of all characters of a string during one show operation. The
optional Metrics entry of a font dictionary can be added to adjust the
widths of all instances of particular characters of a font.

Certain applications that set text require very precise control of the
positioning of each character. There are three Level 2 operators to
streamline the setting of individually positioned characters: xyshow,
xshow, and yshow. Each operator is given a string of text to be shown,
the same as show. Also, it expects a second operand, which is either an
array of numbers or a string that can be interpreted as an encoded num-
ber string as described in section 3.12.5, “Encoded Number Strings.”
The numbers are used in sequence to control the widths of the charac-
ters being shown. They completely override the standard widths of the char-
acters.

The kshow and cshow operators provide ways for an arbitrary PostScript
language procedure to intervene in the positioning and painting of
each character in a string. cshow is a Level 2 operator. These are the
most general but least efficient text setting operations.

5.2 Font Dictionaries

Font dictionaries are ordinary dictionary objects, but with certain spe-
cial key-value pairs. The PostScript language has several operators that
deal with font dictionaries (see Chapter 8). Some of the contents of a

PLRM 2nd Edition January 21, 1994 Fonts

5.2 Font Dictionaries 265

font dictionary are optional and user-definable, while other key-value
pairs must be present and have the correct semantics for the PostScript
interpreter’s font machinery to operate properly.

There are several kinds of fonts, each distinguished by the FontType
entry in the font dictionary. Each type of font has its own conventions
for organizing and representing the information within it. The font
types defined at present are:

• Type 0 is a composite font composed of other fonts called base fonts,
organized hierarchically. Composite fonts are a Level 2 feature. See
section 5.9, “Composite Fonts.”

• Type 1 is a base font that defines character shapes by using specially
encoded procedures. That encoded format is described in a separate
book, Adobe Type 1 Font Format.

• Type 3 is a user-defined base font that defines character shapes as ordi-
nary PostScript language procedures, which are the values of entries
named BuildGlyph or BuildChar in the font dictionary. See section
5.7, “Type 3 Fonts.”

A PostScript language program creates a font dictionary by ordinary
means (operators such as dict, begin, end, and def), then makes it
known to the interpreter by executing the definefont operator.
definefont takes a name and a dictionary, checks that the dictionary is a
well-formed font dictionary, makes the dictionary’s access read-only,
and associates the font name with the dictionary in the font directory.
It also inserts into the font dictionary an additional entry whose name
is FID and whose value is an object of type fontID. This entry serves
internal purposes in the font machinery. For this reason, a font diction-
ary presented to definefont must have room for at least one additional
key-value pair.

The Level 2 operator undefinefont removes a named font from the font
directory. A font dictionary that has been removed in this fashion is
still a valid font assuming it is still accessible, but it can no longer be
returned by findfont.

In Level 2 implementations, fonts are actually a special case of named
resources: A font is an instance of the Font resource category. A font dic-
tionary can reside in either local or global VM. See section 3.9, “Named
Resources,” and the description of the defineresource operator for com-
plete information on how resource instances are named and are loaded
into VM.

PLRM 2nd Edition January 21, 1994 Fonts

266 Chapter 5: Fonts

Table 5.1 lists the key-value pairs that have defined meanings in the
font dictionaries of all types of fonts. Table 5.2 lists additional key-value
pairs that are meaningful in all base fonts (types 1 and 3). Table 5.3 lists
additional key-value pairs that are meaningful only in Type 1 fonts. Any
font dictionary can have additional entries containing information that
is useful to PostScript language procedures that are part of the font’s
definition. The interpreter pays no attention to those entries.

Table 5.1 Entries in all types of font dictionaries

Key Type Semantics

FontType integer (Required) Indicates where the information for the character descriptions is to be
found and how it is represented.

FontMatrix array (Required) Transforms the character coordinate system into the user coordinate sys-
tem (see section 5.4, “Font Metric Information”). For example, Type 1 font pro-
grams from Adobe are usually defined in terms of a 1000-unit character
coordinate system, and their initial FontMatrix is [0.001 0 0 0.001 0 0]. When a
font is derived by the scalefont or makefont operator, the new matrix is concate-
nated with the FontMatrix to yield a new copy of the font with a different
FontMatrix.

FontName name (Optional) The font’s name. This entry is for information only; it is not used by
the PostScript interpreter. Ordinarily, it is the same as the key passed to
definefont, but it is not required to be the same.

FontInfo dictionary (Optional) See Table 5.4 on page 268 for the entries that can be in this dictionary.

LanguageLevel integer (Optional) Minimum language level required for correct behavior of the font.
Any font that uses Level 2 features for rendering characters (for example, a char-
acter definition uses rectfill or glyphshow) should specify a LanguageLevel of 2.
On the other hand, presence of Level 2 information that a Level 1 interpreter
can safely ignore (for example, an XUID entry in the font dictionary) does not
require a LanguageLevel of 2. Default value: 1.

WMode integer (Optional) Indicates which of two sets of metrics will be used when characters are
shown from the font. Level 1 implementations lacking composite font
extensions ignore this entry. Default value: 0.

Table 5.2 Additional entries in all base fonts (FontType not 0)

Key Type Semantics

Encoding array (Required) Array of names that maps character codes (integers) to character
names—the values in the array. This is described in section 5.3, “Character
Encoding.”

FontBBox array (Required) Array of four numbers in the character coordinate system giving
lower-left x, lower-left y, upper-right x, and upper-right y of the font bounding
box. The font bounding box is the smallest rectangle enclosing the shape that

PLRM 2nd Edition January 21, 1994 Fonts

5.2 Font Dictionaries 267

would result if all of the characters of the font were placed with their origins
coincident, and then painted. This information is used in making decisions
about character caching and clipping. If all four values are zero, the PostScript
interpreter makes no assumptions based on the font bounding box.

If any value is non-zero, it is essential that the font bounding box be accurate; if
any character’s marks fall outside this bounding box, incorrect behavior may
result. For a Type 1 font, the FontBBox must be accurate (not all zeros) if the font
uses the seac command for creating accented characters. See Adobe Type 1 Font
Format for more information.

In many type 1 fonts, the FontBBox array is executable, though there is no good
reason for this to be so. Programs that access the FontBBox should execute an
explicit get or load to avoid unintended execution.

UniqueID integer (Optional) Integer in the range 0 to 16777215 (224 – 1) that uniquely identifies
this font. See section 5.8, “Unique ID Generation.”

XUID array (Optional) Array of integers that uniquely identifies this font or any variant of it.
See section 5.8, “Unique ID Generation.” Level 1 implementations ignore this
entry.

Table 5.3 Additional entries specific to Type 1 fonts

Key Type Semantics

PaintType integer (Required) A code indicating how the characters of the font are to be painted.

0 The character outlines are filled.
2 The character outlines (designed to be filled) are stroked.

Type 1 fonts are ordinarily created with a PaintType of 0. A program desiring to
convert it to a stroked outline font can copy the font dictionary, change the
PaintType from 0 to 2, add a StrokeWidth entry, and define a new font using this
dictionary. Note that the previously documented PaintType values of 1 and 3 are
not supported.

StrokeWidth number (Optional) Stroke width (in units of the character coordinate system) for stroked
outlined fonts (PaintType 2). This field is not initially present in filled font
descriptions. It must be added when creating a stroked font from an existing
filled font. Default value: 0.

Metrics dictionary (Optional) Width and sidebearing information for writing mode 0. This entry is
not normally present in the original definition of a font. Adding a Metrics entry
to a font overrides the widths and sidebearings encoded in the character descrip-
tions. See sections 5.4, “Font Metric Information,” and 5.6.2, “Changing Charac-
ter Metrics.”

Metrics2 dictionary (Optional) Dictionary containing metric information for writing mode 1 (see sec-
tion 5.6.2, “Changing Character Metrics”). Level 1 implementations lacking
composite font extensions ignore this entry.

PLRM 2nd Edition January 21, 1994 Fonts

268 Chapter 5: Fonts

CDevProc procedure (Optional) Procedure that algorithmically derives global changes to a font’s met-
rics. Level 1 implementations lacking composite font extensions ignore this
entry.

CharStrings dictionary (Required) Associates character names (keys) with shape descriptions. Each
entry’s value is ordinarily a string that represents the character’s description in a
special encoded format; see Adobe Type 1 Font Format for details. The value can
also be a PostScript language procedure; see section 5.6.3, “Replacing or Adding
Individual Characters.”

Private dictionary (Required) Contains other internal information about the font. See Adobe Type 1
Font Format for details.

Any font dictionary can contain a FontInfo entry whose value is a dic-
tionary containing the information listed in Table 5.4. This information
is entirely for the benefit of PostScript language programs using the font,
or for documentation. It is not accessed by the PostScript interpreter.

Table 5.4 Entries in a FontInfo dictionary

Key Type Semantics

FamilyName string Human-readable name for a group of fonts that are stylistic variants of a single
design. All fonts that are members of such a group should have exactly the same
FamilyName.

FullName string Unique, human-readable name for an individual font.

Notice string Trademark or copyright notice, if applicable.

Weight string Human-readable name for the weight, or “boldness,” attribute of a font.

version string Version number of the font program.

ItalicAngle number Angle in degrees counterclockwise from the vertical of the dominant vertical
strokes of the font.

isFixedPitch boolean If true, indicates that the font is a fixed-pitch (monospaced) font.

UnderlinePosition number Recommended distance from the baseline for positioning underlining strokes.
This number is the y coordinate (in character space) of the center of the stroke.

UnderlineThickness number Recommended stroke width for underlining, in units of the character coordinate
system.

The PostScript language does not specify any formal rules for the names
of fonts or for the entries in the FontInfo dictionary. However, there are
various conventions for organizing fonts that facilitate their use by
application programs.

PLRM 2nd Edition January 21, 1994 Fonts

5.3 Character Encoding 269

• Some applications use FamilyName as part of a hierarchical font-
selection user interface. This divides a very large set of individual
fonts into a smaller, more manageable set of “font families.” The
FamilyName parameter should be suitable for use in a font selection
menu.

• Typically, FullName begins with FamilyName and continues with
various style descriptors separated by spaces—for example, Adobe
Garamond Bold Italic. In some designs, a numbering system replaces
or augments verbal descriptors—for example, Univers 55 Medium.

• Weight is derived from the FullName parameter by dropping every-
thing from the FullName that does not explicitly relate to weight.
For example, the FullName ITC Franklin Gothic Condensed Extra Bold
Oblique reduces to a Weight of Extra Bold.

• The font dictionary’s FontName parameter, which is also usually
used as the key passed to definefont, is a condensation of the
FullName. It is customary to remove spaces and to limit its length to
less than 40 characters. The resulting name should be unique.

5.3 Character Encoding

Font definitions use a flexible encoding scheme by which character
codes select character descriptions. The association between character
codes and descriptions is not part of the character descriptions them-
selves, but instead is described by a separate encoding vector. A PostScript
language program can change a font’s encoding vector to match the
requirements of the application generating the description.

This section describes the character encoding scheme used with most
base fonts. Composite fonts (FontType 0) use a more complicated char-
acter mapping algorithm, defined in section 5.9, “Composite Fonts.”

Note Use of this encoding scheme is required for Type 1 fonts and is strongly
recommended for Type 3 fonts. Every base font must have an Encoding entry.
A Type 3 font’s BuildChar procedure should use it in the standard way.

In a font dictionary, the descriptions of the individual characters are
keyed by character names, not by character codes. Character names are
ordinary PostScript language name objects. Descriptions of Roman
alphabetic characters are normally associated with names consisting of
single letters, such as A or a. Other characters are associated with names
composed of words, such as three, ampersand, or parenleft.

PLRM 2nd Edition January 21, 1994 Fonts

270 Chapter 5: Fonts

The encoding vector is defined by the array object that is the value of
Encoding in the font dictionary. The array is indexed by character code
(an integer in the range 0 to 255). The elements of the array must be
character names, and the array should be 256 elements long.

The operand to the show operator is a PostScript language string object.
Each element of the string is treated as a character code. When show
paints a character:

1. It uses the character code as an index into the current font’s
Encoding array to obtain a character name.

2. It invokes the character description by name. For a Type 1 font, it
looks up the name in the font’s CharStrings dictionary to obtain an
encoded character description, which it executes. For a Type 3 font,
it calls the font’s BuildGlyph procedure (if present) with the name as
operand. See section 5.7, “Type 3 Fonts.”

For example, in the standard encoding vector used by Type 1 Roman
text fonts such as Helvetica, the element at index 38 is the name object
ampersand. When show encounters the value 38 (the ASCII character
code for &) as an element of a string it is printing, it fetches the
encoding vector entry at index 38, obtaining the name object
ampersand. It then uses ampersand as a key in the current font dictio-
nary’s CharStrings subdictionary and executes the associated descrip-
tion that renders the & letterform.

Changing an existing font’s encoding involves creating a new font dic-
tionary that is a copy of the existing one except for its Encoding entry.
The subsidiary dictionaries, such as CharStrings and FontInfo, continue
to be shared with the original font. Of course, a new font may be cre-
ated with any desired encoding vector.

This flexibility in character encoding is valuable for two reasons:

• It permits printing text encoded by methods other than ASCII
(EBCDIC, for example).

• It allows applications to specify how characters outside a standard
character set are to be encoded. Some fonts contain more than 256
characters, including ligatures, accented characters, and other sym-
bols required for high-quality typography or non-Roman languages.

PLRM 2nd Edition January 21, 1994 Fonts

5.4 Font Metric Information 271

Roman text font programs produced by Adobe Systems use the “Adobe
standard” encoding vector, which is associated with the name
StandardEncoding in systemdict. An alternate encoding vector called
ISO Latin-1 is associated with the name ISOLatin1Encoding. Complete
details of these encodings and of the characters present in typical fonts
appear in Appendix E.

All unused positions in an encoding vector must be filled with the
name .notdef. The name .notdef is defined in CharStrings, just as is any
other character. It is special in only one regard: If some encoding maps
to a character name that does not exist in the font, .notdef is substi-
tuted. Every font must contain a definition of the .notdef character. The
effect produced by showing the .notdef character is at the discretion of
the font designer. In Adobe Type 1 font programs, it is the same as the
space character.

The glyphshow operator, a Level 2 feature, shows a single character
selected by name instead of by character code. This enables direct use of
any character in the font regardless of the font’s Encoding. The princi-
pal use of glyphshow is defining fonts whose character descriptions
refer to other characters in the same or a different font. Referring to
those characters by name ensures proper behavior if the font is subse-
quently re-encoded.

5.4 Font Metric Information

The character coordinate system is the space in which an individual char-
acter shape is defined. All path coordinates and metrics are interpreted
in character space. Figure 5.5 shows a typical character outline and its
metrics.

Figure 5.5 Character metrics

bounding
box

next
character
origin

character
origin

character width

left
side bearing

PLRM 2nd Edition January 21, 1994 Fonts

272 Chapter 5: Fonts

The origin, or reference point, of the character is the point (0, 0) in the
character coordinate system. show and other character painting opera-
tors position the origin of the first character to be shown at the current
point in user space. For example,

40 50 moveto (ABC) show

places the origin of the A at coordinate (40, 50) in the user coordinate
system.

The width of a character is the distance from the character’s origin to
the point at which the origin of the next character should normally be
placed when painting the consecutive characters of a word. This dis-
tance is a vector in the character coordinate system; it has x and y com-
ponents. Most Indo-European alphabets, including Roman, have a
positive x width and a zero y width. Semitic alphabets have a negative x
width. Some Asian glyphs have a non-zero y width.

The bounding box of a character is the smallest rectangle (oriented with
the character coordinate system axes) that will just enclose the entire
character shape. The bounding box is expressed in terms of its lower-
left corner and upper-right corner relative to the character origin in the
character coordinate system.

The left sidebearing of a character is the position of the left sidebearing
point in character space; this is usually the intersection of the left edge
of the bounding box with the character’s baseline (see Adobe Type 1 Font
Format). Note that the x coordinate of the left sidebearing can be nega-
tive for characters that extend to the left of their origin. The y coordi-
nate is almost always 0.

Type 1 fonts are defined in such a way that a character’s left sidebearing
and width can be adjusted; that is, the character bounding box and the
position of the next character can be shifted around relative to the ori-
gin (see section 5.6, “Modifications to Existing Fonts”).

In some writing systems, text is frequently aligned in two different
directions. For example, it is common to write Japanese and Chinese
characters either horizontally or vertically. To handle this, a font can
optionally contain a second set of metrics for each character. This fea-
ture is available only in Level 2 or in Level 1 implementations with
composite font extensions.

PLRM 2nd Edition January 21, 1994 Fonts

5.4 Font Metric Information 273

The metrics are accessed by show and other operators according to a
writing mode, given by a WMode entry in the font dictionary or in
some parent font dictionary in a composite font. By convention, writ-
ing mode 0 (the default) specifies horizontal writing; mode 1 specifies
vertical writing. If a font contains only one set of metrics, the WMode
parameter is ignored.

When a character has two sets of metrics, each set specifies a character
origin and a width vector. Figure 5.6 illustrates the relationship between
the two sets of metrics.

Figure 5.6 Relationship between two sets of metrics

Writing mode 0 Writing mode 1 Mode 1 relative to mode 0

The left diagram illustrates the character metrics associated with writing
mode 0. The coordinates ll and ur specify the bounding box of the char-
acter relative to origin 0. w0 is the character width vector that specifies
how the current point is changed after the character is shown in writ-
ing mode 0. The center diagram illustrates writing mode 1; w1 is the
character width vector for writing mode 1. In the right diagram, v is a
vector defining the position of origin 1 relative to origin 0.

Character metric information can be accessed procedurally by a Post-
Script language program. The stringwidth operator obtains character
widths. The sequence

charpath flattenpath pathbbox

computes character bounding boxes, though this is relatively ineffi-
cient. The bounding box for an entire font appears in the font diction-
ary as an array of four numbers associated with the key FontBBox.

new current
point

ur

w0origin
0

ll
new current point

w1

origin
0

v

origin 1 origin 1

PLRM 2nd Edition January 21, 1994 Fonts

274 Chapter 5: Fonts

Character metric information is also available separately in the form of
Adobe font metrics (AFM) and Adobe composite font metrics (ACFM)
files. These files are for use by application programs that generate Post-
Script language page descriptions and must make formatting decisions
based on the widths and other metrics of characters. Kerning informa-
tion is also available in the AFM and ACFM files. When possible, appli-
cations should use this information directly instead of generating
PostScript language instructions to compute it.

Specifications for the AFM and ACFM file formats are available from the
Adobe Systems Developers’ Association.

5.5 Font Cache

The PostScript interpreter includes an internal data structure called the
font cache whose purpose is to make the process of painting characters
very efficient. For the most part, font cache operation is automatic.
However, there are several operators that control the behavior of the
font cache. Also, font definitions must adhere to certain conventions to
take advantage of the font cache.

Rendering a character from an outline or other high-level description is
a relatively costly operation, because it involves performing scan con-
version of arbitrary shapes. This presents special problems for printing
text, because it is common for several thousand characters to appear on
a single page. However, a page description that includes large amounts
of text normally has many repetitions of the same character in a given
font, size, and orientation. The number of distinct characters thus is
very much smaller than the total number of characters.

The font cache operates by saving the results of character scan conver-
sions (including metric information and device pixel arrays) in tempo-
rary storage and using those saved results when the same character is
requested again. The font cache is usually large enough to accommo-
date all of the distinct characters in a page description. Painting a char-
acter that is already in the font cache is typically hundreds of times
faster than scan converting it from the character description in the
font.

The font cache does not retain color information; it remembers only
which pixels were painted and which pixels were left unchanged within
the character’s bounding box. For this reason, there are a few restric-
tions on the set of graphical operators that may be executed as part of
character descriptions that are to be cached. In particular, the image

PLRM 2nd Edition January 21, 1994 Fonts

5.6 Modifications to Existing Fonts 275

operator is not permitted. However, imagemask may be used to define a
character according to a bitmap representation; see section 4.10,
“Images.” Execution of operators that specify colors or other color-
related parameters in the graphics state is also not permitted; see sec-
tion 4.8, “Color Spaces.”

The principal manifestation of the font cache visible to the PostScript
language program is that showing a character does not necessarily
result in the character’s description being executed. This means that
font definitions must interact with the font cache machinery so the
results of their execution are properly saved. This is done by means of
the setcachedevice or setcachedevice2 operators, described in section
5.7, “Type 3 Fonts.”

5.6 Modifications to Existing Fonts

This section applies to base fonts, whose FontType is any value other
than 0. Composite fonts are described in section 5.9, “Composite
Fonts.”

A PostScript language program can create a font in two ways: by copy-
ing an existing font and modifying certain things in it, or by defining a
new font from scratch. The programming examples given in this and
the next section are compatible with Level 1 implementations. They
can be significantly simplified by taking advantage of Level 2 features.
Of course, doing so sacrifices Level 1 compatibility.

5.6.1 Changing the Encoding Vector

The most common modification to an existing font is installing a dif-
ferent encoding vector, discussed in section 5.3, “Character Encoding.”
Example 5.6 creates a copy of the Helvetica font in which the Adobe
standard encoding for the Helvetica font is replaced by the ISO Latin-1
encoding, described in Appendix E.

Example 5.6

/Helvetica findfont
dup length dict begin
 {1 index /FID ne {def} {pop pop} ifelse} forall
 /Encoding ISOLatin1Encoding def
 currentdict
end
/Helvetica-ISOLatin1 exch definefont pop

PLRM 2nd Edition January 21, 1994 Fonts

276 Chapter 5: Fonts

This program performs the following steps:

1. Make a copy of the font dictionary including all entries, except the
one whose name is FID.

2. Install the desired changes. This program replaces the font’s
Encoding with the value of ISOLatin1Encoding, which is a built-in,
256-element array of character names defined in systemdict.

3. Register this modified font under some new name—for example,
Helvetica-ISOLatin1.

In Type 1 fonts, some accented characters are produced by combining
two or more other characters (for example, a letter and an accent)
defined in the same font. In Level 1 implementations, if an encoding
vector includes the name of an accented character, it must also include
the names of the components of that character.

Note If you create a new encoding for a Type 1 font, Adobe suggests that you place
the accents in control character positions, which are typically unused. The
built-in ISOLatin1Encoding uses this technique.

5.6.2 Changing Character Metrics

To change a Type 1 font’s metrics, add a Metrics entry to the font dic-
tionary. The value of this entry should be another dictionary contain-
ing the new metric information.

Note It is possible to change a Type 1 font’s metric information (character widths
and sidebearings) on a per-character basis. However, determining a pleasing
and correct character spacing is a difficult and laborious art that requires
considerable skill. A font’s character shapes have been designed with certain
metrics in mind. Changing those metrics haphazardly will almost certainly
produce poor results.

The Metrics dictionary consists of entries in which the keys are charac-
ter names, as they appear in the CharStrings dictionary and Encoding
array. The values of these entries take various forms. Entries in the
Metrics dictionary override the normal metrics for the corresponding
characters. An entry’s value may be:

• A single number, indicating a new x width only (the y value is zero).

• An array of two numbers, indicating the x components of a new left
sidebearing and new width (the y values are zero).

PLRM 2nd Edition January 21, 1994 Fonts

5.6 Modifications to Existing Fonts 277

• An array of four numbers, indicating x and y components of the left
sidebearing followed by x and y components of the width.

These forms can be intermixed in one Metrics dictionary. All of the
numeric values are in the character coordinate system of the font.

In a font that supports two writing modes (see section 5.4, “Font Metric
Information”), the Metrics dictionary is used during writing mode 0.
Another dictionary, Metrics2, is used during writing mode 1. The value
of an entry in this dictionary must be an array of four numbers, which
specify x and y components of w1 followed by x and y components of v
(see Figure 5.6 on page 273).

Whereas the Metrics and Metrics2 dictionaries allow modifications of
individual character metrics in a given font, a procedure named
CDevProc allows global changes to a font’s metrics to be algorithmically
derived from the Type 1 metric data.

CDevProc, a Level 2 feature, is an optional entry in the font dictionary.
If present, CDevProc is called after metrics information has been
extracted from the character description and from the Metrics and
Metrics2 dictionaries, but immediately before the interpreter makes an
internal call to setcachedevice2. Eleven operands are on the stack: the
ten values that are to be passed to setcachedevice2 followed by the
character’s name. On return, there should be ten values, which are then
passed to setcachedevice2.

5.6.3 Replacing or Adding Individual Characters

It is also possible to add characters to existing Type 1 fonts. If the cur-
rent font is a Type 1 font and an entry in the CharStrings dictionary is a
PostScript language procedure instead of a Type 1 encrypted string, the
PostScript interpreter executes the procedure to render the character.

This technique can be used to extend a Type 1 font that is already
present in the VM of a PostScript interpreter. However, it should not be
used to create a Type 1 font program for download purposes, as the font
will not be compatible with any Type 1 font interpreter not containing
a full PostScript language interpreter (for example, the Adobe Type
Manager software).

The required behavior of such a “charstring procedure” is very similar
to the BuildGlyph mechanism for Type 3 fonts, described in section 5.7,
“Type 3 Fonts.” The procedure must perform essentially the same func-
tions as a Type 3 BuildGlyph procedure, including executing one of the

PLRM 2nd Edition January 21, 1994 Fonts

278 Chapter 5: Fonts

setcachedevice, setcachedevice2, or setcharwidth operators. Unlike the
situation with BuildGlyph, there is potentially a different procedure for
each character, although several characters can share one procedure.

The execution environment of a charstring procedure is slightly differ-
ent from that of a Type 3 BuildGlyph procedure.

• Before executing a charstring procedure, the PostScript interpreter
first pushes systemdict and then the font dictionary on the diction-
ary stack, and pushes either the character code or the character name
on the operand stack. The operand is a character code if the inter-
preter is in the midst of an ordinary show or any show variant that
takes a string operand. The operand is a character name if the inter-
preter is executing the glyphshow operator (a Level 2 feature).

• After executing the procedure, the PostScript interpreter pops the
two dictionaries that it pushed on the dictionary stack. It expects the
procedure to have consumed the character code or character name
operand.

Because a charstring procedure must be able to accept either a character
code or a character name as operand, it is strongly recommended that
every charstring procedure begin as follows:

dup type /integertype eq {/Encoding load exch get} if

This ensures that the object on the stack is a name object, which the
procedure can now use to look up the character description. If the char-
acter description is contained in the charstring procedure itself, the pro-
cedure can simply discard its operand.

The technique for extending a font, then, is to copy both the top-level
dictionary and the CharStrings dictionary, add or replace entries in
CharStrings, and define a new font. It is possible to replace .notdef the
same as any other character.

5.7 Type 3 Fonts

This section describes how to construct a Type 3 font from scratch. A
Type 3 font is one whose behavior is determined entirely by PostScript
language procedures. Type 3 fonts must be carefully constructed. The
PostScript interpreter assumes that such fonts will be reasonably well-
behaved.

PLRM 2nd Edition January 21, 1994 Fonts

5.7 Type 3 Fonts 279

A Type 3 font must:

• Contain the required entries listed in Table 5.1 and Table 5.2.

• Have a FontType value of 3.

• Contain a procedure named BuildChar, and perhaps also one named
BuildGlyph.

• Be able to render a character named .notdef.

Level 2 implementations support the BuildGlyph semantics, described
in section 5.7.1, “BuildGlyph.” Level 1 implementations support only
the BuildChar semantics, described in section 5.7.2, “BuildChar.”

5.7.1 BuildGlyph

When a PostScript language program tries to show a character from a
Type 3 font, and the character is not already present in the font cache,
the PostScript interpreter:

1. Uses the character code as an index into the current font’s Encoding
array, obtaining the corresponding character name. (This step is
omitted during glyphshow.)

2. Pushes the current font dictionary and the character name on the
operand stack.

3. Executes the font’s BuildGlyph procedure. BuildGlyph must remove
these two objects from the operand stack and use this information to
construct the requested character. This typically involves determin-
ing the character definition needed, supplying character metric
information, constructing the character shape, and painting it.

BuildGlyph is called within the confines of a gsave and a grestore, so
any changes BuildGlyph makes to the graphics state do not persist after
it finishes. Each call to BuildGlyph is independent of any other call.
Because of the effects of font caching, no assumptions may be made
about the order in which character descriptions will be executed. In
particular, BuildGlyph should not depend on any non-constant infor-
mation in VM, and it should not leave any side effects in VM or on
stacks.

PLRM 2nd Edition January 21, 1994 Fonts

280 Chapter 5: Fonts

When BuildGlyph gets control, the current transformation matrix
(CTM) is the concatenation of the font matrix (FontMatrix in the cur-
rent font dictionary) and the CTM that was in effect at the time show
was invoked. This means that shapes described in the character coordi-
nate system will be transformed into the user coordinate system and
will appear in the appropriate size and orientation on the page.
BuildGlyph should describe the character in terms of absolute coordi-
nates in the character coordinate system, placing the character origin at
(0, 0) in this space. It should make no assumptions about the initial
value of the current point parameter.

Aside from the CTM, the graphics state is inherited from the environ-
ment of the show operator (or show variant) that caused BuildGlyph to
be invoked. To ensure predictable results despite font caching,
BuildGlyph must initialize any graphics state parameters on which it
depends. In particular, if BuildGlyph executes the stroke operator,
BuildGlyph should explicitly set the line width, line join, line cap, and
dash pattern to appropriate values. Normally, it is unnecessary and
undesirable to initialize the current color parameter, because show is
defined to paint characters with the current color.

Before executing the graphics operators that describe the character,
BuildGlyph must execute one of the following operators to pass width
and bounding box information to the PostScript interpreter:

• setcachedevice establishes a single set of metrics for both writing
modes, and requests that the interpreter save the results in the font
cache if possible.

• setcachedevice2 establishes separate sets of metrics for writing
modes 0 and 1, and requests that the interpreter save the results in
the font cache. setcachedevice2 is a Level 2 feature.

• setcharwidth passes just the character’s width (to be used once only),
and requests that the character not be cached. This is typically used
only if the character description includes operators to set the color
explicitly.

See the descriptions of setcachedevice, setcachedevice2, and
setcharwidth in Chapter 8 for more information.

After executing one of these operators, BuildGlyph should execute a
sequence of graphics operators to perform path construction and paint-
ing. The PostScript interpreter transfers the results into the font cache,
if appropriate, and onto the page at the correct position. It also uses the

PLRM 2nd Edition January 21, 1994 Fonts

5.7 Type 3 Fonts 281

width information to control the spacing between this character and
the next. The final position of the current point in the character coordi-
nate system does not influence character spacing.

5.7.2 BuildChar

In Level 2 implementations, if there is no BuildGlyph procedure for the
font, the interpreter calls the BuildChar procedure instead. Level 1
implementations always call BuildChar, whether or not a BuildGlyph
procedure is present.

The semantics of BuildChar are essentially the same as for BuildGlyph.
The only difference is that BuildChar is called with the font dictionary
and the character code on the operand stack, instead of the font diction-
ary and character name. The BuildChar procedure must then perform its
own lookup to determine what character definition corresponds to the
given character code.

For backward compatibility with the installed base of Level 1 interpret-
ers, all new Type 3 fonts should contain the following BuildChar proce-
dure:

/BuildChar {
 1 index /Encoding get exch get
 1 index /BuildGlyph get exec
}bind def

This defines BuildChar in terms of the same font’s BuildGlyph proce-
dure, which contains the actual commands for painting the character.
This permits the font to be used with Level 2 features such as
glyphshow, which requires BuildGlyph to be present, yet retains com-
patibility with Level 1 implementations.

5.7.3 Constructing a Type 3 Font

All Type 3 fonts must include a character named .notdef. The
BuildGlyph procedure should be able to accept that character name
regardless of whether such a character is encoded in the Encoding array.
If the BuildGlyph procedure is given a character name that it does not
recognize, it can handle that condition by painting the .notdef charac-
ter instead.

PLRM 2nd Edition January 21, 1994 Fonts

282 Chapter 5: Fonts

Any Type 3 font that depends on Level 2 features to draw character
shapes (for example, uses glyphshow or rectfill) should have an entry

/LanguageLevel 2 def

in the font dictionary. A file containing a font program should use
appropriate document structuring comments (see Appendix G).

Example 5.7 shows the definition of a Type 3 font with only two char-
acters—a filled square and a filled triangle—selected by the characters a
and b. The character coordinate system is on a 1000-unit scale. This is
not a realistic example, but it does illustrate all the elements of a Type 3
font, including a BuildGlyph procedure, an Encoding array, and a sub-
sidiary dictionary for the individual character definitions.

Example 5.7

8 dict begin

/FontType 3 def % Required elements of font
/FontMatrix [.001 0 0 .001 0 0] def
/FontBBox [0 0 1000 1000] def

/Encoding 256 array def % Trivial encoding vector
0 1 255 {Encoding exch /.notdef put} for
Encoding 97 /square put % ASCII a = 97
Encoding 98 /triangle put % ASCII b = 98
/CharProcs 3 dict def % Subsidiary dictionary for
CharProcs begin % individual character definitions
 /.notdef { } def
 /square
 {0 0 moveto 750 0 lineto 750 750 lineto
 0 750 lineto closepath fill} bind def
 /triangle
 {0 0 moveto 375 750 lineto 750 0 lineto
 closepath fill} bind def
end % of CharProcs

/BuildGlyph { % Stack contains: font charname
 1000 0 % Width
 0 0 750 750 % Bounding box
 setcachedevice
 exch /CharProcs get exch % Get CharProcs dictionary
 2 copy known not {pop /.notdef} if % See if charname is known
 get exec % Execute character procedure
} bind def

/BuildChar { % Level 1 compatibility
 1 index /Encoding get exch get

PLRM 2nd Edition January 21, 1994 Fonts

5.8 Unique ID Generation 283

 1 index /BuildGlyph get exec
 } bind def

currentdict
end % of font dictionary
/ExampleFont exch definefont pop

/ExampleFont findfont 12 scalefont setfont % Now show some characters
36 52 moveto (ababab) show

Figure 5.7 Output from Example 5.7

5.8 Unique ID Generation

A unique ID is an optional entry in a font dictionary that helps identify
the font to the interpreter. Its primary purpose is to identify cached
characters built from that font. The PostScript interpreter can retain
characters in the font cache even for a font that is not permanently in
VM. Some implementations can save cached characters on disk. This
can have a beneficial effect on performance when using fonts that are
loaded into VM dynamically either by explicit downloading or auto-
matically via the resource facility.

If a font has a unique ID, the interpreter can recognize that the cached
characters belong to that font, even if the font dictionary itself is
removed from VM and is later reloaded (by a subsequent job, for
instance). If a font does not have a unique ID, the interpreter can recog-
nize cached characters for that font only while it remains in VM. When
the font is removed, the cached characters must be discarded.

PLRM 2nd Edition January 21, 1994 Fonts

284 Chapter 5: Fonts

Correct management of unique IDs is essential to ensure predictable
behavior. If two fonts have the same unique ID but produce characters
with different appearances when executed, it is unpredictable which
characters will appear when those fonts are used. Therefore, unique IDs
must be assigned systematically from some central registry.

The reason that font caching is based on a special unique ID entry
rather than on the font’s name, or other identifying information, is
that font names are not necessarily unique. A font with a particular
name, such as Garamond-Bold, may be available from several sources,
and there may be successive releases of a font from the same source.

For information about assigning unique IDs, consult Adobe Type 1 Font
Format, or contact Adobe Systems Incorporated.

There are two kinds of unique ID entries that can appear in font dic-
tionaries: UniqueID and XUID. Both kinds are described below. The
UniqueID is supported by both Level 1 and Level 2 implementations; it
applies only to fonts. The XUID is a Level 2 feature; it applies to fonts
and also to certain other categories of resources. See section 4.7,
“Forms,” and section 4.9, “Patterns.”

When you create a new font program that will be saved permanently
and perhaps will be distributed widely, you should assign UniqueID and
XUID values for that font and embed those values in the definition of
the font dictionary. On the other hand, when an application program
constructs a font as part of building a page description, it should not
include a UniqueID or XUID in the font dictionary, because there is no
opportunity for registering the ID, and there is little to be gained from
doing so in any event.

When you copy a font dictionary for the purpose of creating a modified
font, you should not copy the UniqueID. As an exception to this general
rule, it is acceptable (and preferable) to retain the original UniqueID if
the only modified entries are FontName, FontInfo, FontMatrix, or
Encoding, because those changes do not affect the characters’ appear-
ance or metrics.

5.8.1 UniqueID Numbers

The UniqueID entry in a font dictionary is an integer in the range 0 to
16777215 (which is 224 – 1). Each FontType has its own space of
UniqueID values. Therefore, a Type 1 font and a Type 3 font could have
the same UniqueID number and be safely used together without causing
conflicts in the font cache.

PLRM 2nd Edition January 21, 1994 Fonts

5.9 Composite Fonts 285

The UniqueID numbers for Type 1 fonts are controlled. Adobe Systems
maintains a registry of UniqueID numbers for Type 1 fonts. The num-
bers between 4000000 and 4999999 are reserved for private interchange
in closed environments and cannot be registered.

5.8.2 Extended Unique ID Numbers

An XUID (extended unique ID) is an entry whose value is an array of inte-
gers. XUID arrays provide for distributed, hierarchical management of
the space of unique ID numbers. A font is uniquely identified by the
entire sequence of numbers in the array. XUIDs are a Level 2 feature.
They are ignored by Level 1 implementations.

The first element of an XUID array must be a unique organization identi-
fier, assigned by the Adobe registry. The remaining elements—and the
allowed length of XUID arrays starting with that organization ID—are
controlled by the organization to which the organization ID is assigned.
An organization can establish its own registry for managing the space
of numbers in the second and subsequent elements of XUID arrays,
which are interpreted relative to the organization ID.

The organization ID value 1000000 is reserved for private interchange
in closed environments. XUID arrays starting with this number may be
of any length.

This scheme also makes it possible to derive unique identifiers system-
atically when modifying existing fonts. This is not possible for
UniqueID values since the space of numbers is too small. A program can
replace an XUID array with a longer XUID array whose additional ele-
ments indicate exactly what modifications have been performed.

PostScript interpreters that recognize the XUID array ignore UniqueID
whenever an XUID is present. For backward compatibility with the
installed base of interpreters, font creator and font modifier software
should continue to use and maintain appropriate UniqueID numbers
for the foreseeable future.

5.9 Composite Fonts

This section describes how to build hierarchical composite fonts from
base fonts. All fonts in the PostScript language are considered base fonts,
except those with a FontType of 0. Base fonts contain individual char-
acter descriptions; composite fonts are combinations of base fonts. The

PLRM 2nd Edition January 21, 1994 Fonts

286 Chapter 5: Fonts

ability to use composite fonts is supported by all Level 2 implementa-
tions and some Level 1 implementations that have the composite font
extensions.

A composite font is a collection of base fonts organized hierarchically.
The font at the top level of the hierarchy is the root font. Fonts at a
lower level of the hierarchy are called descendant fonts. When the cur-
rent font is composite, the show operator (and its variants) behaves dif-
ferently than it does with base fonts. It uses a mapping algorithm that
decodes show strings to select characters from descendant base fonts.
This organization enables any given show string to select characters
from any of the descendant fonts.

The composite font facility supports the use of very large character sets,
such as those for the Japanese and Chinese languages. It also simplifies
the organization of fonts that have complex encoding requirements.
There are many uses of composite fonts that are not immediately appar-
ent from the language specification. For more examples, see the docu-
ment Tutorial on Composite Fonts, available from the Adobe Systems
Developers’ Association.

In addition to the required entries listed in Table 5.1 on page 266, com-
posite font dictionaries can contain the entries listed in Table 5.5.

Table 5.5 Additional entries specific to Type 0 (composite) fonts

Key Type Semantics

FMapType integer (Required) Indicates which mapping algorithm to use when interpreting the
sequence of bytes in a string. See Table 5.6 on page 287.

Encoding array (Required) Array of integers, each used as an index to extract a font dictionary
from the FDepVector. Note that this is different from the use of Encoding in base
fonts.

FDepVector array (Required) Array of font dictionaries that are the descendants of this composite
font.

PrefEnc array (Optional) Array that is usually the same as the Encoding array that is most com-
monly used by the descendant fonts. If this entry is not initially present,
definefont inserts one with a null value.

EscChar integer (Optional) Escape code value, used only when FMapType is 3 or 7. If this entry is
not present but is needed, definefont inserts one with the value 255.

ShiftOut integer (Optional; Level 2 only) Shift code value, used only when FMapType is 8. If this
entry is not present but is needed, definefont inserts one with the value 14.

PLRM 2nd Edition January 21, 1994 Fonts

5.9 Composite Fonts 287

ShiftIn integer (Optional; Level 2 only) Shift code value, used only when FMapType is 8. If this
entry is not present but is needed, definefont inserts one with the value 15.

SubsVector string (Optional) User-defined mapping algorithm, used only when FMapType is 6.

5.9.1 Character Mapping

FMapType is an integer that indicates which mapping algorithm will be
used to interpret the sequence of bytes in a show string. Instead of each
byte selecting a character independently, as is done for base fonts, the
show string encodes a more complex sequence of font and character
selections. The mapping algorithm:

1. Decodes bytes from the show string to determine a font number and
a character code.

2. Uses the font number as an index into the Encoding array of the
composite font, obtaining an integer.

3. Uses that integer in turn as an index into the FDepVector array,
selecting a descendant font.

4. Uses the character code to select a character from the descendant
font, in whatever way is appropriate for that font.

Table 5.6 lists the mapping algorithms that the FMapType value can
select. If the mapping of any string passed to a show operator is incom-
plete or if a font number or character code indexes beyond the end of
an FDepVector or Encoding array, a rangecheck error results.

Table 5.6 FMapType mapping algorithms

Algorithm FMapType Explanation

8/8 mapping 2 Two bytes are extracted from the show string. The first byte is the font number
and the second byte is the character code.

escape mapping 3 One byte is extracted from the show string. If it is equal to the value of the
EscChar entry, the next byte is the font number, and subsequent bytes (until the
next escape code) are character codes for that font. At the beginning of a show
string, font 0 is selected. A font number equal to the escape code is treated
specially; see section 5.9.3, “Nested Composite Fonts.”

1/7 mapping 4 One byte is extracted from the show string. The most significant bit is the font
number, and the remaining 7 bits are the character code.

PLRM 2nd Edition January 21, 1994 Fonts

288 Chapter 5: Fonts

9/7 mapping 5 Two bytes are extracted from the show string and combined to form a 16-bit
number, high-order byte first. The most significant 9 bits are the font number,
and the remaining 7 bits are the character code.

SubsVector mapping 6 One or more bytes are extracted from the show string and decoded according to
information in the SubsVector entry of the font. The format of SubsVector is
described below.

double escape mapping 7 (Level 2 only) This mapping is very similar to FMapType 3. However, when an
escape code is immediately followed by an escape code, a third byte is extracted
from the show string. The font number is the value of this byte plus 256.

shift mapping 8 (Level 2 only) This mapping provides exactly two descendant fonts. A byte is
extracted from the show string. If it is the ShiftIn code, subsequent bytes are
character codes for font 0. If it is the ShiftOut code, subsequent bytes are
character codes for font 1. At the beginning of a show string, font 0 is selected.

EscChar, ShiftIn, and ShiftOut are integers that determine the escape
and shift code values used with FMapType values 3, 7, and 8. If one of
these entries is required but is not present, definefont inserts an entry
with a default value as specified in Table 5.5 on page 286.

SubsVector is a string that controls the mapping algorithm for a com-
posite font with an FMapType of 6. This mapping algorithm allows the
space of character codes to be divided into ranges, where each range
corresponds to one descendant font. The ranges can be of irregular sizes
that are not necessarily powers of two.

The first byte of a SubsVector string specifies one fewer than the code
length—the number of bytes to be extracted from the show string for
each operation of the mapping algorithm. A value of 0 specifies a code
length of one byte, 1 specifies two bytes, and so on. When a character
code is longer than one byte, the bytes comprising it are interpreted
high-order byte first. The code length cannot exceed the number of
bytes representable in an integer (see Appendix B).

The remainder of the SubsVector string defines a sequence of ranges of
consecutive code values. The first range is the one for font 0, the second
range is the one for font 1, and so on. Each range is described by one or
more bytes; the number of bytes is the same as the code length. The
value contained in those bytes (interpreted high-order byte first) gives
the size of the code range. There is an implicit code range at the end of
the sequence that contains all remaining codes. This range should not
be specified explicitly.

When using a SubsVector, the show operator interprets a character code
extracted from the show string as follows:

PLRM 2nd Edition January 21, 1994 Fonts

5.9 Composite Fonts 289

1. Determine the code range that contains the character code. The
position of the code range in the SubsVector sequence (counting
from zero) is used as the index into the font’s Encoding array, select-
ing a descendant font.

2. Subtract the base of the code range from the character code. The
result is treated as a character code to select a character from the
descendant font.

The following examples show how several of the other mapping algo-
rithms could be described in terms of the SubsVector mapping. This is
for illustrative purposes only. The other mapping algorithms should be
used rather than the SubsVector mapping if they achieve the desired
effect. The SubsVector strings are shown as hexadecimal string literals.

• 1/7 mapping: <00 80>
The code length is one byte. There are two code ranges. The first one
is explicitly of length 80 hex. It contains character codes 0 to 127
decimal. The second code range implicitly contains all remaining
characters that can be coded in one byte—that is, character codes in
the range 128 to 255.

• 9/7 mapping: <01 0080 0080 ... 0080>
The code length is two bytes. There are up to 512 code ranges, each
80 hex (128 decimal) in size. The SubsVector string that describes all
512 code ranges would be 1023 bytes long. Remember that the last
code range is specified implicitly.

• 8/8 mapping: <01 0100 0100 ... 0100>
The code length is two bytes. There are up to 256 code ranges, each
100 hex (256 decimal) in size. The SubsVector string that describes
all 256 code ranges would be 511 bytes long. The last code range is
specified implicitly.

Note Escape and shift mappings cannot be described in terms of the SubsVector
mapping.

5.9.2 Other Dictionary Entries for Composite Fonts

FontMatrix plays the same role in a composite font as it does in a base
font. When a character is shown, both the FontMatrix of the composite
font and the FontMatrix of the descendant base font are concatenated
to the CTM.

PLRM 2nd Edition January 21, 1994 Fonts

290 Chapter 5: Fonts

WMode is an integer with value 0 or 1, indicating which of two sets of
character metrics will be used when characters from the base fonts are
shown (see section 5.4, “Font Metric Information”). If it is omitted,
writing mode 0 will be used. The writing mode of the root composite
font overrides the writing modes of all its descendants. This allows a
given base font to be used as part of many composite fonts, some of
which use writing mode 0 and some of which use writing mode 1.

PrefEnc (preferred encoding) is an array that should be the same as the
Encoding array of one or more of the descendant fonts. Characters from
descendant fonts whose Encoding is the same as the PrefEnc of the par-
ent will be processed more efficiently than characters from other
descendant fonts. If this entry is not present, a null entry will be created
by definefont.

A composite font dictionary should be large enough to have three addi-
tional entries—named FID, MIDVector, and CurMID—added to it by
definefont. These entries serve internal purposes in the font machinery.
In addition, a PrefEnc entry will be added if one is not already present,
and escape and mapping fonts will have any required EscChar, ShiftIn,
or ShiftOut entries added if not already present.

5.9.3 Nested Composite Fonts

The descendant fonts of a composite font may themselves be composite
fonts, nested to a maximum depth of five levels. The mapping algo-
rithms nest according to two sets of rules, depending on whether the
composite fonts are modal or non-modal.

Fonts with FMapType 3, 7, or 8 are modal fonts, in that some byte codes
select a descendant font, and then successive bytes of the show string
are interpreted with respect to the selected font until a new descendant
font is selected. Modal fonts follow these rules:

• The parent of an FMapType 3 font must be either FMapType 3 or 7.
The EscChar of the root font overrides the EscChar of descendant
escape-mapped fonts.

• Fonts with FMapType 7 and 8 may not be used as descendant fonts.

• Occurrence of an escape or shift code in the show string causes the
mapping algorithm to ascend the font hierarchy from the currently-
selected descendant font to the nearest parent modal font. If that
font’s FMapType is 8, the algorithm selects the new descendant
according to the shift code. If the FMapType is 3 or 7, the algorithm

PLRM 2nd Edition January 21, 1994 Fonts

5.9 Composite Fonts 291

extracts another byte from the show string. If the byte is not an
escape code, the algorithm uses it as a font number to select a
descendant of that font. But if the byte is an escape code and the
FMapType is 3, the algorithm ascends to the parent of that font,
extracts yet another byte from the show string, and repeats the selec-
tion process.

The other FMapType values (2, 4, 5, 6) are non-modal, in that their map-
ping algorithm restarts for each new character. Non-modal fonts follow
these rules:

• The parent of a non-modal font may be any type of composite font,
including a modal font.

• If the parent of a non-modal font is a modal font, the modal font’s
escape or shift code is recognized only when it appears as the first
byte of a multi-byte mapping sequence for the non-modal font.

• If the descendant of a non-modal composite font is itself a non-
modal composite font, the second part (character code) of the value
extracted from the show string is reused as the first part of the
descendant font’s mapping algorithm.

The FontMatrix entries of nested composite fonts are treated in a non-
obvious way. When a character is shown, the interpreter consults the
FontMatrix entries of only the selected base font and the immediate
parent of the base font. The immediate parent’s FontMatrix contains
the concatenation of the FontMatrix entries of all ancestor fonts. To
achieve this, definefont concatenates the root font’s FontMatrix to the
FontMatrix entries of all descendant composite fonts, but not base
fonts. Similarly, makefont and scalefont apply their transformations to
all descendant composite fonts.

PLRM 2nd Edition January 21, 1994 Fonts

292 Chapter 5: Fonts

PLRM 2nd Edition January 25, 1994 Rendering

293

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

CHAPTER 6

Rendering

The PostScript language separates graphics (the specification of shapes
and colors) from rendering (controlling a raster output device). Figure
4.5 and Figure 4.6 on pages 178 and 179 show this division. Chapter 4
also explains the facilities for describing the appearance of pages in a
device independent way. This chapter explains the facilities for control-
ling how shapes and colors are rendered on the raster output device.
Use of any of these facilities requires knowing the characteristics of the
device. A PostScript language program that is intended to be device
independent should not access any of the facilities described in this
chapter.

Nearly all of the rendering facilities that are under program control
have to do with the reproduction of color. The interpreter renders col-
ors by a multiple-step process outlined below. Depending on the cur-
rent color space and on the characteristics of the device, it is not always
necessary to perform every step.

1. If a color has been specified in a CIE-based color space, as described
in section 4.8, “Color Spaces,” the interpreter must first transform it
to one of the device color spaces (DeviceRGB, DeviceCMYK, or
DeviceGray) appropriate for the raster output device. This transfor-
mation is controlled by a CIE-based color rendering dictionary.

2. If a color has been specified in a device color space that is inappro-
priate for the output device (for example, RGB color with a CMYK or
gray-scale device), the interpreter invokes a color conversion function.
A PostScript language program can also request explicit conversions
between device color spaces.

3. The interpreter now maps the device color values through transfer
functions, one for each component. The transfer functions compen-
sate for peculiarities of the output device, such as non-linear gray-
level response. This step is sometimes called gamma correction.

Example 6.0
Table 6.0
Figure 6.0

PLRM 2nd Edition January 25, 1994 Rendering

294 Chapter 6: Rendering

4. If the device cannot reproduce continuous tones, but only certain
discrete colors, such as black and white pixels, the interpreter
invokes a halftone function, which approximates the desired colors by
means of patterns of pixels.

5. Finally, the interpreter performs scan conversion to paint the appro-
priate pixels of the raster output device with the requested colors.

Level 1 and Level 2 implementations of the PostScript language differ in
the facilities they offer for rendering:

• CIE-based color spaces and CIE-based color rendering dictionaries
are supported only in Level 2 implementations.

• Most Level 1 implementations support only a single transfer func-
tion controlled by the settransfer operator and a single halftone
function controlled by the setscreen operator.

• Level 1 implementations with the color extensions support multiple
transfer functions controlled by setcolortransfer, multiple halftone
functions controlled by setcolorscreen, and various color conversion
facilities. These operators provide separate control over rendering
each of four color components. The Level 1 products containing this
feature also support the setcmykcolor and colorimage operators.

• Level 2 implementations and the Display PostScript system also offer
halftone dictionaries. A halftone dictionary is an object that can con-
tain halftone screen thresholds, transfer functions, and many other
rendering details. Halftone dictionaries are more general and more
flexible than the Level 1 facilities, and they override those facilities
when used. Of course, Level 2 implementations fully support the
Level 1 facilities.

6.1 CIE-Based Color to Device Color

As discussed in section 4.8, “Color Spaces,” the CIE-based color spaces
are mathematically related to the CIE 1931 (XYZ)-space, which is based
on a model of human color perception. To render CIE-based colors on a
device, a PostScript interpreter must convert from the specified CIE-
based color space to the device’s native color space, taking into account
the known properties of the device. The goal of this process is to pro-
duce output that accurately reproduces the requested CIE-based color
values as perceived by a human observer. CIE-based color specification
and rendering are supported only by Level 2 implementations.

PLRM 2nd Edition January 25, 1994 Rendering

6.1 CIE-Based Color to Device Color 295

The conversion from CIE-based color to device color is complex; the
theory on which it is based is beyond the scope of this manual (see the
bibliography). The algorithm has many parameters, including an
optional, full three-dimensional color lookup table. The color fidelity of
the output depends on these parameters being properly set, usually by a
procedure that includes some form of calibration. Each product
includes a default set of color rendering parameters that have been cho-
sen to produce reasonable output based on the nominal characteristics
of the device. The PostScript language does not prescribe procedures for
calibrating the device or for computing a proper set of color rendering
parameters.

Conversion from a CIE-based color value to a device color value
requires two main operations:

1. Adjust the CIE-based color value according to a CIE-based gamut map-
ping function. A gamut is a subset of all possible colors in some color
space. A page description has a source gamut consisting of all colors
that it uses. A device has a device gamut which consists of all colors it
can reproduce. This step transforms colors from the source gamut to
the device gamut in a way that preserves color appearance and visual
contrast.

2. Generate a corresponding device color value according to a CIE-based
color mapping function. For a given CIE-based color value, this func-
tion computes a color value in the device’s native color space.

The CIE-based gamut and color mapping functions are applied only to
color values presented in a CIE-based color space. By definition, color
values in device color spaces directly control the device color compo-
nents.

The source gamut is specified by a page description when it selects a
CIE-based color space by executing setcolorspace. This specification,
which includes the values defined by the WhitePoint and BlackPoint
entries of the parameter dictionary of setcolorspace, is device indepen-
dent.

The device gamut, the gamut mapping function, and the color map-
ping function are described together by a CIE-based color rendering dic-
tionary, which is a parameter of the graphics state that is set when the
device is installed or recalibrated. Everything in this dictionary is device
dependent. The setcolorrendering operator installs a color rendering
dictionary in the graphics state; currentcolorrendering returns the cur-
rent color rendering dictionary.

PLRM 2nd Edition January 25, 1994 Rendering

296 Chapter 6: Rendering

6.1.1 CIE-Based Color Rendering Dictionaries

The CIE-based gamut and color mapping functions, embodied by the
color rendering dictionary, are defined in an extensible way. The Post-
Script language supports one standard type of color rendering diction-
ary, which works in all implementations. Some products support
additional types of color rendering dictionaries that select other, possi-
bly proprietary, gamut and color mapping methods. The set of available
types and the meanings of specific color rendering dictionaries are
product dependent. They are not described in this manual but in
product documentation.

Most of the entries in a color rendering dictionary together define a
composite color rendering function that transforms CIE-based color
values to device color values by applying the gamut and color mapping
functions. The output from this color rendering function is subject to
further transformations—device color space conversion, transfer func-
tion, and halftoning. Device color space conversion is not normally
needed, because a properly defined dictionary will produce output in
the device’s native color space.

Every color rendering dictionary must have a ColorRenderingType key
whose value is an integer. The value specifies the architecture of the
composite color rendering function as a whole. The remaining entries
in the dictionary are interpreted according to this value.

6.1.2 Type 1 Color Rendering Dictionary

The type 1 color rendering dictionary is a standard part of the Post-
Script language. Some products support other types, and the default
color rendering dictionary in any particular product may have a type
other than 1.

The type 1 color rendering is based on the CIEBasedABC color space,
which is a two-stage, non-linear transformation of the CIE 1931 (XYZ)-
space. This space is called the render color space. Values in this space can
be treated in one of two ways:

• Used directly as color values in the DeviceRGB or DeviceGray color
space.

• Used to index a three-dimensional lookup table that in turn contains
color values to be interpreted in the DeviceRGB or DeviceCMYK
color space.

PLRM 2nd Edition January 25, 1994 Rendering

6.1 CIE-Based Color to Device Color 297

The first method usually works well with additive, linear color devices,
which include many black and white and color displays. The second
method is required for high-fidelity reproductions with most color
printers, whose color rendition cannot be described by a simple
formula.

Conceptually, conversion of a color value from a CIE-based color space
to a device color space involves the following steps. In reality, the
implementation does not perform these steps in sequence but in com-
bination. Furthermore, there are important special cases in which the
effects of two or more of the steps cancel out. The implementation
detects these cases and omits the unnecessary transformations.

1. Transform the CIE-based color value from its original color space
(CIEBasedABC or CIEBasedA) to the CIE 1931 (XYZ)-space. This
transformation depends on various parameters of the color space.

2. Adjust the X, Y, and Z values to account for differences in the
WhitePoint and BlackPoint of the source and the device. This trans-
formation attempts to preserve color appearance and visual contrast,
according to the MatrixPQR and TransformPQR entries of the color
rendering dictionary. The diffuse white and black points of the
source are given as the WhitePoint and BlackPoint parameters of the
color space; the diffuse white and black points of the device are
given by the WhitePoint and BlackPoint entries of the color render-
ing dictionary. If the corresponding WhitePoint and BlackPoint
entries in the color space and color rendering dictionary are equal,
this step reduces to the identity transformation.

3. Transform the color value from the CIE 1931 (XYZ)-space into the
render color space according to the MatrixLMN, EncodeLMN,
MatrixABC, and EncodeABC entries of the CIE-based color rendering
dictionary, producing three components A, B, and C. (These have
nothing to do with the A, B, and C components of color values in
the source CIEBasedABC or CIEBasedA color spaces.)

4. If a RenderTable entry is present in the color rendering dictionary,
use the A, B, and C components to index into this three-dimensional
lookup table, yielding an interpolated color value. This value con-
sists of three or four color components, depending on how the table
is defined. Each of these components is transformed by a procedure
to produce color components in device color space. If there are three
components, they specify red, green and blue values according to

PLRM 2nd Edition January 25, 1994 Rendering

298 Chapter 6: Rendering

the DeviceRGB color space. If there are four components, they spec-
ify cyan, magenta, yellow, and black according to the DeviceCMYK
color space.

If there is no RenderTable entry, use the A, B, and C components as
the device color value directly. If the device’s native color space is
DeviceGray, the A component specifies the gray value and the B and
C components are ignored. Otherwise, the A, B, and C components
specify the red, green, and blue values, respectively, according to the
DeviceRGB color space.

Table 6.1 describes the key-value pairs that a type 1 color rendering dic-
tionary can contain and specifies the details of the transformations.

Table 6.1 Entries in a type 1 CIE-based color rendering dictionary

Key Type Semantics

ColorRenderingType integer (Required) Must be 1.

MatrixLMN array (Optional) Array of nine numbers [LX MX NX LY MY NY LZ MZ NZ] that specify the
linear interpretation of the X, Y, and Z components of the CIE 1931 (XYZ)-space
with respect to an intermediate LMN representation. This is explained below.
Default value: the identity matrix [1 0 0 0 1 0 0 0 1].

EncodeLMN array (Optional) Array of three PostScript language procedures [EL EM EN] that encode
the L, M, and N components of the intermediate LMN representation. Default
value: the array of identity procedures [{} {} {}].

Each of these procedures is called with an unencoded L, M, or N component on
the operand stack and must return the corresponding encoded value. The result
must be a monotonic function of the operand. Because these procedures are
called at unpredictable times and in unpredictable environments, they must
operate as pure functions without side effects.

The transformation defined by the MatrixLMN and EncodeLMN entries is:

In other words, the X, Y, and Z components of the CIE 1931 (XYZ)-space are
treated as a three element vector and multiplied by MatrixLMN (a three by three
matrix). The results are individually transformed by the EncodeLMN procedures
to provide the L, M, and N components of the intermediate LMN representation.

RangeLMN array (Optional) Array of six numbers [L0 L1 M0 M1 N0 N1] that specify the range of
valid values for the L, M, and N components of the intermediate LMN
representation—that is, L0 ≤ L ≤ L1, M0 ≤ M ≤ M1, and N0 ≤ N ≤ N1. Default
value: [0 1 0 1 0 1].

L EL X LX× Y LY× Z LZ×+ +()=

M EM X MX× Y MY× Z MZ×+ +()=

N EN X NX× Y NY× Z NZ×+ +()=

PLRM 2nd Edition January 25, 1994 Rendering

6.1 CIE-Based Color to Device Color 299

MatrixABC array (Optional) Array of nine numbers [AL BL CL AM BM CM AN BN CN] that specify the
linear interpretation of the encoded L, M, and N components of the intermedi-
ate LMN representation with respect to the render color space. This is explained
below. Default value: the identity matrix [1 0 0 0 1 0 0 0 1].

EncodeABC array (Optional) Array of three PostScript language procedures [EA EB EC] that encode
the A, B, and C components of the color space. Default value: the array of iden-
tity procedures [{} {} {}].

Each of these procedures is called with an unencoded A, B, or C component on
the operand stack and must return the corresponding encoded value. The result
must be a monotonic function of the operand. Because these procedures are
called at unpredictable times and in unpredictable environments, they must
operate as pure functions without side effects.

The transformation defined by the MatrixABC and EncodeABC entries is:

RangeABC array (Optional) Array of six numbers [A0 A1 B0 B1 C0 C1] that specify the range of valid
values for the A, B, and C components—that is, A0 ≤ A ≤ A1, B0 ≤ B ≤ B1, and
C0 ≤ C ≤ C1. If there is no RenderTable entry, these ranges must lie within the
range 0 to 1, since the render color space maps directly onto a device color space.
If a RenderTable entry is present, these ranges define the boundaries of the
three-dimensional lookup table. Default value: [0 1 0 1 0 1].

WhitePoint array (Required) Array of three numbers [XW YW ZW] that specify the CIE 1931 (XYZ)-
space tristimulus value of the device’s diffuse white point. The numbers XW and
ZW must be positive and YW must be equal to 1.

WhitePoint is assumed to represent the device’s diffuse, achromatic highlight,
and hence its value must correspond to the nearly lightest, achromatic color that
the device can produce. A color somewhat darker that the absolutely lightest
color may be used to avoid blocking of highlights and to provide some flexibility
for rendering specular highlights.

BlackPoint array (Optional) Array of three numbers [XB YB ZB] that specify the CIE 1931 (XYZ)-
space tristimulus value of the device’s diffuse black point. These numbers must
be non-negative. Default value: [0 0 0].

BlackPoint is assumed to represent the device’s diffuse, achromatic shadow. Its
value is defined by the nearly darkest, nearly achromatic color that the device
can produce. A color somewhat lighter than the absolutely darkest color may be
used to avoid blocking of shadows. A slightly chromatic color may be used to
increase dynamic range in situations where the darkest color that the device can
produce is slightly chromatic.

A EA L AL M AM N AN×+×+×()=

B EB L BL M BM N BN×+×+×()=

C EC L CL M CM N CN×+×+×()=

PLRM 2nd Edition January 25, 1994 Rendering

300 Chapter 6: Rendering

MatrixPQR array (Optional) Array of nine numbers [PX QX RX PY QY RY PZ QZ RZ] that specify the
linear interpretation of the X, Y, and Z components of the CIE 1931 (XYZ)-space,
respectively, with respect to an intermediate PQR representation. This is
explained below. Default value: the identity matrix [1 0 0 0 1 0 0 0 1].

RangePQR array (Optional) Array of six numbers [P0 P1 Q0 Q1 R0 R1] that specify the range of valid
values for the P, Q, and R components of the intermediate PQR representation—
that is, P0 ≤ P ≤ P1, Q0 ≤ Q ≤ Q1, and R0 ≤ R ≤ R1. Default value: [0 1 0 1 0 1].

TransformPQR array (Required) Array of three PostScript language procedures [TP TQ TR] that
transform the P, Q, and R components of the intermediate PQR representation in
a way that accommodates for the differences between the source’s and the
device’s diffuse white and black points while preserving color appearance and
visual contrast.

Let XWs, YWs, ZWs and XBs, YBs, ZBs be the CIE 1931 (XYZ)-space tristimulus val-
ues of the source’s diffuse white and black points, respectively. Let XWd, YWd,
ZWd and XBd, YBd, ZBd be the CIE 1931 (XYZ)-space tristimulus values of the
device’s diffuse white and black points. Then the source and device tristimulus
values Xs, Ys, Zs and Xd, Yd, Zd in the CIE 1931 (XYZ)-space, respectively, are
related by the MatrixPQR and TransformPQR entries as follows:

where

Ws = [X
Ws

 Y
Ws

 Z
Ws

 P
Ws

 Q
Ws

 R
Ws

]

Bs = [X
Bs

 Y
Bs

 Z
Bs

 P
Bs

 Q
Bs

 R
Bs

]

Wd = [X
Wd

 Y
Wd

 Z
Wd

 P
Wd

 Q
Wd

 R
Wd

]

Bd = [X
Bd

 Y
Bd

 Z
Bd

 P
Bd

 Q
Bd

 R
Bd

]

Ps Xs PX Ys PY Zs PZ×+×+×=

Qs Xs QX Ys QY Zs QZ×+×+×=

Rs Xs RX Ys RY Zs RZ×+×+×=

Pd TP Ws Bs Wd Bd Ps, , , ,()=

Qd TQ Ws Bs Wd Bd Qs, , , ,()=

Rd TR Ws Bs Wd Bd Rs, , , ,()=

Xd Pd XP Qd XQ Rd XR×+×+×=

Yd Pd YP Qd YQ Rd YR×+×+×=

Zd Pd ZP Qd ZQ Rd ZR×+×+×=

PWs XWs PX YWs+× PY ZWs+× PZ×=

QWs XWs QX YWs+× QY ZWs+× QZ×=

RWs XWs RX YWs+× RY ZWs+× RZ×=

PLRM 2nd Edition January 25, 1994 Rendering

6.1 CIE-Based Color to Device Color 301

In other words, the Xs, Ys, and Zs components of the source color in CIE 1931
(XYZ)-space are treated as a three element vector and multiplied by MatrixPQR
(a three by three matrix), yielding the Ps, Qs, and Rs components of the source
color with respect to the intermediate PQR representation. These components
are individually transformed by the TransformPQR procedures, producing the Pd,
Qd, and Rd components of the corresponding device color. Each of the
components is transformed separately; there is no interaction between
components. Finally, the Pd, Qd, and Rd components of the device color are
treated as a three element vector and multiplied by the inverse of MatrixPQR.
The results provide the Xd, Yd, and Zd components of the device color in the CIE
1931 (XYZ)-space.

The transformation embodied by the TransformPQR procedures usually consists
of two conceptually separate processes. The first allows for the chromatic adapta-
tion involved when the two diffuse white points differ. The second allows for the
contrast adaptation involved when the dynamic ranges between the two sets of
diffuse white and black points differ.

In addition to the appropriate Ps, Qs, or Rs component, each of the
TransformPQR procedures takes the additional four operands Ws, Bs, Wd, and Bd

that specify the source’s diffuse white and black points and the device’s diffuse
white and black points, respectively. Each of these operands is an array of six ele-
ments giving the white or black point twice: once in CIE 1931 (XYZ)-space and
again in PQR space.

Each of these procedures is called with the four Ws, Bs, Wd, and Bd arrays and the
appropriate Ps, Qs, or Rs component on the operand stack (in that order) and
must return the corresponding transformed Pd, Qd, or Rd component. The result

PBs XBs PX YBs+× PY ZBs+× PZ×=

QBs XBs QX YBs+× QY ZBs+× QZ×=

RBs XBs RX YBs+× RY ZBs+× RZ×=

PBd XBd PX YBd+× PY ZBd+× PZ×=

QBd XBd QX YBd+× QY ZBd+× QZ×=

RBd XBd RX YBd+× RY ZBd+× RZ×=

XP YP ZP

XQ YQ ZQ

XR YR ZR

PX QX RX

PY QY RY

PZ QZ RZ

1−

=

PWd XWd PX YWd+× PY ZWd+× PZ×=

QWd XWd QX YWd+× QY ZWd+× QZ×=

RWd XWd RX YWd+× RY ZWd+× RZ×=

PLRM 2nd Edition January 25, 1994 Rendering

302 Chapter 6: Rendering

must be a monotonic function of the last operand. Because these procedures are
called at unpredictable times and in unpredictable environments, they must
operate as pure functions without side effects.

RenderTable array (Optional) Array of the form [NA NB NC table m T1 T2 ... Tm], which, if present,
describes a three-dimensional lookup table that maps colors in render color
space to colors in device color space via table look-up and interpolation. The
table contains NA × NB × NC entries, each of which consists of m encoded color
component values. The element m must be the integer 3 or 4; NA, NB, and NC

must be integers greater than 1. The entry at integer coordinates (a, b, c) in the
table, where 0 ≤ a < NA, 0 ≤ b < NB, and 0 ≤ c < NC, contains the encoded device
color value that corresponds to render color space components A, B, and C,
where:

The values A0, A1, B0, B1, C0, and C1 are given in the RangeABC entry.

The element table must be an array of NA strings, which define the contents of
the lookup table. Each string must contain m × NB × NC characters. Within the
string at index a in the array, the m characters starting at position
m × (b × NC + c) constitute the table entry at location (a, b, c). These characters
are interpreted as encoded device color components e1, e2, ... em, which are
integers in the range 0 to 255.

The elements T1, T2, ... Tm are PostScript language procedures that transform the
interpolated, encoded components to device color component values. These
transformations are:

In other words, the interpreter divides an encoded component by 255,
producing a number in the range 0 to 1, and pushes it on the operand stack. It
then calls the appropriate T procedure, which is expected to consume its
operand and produce a result in the range 0 to 1. Because these procedures are
called at unpredictable times and in unpredictable environments, they must
operate as pure functions without side effects.

The values d1, d2, ... dm constitute the final device color value. That is, if m is 3,
then d1, d2, and d3 are the red, green, and blue components; if m is 4, then d1, d2,
d3, and d4 are the cyan, magenta, yellow, and black components.

A A0 a A1 A0−() NA 1−()⁄×+=

B B0 b B1 B0−() NB 1−()⁄×+=

C C0 c C1 C0−() NC 1−()⁄×+=

d1 T1 e1 255⁄()=

d2 T2 e2 255⁄()=

dm Tm em 255⁄()=
...

PLRM 2nd Edition January 25, 1994 Rendering

6.2 Conversions Among Device Color Spaces 303

6.2 Conversions Among Device Color Spaces

Each raster output device has a native device color space, which corre-
sponds to one of the PostScript language color spaces DeviceGray,
DeviceRGB, or DeviceCMYK. In other words, the device supports repro-
duction of colors according to a gray-scale (monochrome), red-green-
blue, or cyan-magenta-yellow-black model. If the device supports con-
tinuous-tone output, reproduction occurs directly. Otherwise, it is
accomplished by means of halftoning.

The PostScript interpreter knows the native color space and other out-
put capabilities of the device. It can automatically convert color values
as specified in a document to the appropriate color values for the native
color space of the device. For example, if a PostScript language program
specifies colors in the DeviceRGB color space, but the device supports
gray scale, such as a monochrome display, or CMYK, such as a color
printer, the interpreter performs the necessary conversions. If a pro-
gram specifies colors in the device’s native color space, no conversions
are necessary.

A program can also request explicit conversions among device color
spaces by executing the operators currentgray, currentrgbcolor,
currenthsbcolor, or currentcmykcolor, which return color values
according to specific color spaces. These operators are described in sec-
tion 4.8.2, “Device Color Spaces.” Conversions between DeviceRGB and
DeviceGray are supported by all implementations. Conversions to and
from DeviceCMYK are a Level 2 feature.

Note These operators can convert colors only among device color spaces, not to or
from CIE-based or special color spaces.

The conversions described here do not involve use of transfer functions
or halftone functions. When colors are to be rendered on the output
device, the transfer functions and halftone functions are applied at a
later stage to the output of the color conversion operation. When colors
are simply read back by a PostScript language program by executing one
of the above-mentioned operators, the transfer functions and halftone
functions are not applied at all.

The algorithms used to convert among device color spaces are very sim-
ple. As perceived by a human viewer, the conversions produce only
crude approximations of the original colors. Device color conversions
ordinarily are not performed when a program specifies colors in CIE-

PLRM 2nd Edition January 25, 1994 Rendering

304 Chapter 6: Rendering

based color spaces; the CIE-based color rendering functions map
directly to the device’s native color space (see section 6.1, “CIE-Based
Color to Device Color”).

6.2.1 Conversion Between DeviceRGB and DeviceGray

Black, white, and intermediate shades of gray can be considered special
cases of RGB color. A gray-scale value is described by a single number: 0
corresponds to black, 1 to white, and intermediate values to different
gray levels.

A gray value is equivalent to an RGB value with all three components
the same. In other words, the RGB color value equivalent to a specific
gray value is simply:

red = gray
green = gray
blue = gray

The gray value for a given RGB value is computed according to the
NTSC video standard. This standard determines how a color television
signal is rendered on a black and white television.

gray = .3 × red + .59 × green + .11 × blue

Colors specified according to the HSB (hue-saturation-brightness)
model are equivalent to those specified in the RGB model, but
expressed in a different coordinate system called the “hexcone” model.
See the bibliography. Either form of specification produces colors in the
DeviceRGB color space. HSB is not a color space in its own right.

6.2.2 Conversion Between DeviceCMYK and DeviceGray

Nominally, a gray value is the complement of the black component of
CMYK. Therefore, the CMYK color value equivalent to a specific gray
value is simply:

cyan = 0.0
magenta = 0.0
yellow = 0.0
black = 1.0 – gray

To obtain the gray value for a given CMYK value, one must take the
contributions of all components into account.

PLRM 2nd Edition January 25, 1994 Rendering

6.2 Conversions Among Device Color Spaces 305

gray = 1.0 – min (1.0, .3 × cyan + .59 × magenta + .11 × yellow + black)

The interactions between the black component and the other three are
explained below.

6.2.3 Conversion from DeviceRGB to DeviceCMYK

Conversion of a color value from RGB to CMYK is a two-step process.
The first step is described by the equations that express the relationship
between red-green-blue and cyan-magenta-yellow. The second step is to
use black generation and undercolor removal to generate a black com-
ponent and alter the other components to produce a better approxima-
tion of the original color.

The subtractive color primaries cyan, magenta, and yellow are the com-
plements of the additive primaries red, green, and blue. For example, a
cyan ink subtracts the red component of white light. In theory, the con-
version is very simple:

cyan = 1.0 – red
magenta = 1.0 – green
yellow = 1.0 – blue

For example, a color that is 0.2 red, 0.7 green, and 0.4 blue can also be
expressed as 1.0 – 0.2 = 0.8 cyan, 1.0 – 0.7 = 0.3 magenta, and 1.0 – 0.4
= 0.6 yellow.

Logically, only cyan, magenta, and yellow are needed to generate a
printing color. An equal percentage of cyan, magenta, and yellow
should create the equivalent percentage of black.

In reality, colored printing inks do not mix perfectly; such combina-
tions often form dark brown shades instead. It is often desirable to sub-
stitute real black ink for the mixed-black portion of a color to obtain a
truer color rendition on a printer. Most color printers support a black
component (the K component of CMYK). Computing the quantity of
this component requires some additional steps:

• Black generation calculates the amount of black to be used when try-
ing to reproduce a particular color.

• Undercolor removal reduces the amount of cyan, magenta, and yellow
components to compensate for the amount of black that was added
by the black generation.

PLRM 2nd Edition January 25, 1994 Rendering

306 Chapter 6: Rendering

Flexibility in performing these functions is important for achieving
good results under a variety of printing conditions. The PostScript lan-
guage provides limited control over black generation and undercolor
removal when converting from DeviceRGB to DeviceCMYK color
spaces. Applications requiring finer control must specify colors in CIE-
based color spaces and control conversion to CMYK by means of the
CIE-based color rendering dictionary (see section 6.1, “CIE-Based Color
to Device Color”).

The complete conversion from RGB to CMYK is as follows, where
BG (k) and UCR (k) are invocations of the black generation and under-
color removal functions, respectively:

c = 1.0 – red
m = 1.0 – green
y = 1.0 – blue
k = min (c, m, y)

cyan = min (1.0, max (0.0, c – UCR (k)))
magenta = min (1.0, max (0.0, m – UCR (k)))
yellow = min (1.0, max (0.0, y – UCR (k)))
black = min (1.0, max (0.0, BG(k)))

The black generation and undercolor removal functions are defined as
PostScript language procedures. The setblackgeneration and
setundercolorremoval operators set these parameters in the graphics
state. The interpreter calls these procedures when it needs to perform
RGB to CMYK conversion. Each procedure is called with a single
numeric operand and is expected to return a single numeric result. The
procedures are called at unpredictable times, so they must operate as
pure functions without side effects.

The operand of both procedures is k, the minimum of the intermediate
c, m, and y values that have been computed by subtracting the original
red, green, and blue values from 1. Nominally, k is the amount of black
that can be removed from the cyan, magenta, and yellow components
and be substituted as a separate black component.

The black generation function computes the black component as a
function of the nominal k value. It can simply return its k operand or it
can return a larger value for extra black, a smaller value for less black, or
zero for no black at all.

PLRM 2nd Edition January 25, 1994 Rendering

6.3 Transfer Functions 307

The undercolor removal function computes the amount that is to be
subtracted from each of the intermediate c, m, and y values to produce
the final cyan, magenta, and yellow components. It can simply return
its k operand or it can return zero (so no color is removed), some frac-
tion of the black amount, or even a negative amount, thereby adding to
the total amount of ink.

The component values that result from black generation and under-
color removal are expected to be in the range 0 to 1. If a value falls out-
side this range, the nearest valid value is substituted automatically,
without error indication. This is indicated explicitly by invocations of
min and max operations in the formulas given above.

The correct choice of black generation and undercolor removal func-
tions depends on the characteristics of the output device—for example,
how inks mix. Each device is configured with default values that are
appropriate for that device.

6.2.4 Conversion from DeviceCMYK to DeviceRGB

Conversion of a color value from CMYK to RGB is a simple operation
that does not involve the black generation or undercolor removal func-
tions:

red = 1.0 – min (1.0, cyan + black)
green = 1.0 – min (1.0, magenta + black)
blue = 1.0 – min (1.0, yellow + black)

In other words, the black component is simply added to each of the
other components. Then those components are converted to their com-
plementary colors by subtracting each of them from 1.

6.3 Transfer Functions

A transfer function adjusts the values of color components to compen-
sate for non-linear response in an output device and in the human eye.
Each component of a device color space—for example, the red compo-
nent of the DeviceRGB color space—is intended to represent the per-
ceived lightness or intensity of that component in proportion to the
numeric value. Many devices do not behave this way; a transfer func-
tion can compensate for the device’s actual behavior. This operation is
sometimes called gamma correction (not to be confused with the CIE-
based gamut mapping function performed as part of CIE-based color ren-
dering).

PLRM 2nd Edition January 25, 1994 Rendering

308 Chapter 6: Rendering

In the sequence of steps for processing colors, the PostScript interpreter
applies the transfer function after performing conversions between
color spaces, if necessary, but before applying the halftone function, if
necessary. A separate transfer function applies to each color compo-
nent. There is no interaction between components.

Transfer functions operate in the native color space of the output device
regardless of the color space in which colors were originally specified.
For example, for a CMYK device, the transfer functions apply to the
device’s cyan, magenta, yellow, and black color components, even if the
colors were originally specified in, say, the DeviceRGB or CIEBasedABC
color space.

There are three ways to specify transfer functions:

• The settransfer operator establishes a single transfer function to be
applied to all color components of the device. Most Level 1 imple-
mentations support only a single transfer function.

• The setcolortransfer operator establishes four separate transfer func-
tions, one each for red, green, blue, and gray or their complements
cyan, magenta, yellow, and black. An RGB device uses the first three;
a monochrome device uses the gray transfer function only, and a
CMYK device uses all four. setcolortransfer is supported in Level 2
and in certain Level 1 implementations, primarily those in color
printers.

• The sethalftone operator can establish transfer functions as optional
entries in halftone dictionaries (see section 6.4.3, “Halftone Dictionar-
ies”). This is the only way to set transfer functions for separation
color components—those that are not primary colors for the device.
Transfer functions specified in halftone dictionaries override those
specified by settransfer or setcolortransfer. Halftone dictionaries are
supported by all Level 2 and Display PostScript implementations.

A transfer function is a PostScript language procedure that can be called
with a number in the range 0.0 to 1.0 (inclusive) on the operand stack
and must return a number in the same range. The procedure’s operand
is the value of a color component in the device’s native color space,
either specified directly or produced by conversion from some other
color space. The procedure’s result is the transformed value that is to be
transmitted to the device (after halftoning, if necessary).

PLRM 2nd Edition January 25, 1994 Rendering

6.4 Halftones 309

The operand and result of a transfer function are always interpreted as
if the component were additive—red, green, blue, or gray. That is, larger
numbers indicate lighter colors. If the component is subtractive (cyan,
magenta, yellow, black, or a separation), the PostScript interpreter con-
verts it to additive form by subtracting it from 1.0 before passing it to
the transfer function. The result from the transfer function is always in
additive form; it is passed on to the halftone function in this form.

The PostScript interpreter calls transfer functions at unpredictable times
and in unpredictable environments. A transfer function procedure
must behave as a pure function. It must not depend on variable data
other than its operand, and it must not have side effects.

In addition to their intended use for gamma correction, transfer func-
tions can be used to produce a variety of special, device-dependent
effects. For example, on a monochrome device, the transfer function

{1 exch sub}

inverts the output colors, producing a negative rendition of the page. In
general, this method does not work for color devices; inversion can be
more complicated than merely inverting each of the components.
Because the effects produced are device dependent, transfer functions
should not be altered by a page description that is intended to be device
independent.

When the current color space is DeviceGray and the output device’s
native color space is DeviceCMYK, the interpreter uses only the gray
transfer function. The normal conversion from DeviceGray to
DeviceCMYK produces 0 for the cyan, magenta, and yellow compo-
nents. Those components are not passed through their respective trans-
fer functions, but are rendered directly, producing output containing
no colored inks. This special case applies only to colors specified in the
DeviceGray color space. It exists for compatibility with existing applica-
tions that use settransfer to obtain special effects on monochrome
devices.

6.4 Halftones

Halftoning is the process by which continuous-tone colors are approxi-
mated by a pattern of pixels that can achieve only a limited number of
discrete colors. The most familiar case of this is rendering of gray tones
with black and white pixels, as in a newspaper photograph.

PLRM 2nd Edition January 25, 1994 Rendering

310 Chapter 6: Rendering

If halftoning is required, it occurs after all color components have been
transformed by the appropriate transfer function. The input to the half-
tone function consists of continuous-tone, gamma-corrected color
components in the device’s native color space. The output consists of
pixels representing colors the device can reproduce.

Some devices can reproduce continuous-tone colors directly. For such
devices, halftoning is not required. After gamma correction by the
transfer functions, the color components are transmitted directly to the
device.

The PostScript language provides a high degree of control over details
of the halftoning process. For example, in color printing, one must
specify independent halftone screens for each of three or four color sep-
arations. When rendering on low-resolution displays, one must have
fine control over halftone patterns to achieve the best approximations
of gray levels or colors, and to minimize visual artifacts.

Note Remember that everything pertaining to halftones is, by definition, device
dependent. In general, when an application provides its own halftone
specifications, it sacrifices portability. Associated with every device is a
default halftone definition that is appropriate for most applications. Only
relatively sophisticated applications need to define their own halftones to
achieve special effects.

All halftones are defined in device space, unaffected by the current trans-
formation matrix. For correct results, a PostScript language program
that defines a new halftone must know the resolution and orientation
of device space. The best choice of halftone parameters often depends
on specific physical properties of the output device—for example, pixel
shape, overlap between pixels, and effects of electronic or mechanical
noise.

6.4.1 How Halftones Are Defined

There are three ways to specify halftones:

• The setscreen operator establishes a single halftone screen that is to
be applied to all color components of the device. The halftone screen
can be specified in only one way: as frequency, angle, and spot func-
tion. Most Level 1 implementations support only a single halftone
screen.

PLRM 2nd Edition January 25, 1994 Rendering

6.4 Halftones 311

• The setcolorscreen operator establishes four separate halftone
screens, one each for red, green, blue, and gray or their complements
cyan, magenta, yellow, and black. An RGB device uses the first three,
a monochrome device uses the gray screen only, and a CMYK device
uses all four. setcolorscreen is supported in Level 2 and in certain
Level 1 implementations, primarily those in color printers.

• The sethalftone operator installs a halftone dictionary, which can
describe any of several types of halftones. The dictionary contains
the parameters of the halftoning algorithm, either for all compo-
nents together or for each component separately. It optionally con-
tains other rendering controls, such as transfer functions.

sethalftone is the most general way to specify halftones. Any halftone
that can be defined in the other two ways can also be defined as a half-
tone dictionary. However, halftone dictionaries are supported only in
Level 2 and Display PostScript implementations, whereas setscreen
(and sometimes setcolorscreen) is available in Level 1 implementations.

The setscreen operator specifies a halftone screen by three operands:
frequency, angle, and spot function. These operands are interpreted the
same as the Frequency, Angle, and SpotFunction entries in a type 1
halftone dictionary, described in section 6.4.4, “Spot Functions.” This is
the only form of halftone specification supported in most Level 1
implementations.

For compatibility between Level 1 and Level 2 implementations, the
setscreen, setcolorscreen, sethalftone, currentscreen, currentcolor-
screen, and currenthalftone operators interact in various ways to ensure
reasonable behavior when a halftone that has been defined in one way
is read out in a different way. The details of these interactions are given
in the descriptions of the six operators.

6.4.2 How Halftone Screens Work

The halftone functions supported by the PostScript language are based
on the use of a halftone screen. A screen is defined by conceptually lay-
ing a uniform rectangular grid of halftone cells over the device pixel
array. Each pixel belongs to one cell of the grid; a halftone cell usually
contains many device pixels. The screen grid is defined entirely in
device space, unchanged by modifications to the current transforma-
tion matrix (CTM). This property is essential for ensuring that adjacent
areas colored by halftones are properly stitched together without
“seams.”

PLRM 2nd Edition January 25, 1994 Rendering

312 Chapter 6: Rendering

For a black and white device, each cell of a screen can be made to
approximate a shade of gray by painting some of the cell’s pixels black
and some white. Numerically, the gray level produced within a cell is
the ratio of the cell’s pixels that are white to the total number of pixels
in that cell. If a cell contains n pixels, then it can render n + 1 different
gray levels: all pixels black, one pixel white, two pixels white, ... n – 1
pixels white, all n pixels white. A desired gray value g in the range 0 to 1
is produced by making i pixels white, where i = floor(g × n).

The foregoing description also applies to color output devices whose
pixels consist of primary colors that are either completely on or com-
pletely off. Most color printers, but not color displays, work this way.
Halftoning is applied to each color component independently, produc-
ing shades of that color.

Color components are presented to the halftoning machinery in addi-
tive form, regardless of whether they were originally specified in addi-
tive (RGB or gray) or subtractive (CMYK or tint) form. Larger values of a
color component represent lighter colors—greater intensity in an addi-
tive device, such as a display, and less ink in a subtractive device, such
as a printer. Transfer functions produce color values in additive form.
See section 6.3, “Transfer Functions.”

6.4.3 Halftone Dictionaries

A halftone dictionary is a dictionary object whose entries are parameters
to the halftoning machinery. The graphics state includes a current half-
tone dictionary, which specifies the halftoning process to be used by the
painting operators. The operator currenthalftone returns the current
halftone dictionary. sethalftone establishes a different halftone diction-
ary as the current one. The halftone dictionary is a feature of Level 2
and Display PostScript implementations. In Level 1 implementations,
the setscreen operator controls halftoning in a more limited way.

A halftone dictionary is a self-contained description of a halftoning
process. Painting operations, such as fill, stroke, and show, consult the
current halftone dictionary when they require information about the
halftoning process. The interpreter consults the halftone dictionary at
unpredictable times. It can cache the results internally for later use. For
these reasons, once a halftone dictionary has been passed to
sethalftone, its contents should be considered read only. Some of the
entries in the dictionary are procedures that are called to compute the
required information. Such procedures must compute results that

PLRM 2nd Edition January 25, 1994 Rendering

6.4 Halftones 313

depend only on information in the halftone dictionary, not on outside
information—for example, the graphics state itself—and they must not
have side effects.

Note This rules out certain techniques, such as the “pattern fill” example in the
PostScript Language Tutorial and Cookbook, that depend on the spot function
being executed at predictable times. Such techniques work for halftones
defined by setscreen, but not for halftones defined by halftone dictionaries.
See section 4.9, “Patterns,” for recommended ways to create device-
independent patterns.

Every halftone dictionary must have a HalftoneType entry whose value
is an integer. This specifies the major type of halftoning process. The
remaining entries in the dictionary are interpreted according to the
type. Table 6.2 lists the standard halftone types.

Table 6.2 Types of halftone dictionaries

Type Semantics

1 Defines a single halftone screen by frequency, angle, and spot function. The
setscreen operator, available in Level 1, also defines halftones this way,
but it expects the parameters to be given as separate operands instead of
being bundled into a halftone dictionary.

2 Defines four separate halftone screens, one for each primary color
component. Each screen is given as a frequency, angle, and spot
function.

3 Defines a single halftone screen directly by a threshold array at device
resolution.

4 Defines four separate halftone screens, one for each primary color
component. Each screen is given as a threshold array.

5 (Level 2) Defines an arbitrary number of halftone screens, one for each
color component, including both primary and separation (spot color)
components. The keys in this dictionary are names of color components.
The values are halftone dictionaries (type 1 or 3), each of which
describes the halftone screen for a single color component.

6.4.4 Spot Functions

A halftone dictionary whose HalftoneType is 1 defines a halftone screen
according to a frequency, angle, and spot function. The setscreen operator,
which is available in Level 1 implementations, defines a halftone screen
given a frequency, angle, and spot function as operands. Whichever way it
is defined, this type of halftone screen works as described below. The

PLRM 2nd Edition January 25, 1994 Rendering

314 Chapter 6: Rendering

features that can be specified by optional entries in the halftone dic-
tionary are not available for screens defined by setscreen or by
setcolorscreen.

The halftone screen grid has a frequency (number of halftone cells per
inch) and angle (orientation of the grid lines relative to the device coor-
dinate system). The sethalftone or setscreen operator may make slight
adjustments to the requested frequency and angle to ensure that the
patterns of enclosed pixels remain constant as the screen cells are repli-
cated over the entire page.

Figure 6.1 Various halftoning effects

150/inch at 45° 100/inch at 45° 50/inch at 45° 75/inch at 30°
round dot screen round dot screen round dot screen line screen

As a cell’s desired gray value varies from black to white, individual pix-
els in the cell change from black to white in a well-defined sequence. If
a particular gray includes certain white pixels, lighter grays will include
the same white pixels and some additional pixels. The order in which
pixels change from black to white for increasing gray levels is specified
by a spot function, which is defined by a PostScript language procedure.
The spot function describes the order of pixel whitening in an indirect
way that minimizes interactions with screen frequency and angle.

Consider a halftone cell to have its own coordinate system: The center
of the square is the origin and the corners are at ±1 in x and y. In this
system, each pixel in the cell is centered at x and y coordinates that are
both in the range –1 to 1. For each pixel, the interpreter pushes the pix-
el’s coordinates on the operand stack and calls the spot function proce-
dure. The procedure must return a single number in the range –1 to 1
that defines the pixel’s position in the ordering.

PLRM 2nd Edition January 25, 1994 Rendering

6.4 Halftones 315

The values the spot function returns are not significant. All that matters
is the relative spot function values for different pixels. As a cell’s gray
value varies from black to white, the first pixel whitened is the one
whose spot function has the lowest value, the next pixel is the one with
the next higher spot function value, and so on. If two pixels have the
same spot function value, setscreen chooses their relative order arbi-
trarily.

There are relatively simple spot functions that define common halftone
patterns. A spot function whose value is inversely related to the dis-
tance from the center of the cell produces a “dot screen” in which the
black pixels are clustered within a circle whose area is inversely propor-
tional to the gray level. An example of such a spot function is:

{180 mul cos exch 180 mul cos add 2 div}

A spot function whose value is the distance from a line through the
center of the cell produces a “line screen” in which the white pixels
grow away from that line. More complex patterns are occasionally
useful.

Table 6.3 Entries in a type 1 halftone dictionary

Key Type Semantics

HalftoneType integer (Required) Must be 1.

Frequency number (Required) Screen frequency, measured in halftone cells per inch in device space.

Angle number (Required) Screen angle: Number of degrees by which the screen is to be rotated
with respect to the device coordinate system.

SpotFunction procedure (Required) Procedure that defines the order in which device pixels within a screen
cell are adjusted for different gray levels.

AccurateScreens boolean (Optional; Level 2) If present and the value is true, invokes a special halftone
algorithm that is extremely precise, but computationally expensive.

ActualFrequency number (Optional; Level 2) If present, sethalftone replaces its value with the actual
frequency that was achieved.

ActualAngle number (Optional; Level 2) If present, sethalftone replaces its value with the actual angle
that was achieved.

TransferFunction procedure (Optional; Level 2) Overrides the transfer function specified by settransfer or
setcolortransfer. Required in a type 1 halftone dictionary that is used as an
element of a type 5 halftone dictionary for a non-primary color component.

PLRM 2nd Edition January 25, 1994 Rendering

316 Chapter 6: Rendering

A type 1 halftone dictionary can optionally contain the key
AccurateScreens, with a boolean value. If the value is true, a highly pre-
cise halftoning algorithm is enabled; if it is false or if the
AccurateScreens entry is not present, ordinary halftoning is used. Accu-
rate halftoning achieves the requested screen angle and frequency with
very high accuracy, whereas ordinary halftoning adjusts the angle and
frequency so a single screen cell is quantized to device pixels. High
accuracy is important mainly for making color separations on high-res-
olution devices. However, it may be computationally expensive and so
is ordinarily disabled.

When AccurateScreens is true, sethalftone intentionally defers calling
the spot function until the screen is needed by some operator (for
example, fill) that renders marks on the current page. This means that
the sethalftone operator itself executes quickly. The potentially high
cost of building the screen is not incurred until the screen is used. This
makes it convenient to obtain ActualFrequency and ActualAngle values
for various candidate screens without incurring the cost of building
them.

If the entries ActualFrequency and ActualAngle appear in the halftone
dictionary, the sethalftone operator replaces their values with the
actual frequency and angle that were achieved. The Frequency and
Angle entries remain undisturbed; they reflect the values that were
requested by the program.

In principle, the PostScript language permits defining screens with arbi-
trarily large cells—in other words, arbitrarily low frequencies. However,
cells that are very large relative to device resolution or that are at unfa-
vorable angles may exceed available memory. If this occurs, setscreen
or sethalftone executes a limitcheck error. The AccurateScreens feature
often requires very large amounts of memory to achieve highest accu-
racy. See Appendix C for information on system parameters affecting
halftone screens.

6.4.5 Threshold Arrays

A halftone dictionary whose HalftoneType is 3 defines a halftone as an
array of threshold values that directly control individual device pixels
in a halftone cell. This provides a high degree of control over halftone
rendering. Also, it permits halftone cells to be rectangular, whereas half-
tone cells defined by a spot function are always square. Both of these
capabilities are important for low-resolution display devices.

PLRM 2nd Edition January 25, 1994 Rendering

6.4 Halftones 317

A threshold array is much like a sampled image: It is a rectangular array
of pixel values. However, it is defined entirely in device space, and the
sample values always occupy 8 bits each. The pixel values nominally
represent gray levels in the usual way, where 0 is black and 255 is white.
The threshold array is replicated to tile the entire device space; each
pixel of device space is mapped to a particular sample of the threshold
array. On a bi-level device, where each pixel is either black or white,
halftoning with a threshold array proceeds as follows:

• For each device pixel that is to be painted with some gray level, con-
sult the corresponding pixel of the threshold array.

• If the desired gray level is less than the pixel value in the threshold
array, paint the device pixel black; otherwise, paint it white. Gray
values in the range 0 to 1 (inclusive) correspond to pixel values 0 to
255 in the threshold array.

Note A threshold value of 0 is treated as if it were 1; therefore, a gray value of 0
paints all pixels black, regardless of what is in the threshold array.

This scheme easily generalizes to monochrome devices with multiple
bits per pixel. For example, if there are 2 bits per pixel, then each pixel
can directly represent one of four different gray levels: black, dark gray,
light gray, and white, encoded as 0, 1, 2, and 3, respectively. For each
device pixel that is to be painted with some in-between gray level, the
algorithm consults the corresponding pixel of the threshold array to
determine whether to use the next-lower or next-higher representable
gray level. In this situation, the samples in the threshold array do not
represent absolute gray values, but rather gradations between two adja-
cent representable gray levels.

A halftone defined in this way can also be used with color displays that
have a limited number of values for each color component. The red,
green, and blue values are simply treated independently as gray levels.
The same threshold array applies to each color. (This technique also
works for a screen defined as a spot function, since the interpreter uses
the spot function to compute a threshold array internally.)

Table 6.4 Entries in a type 3 halftone dictionary

Key Type Semantics

HalftoneType integer (Required) Must be 3.

Width integer (Required) Width of threshold array, in pixels.

Height integer (Required) Height of threshold array, in pixels.

PLRM 2nd Edition January 25, 1994 Rendering

318 Chapter 6: Rendering

Thresholds string (Required) Threshold values. This string must be width × height characters long.
The individual characters represent threshold values as described above. The
order of pixels is the same as for a sampled image mapped directly onto device
space, with the first sample at device coordinates (0, 0) and x coordinates
changing faster than y coordinates.

TransferFunction procedure (Optional; Level 2) If present, overrides the transfer function specified by
settransfer or setcolortransfer. Required in a type 3 halftone dictionary used as
an element of a type 5 halftone dictionary for a non-primary color component.

6.4.6 HalftoneType 5 Dictionaries

Some devices, particularly color printers, require different halftones for
each of the device’s color components. Also, devices that can produce
named separations may require individual halftones for each of those
separations. The HalftoneType 5 dictionary allows specification of indi-
vidual halftones for an arbitrary number of color components.

A type 5 halftone dictionary contains entries whose keys are separation
or colorant names and whose values are halftone dictionaries. The keys
are the separation names used as operands of the setcolorspace opera-
tor for the Separation color space (see section 4.8.4, “Special Color
Spaces”). The values are type 1 or type 3 halftone dictionaries, each of
which describes the halftone and transfer function for a single
separation or colorant.

The primary colors are named Red, Green, and Blue in an RGB device;
Cyan, Magenta, Yellow, and Black in a CMYK device; and Gray in a
monochrome device. In a device that supports named separations, non-
primary separations can have arbitrary names. The keys can be either
names or strings, which are treated equivalently.

A type 5 halftone dictionary must also contain an entry whose key is
Default. The value of this entry is the halftone dictionary to be used for
any separation that does not have its own entry.

When a type 1 or type 3 halftone dictionary appears as the value of an
entry in a type 5 halftone dictionary, it applies only to a single color
component. This is in contrast to such a dictionary appearing as the
main halftone dictionary (operand to sethalftone), which applies to all
color components.

PLRM 2nd Edition January 25, 1994 Rendering

6.4 Halftones 319

If non-primary separations are requested when the current halftone is
defined by any means other than a type 5 halftone dictionary, the gray
screen and transfer function are used for all such separations.

6.4.7 Other Types of Halftone Dictionaries

There are two additional standard halftone types. However, their use is
not recommended because the same effects can be obtained using the
type 5 halftone dictionary, described above. They are supported only
for compatibility with existing Display PostScript applications.

The type 2 halftone dictionary is similar to type 1, but it defines four
halftone screens—as frequency, angle, and spot function—instead of
just one. Each primary color has its own screen. In place of a Frequency
entry, the dictionary has entries named RedFrequency,
GreenFrequency, BlueFrequency, and GrayFrequency. Likewise, in place
of the Angle and SpotFunction entries, the dictionary has entries
named RedAngle, RedSpotFunction, and so on. The optional entries of
a type 1 halftone dictionary are not available in a type 2 halftone dic-
tionary.

The type 4 halftone dictionary is similar to type 3, but it defines four
halftone screens (as threshold arrays) instead of just one. Width,
Height, and Thresholds are replicated for each color, just as in a type 2
halftone dictionary. Optional entries are not available.

There are many techniques for rendering halftones in addition to those
supported as a standard part of the PostScript language. Some tech-
niques work well only with certain types of output device technology,
or they require special hardware to work efficiently.

Some products support special halftone techniques, in addition to the
standard ones. The HalftoneType entry in the halftone dictionary
selects the halftone technique to be used. It also determines how the
other entries in the dictionary are to be interpreted. The set of available
types and the meanings of specific types are product dependent. They
are not described in this manual, but rather in product documentation.

Ordinarily, a page description should not define halftone dictionaries
with non-standard types; doing so ties the page description to a specific
product. Indeed, any use of halftone dictionaries in a page description
compromises device independence.

PLRM 2nd Edition January 25, 1994 Rendering

320 Chapter 6: Rendering

In some products, a device’s default halftone dictionary may have a
non-standard type. This arises when a non-standard halftone technique
is the one best suited to the device technology. A program that executes
currenthalftone may obtain a halftone dictionary whose HalftoneType
it doesn’t recognize.

6.5 Scan Conversion Details

The final step of rendering is scan conversion. As discussed in section 2.2,
“Scan Conversion,” the PostScript interpreter executes a scan conver-
sion algorithm to paint graphics, text, and images in the raster memory
of the output device.

The specifics of the scan conversion algorithm are not defined as part of
the PostScript language. Different implementations can perform scan
conversion in different ways; techniques that are appropriate for one
device may be inappropriate for another. Most scan conversion details
are not under program control.

Still, it is useful to have a general understanding of how scan conver-
sion works. When creating applications that are intended to drive com-
puter displays, one must pay some attention to scan conversion details.
At the low resolutions that are typical of displays, variations of even
one pixel’s width can have a noticeable effect on the appearance of
painted shapes.

The following sections describe the scan conversion algorithms that are
typical of Level 2 and Display PostScript implementations from Adobe,
including the basic rules and the effects of using the automatic stroke
adjustment feature. Once again, these details are not a standard part of
the PostScript language.

6.5.1 Scan Conversion Rules

The following rules determine which device pixels a painting operation
will affect. All references to coordinates and pixels are in device space. A
“shape” is a path to be painted with the current color or with an image.
Its coordinates are mapped into device space, but not rounded to device
pixel boundaries. At this level, curves have been flattened to sequences
of straight lines, and all “insideness” computations have been per-
formed.

PLRM 2nd Edition January 25, 1994 Rendering

6.5 Scan Conversion Details 321

Pixel boundaries always fall on integer coordinates in device space. A
pixel is a square region identified by the coordinates of its minimum x,
minimum y corner. A pixel is a half-open region, meaning that it
includes half of its boundary points. More precisely, for any point
whose real number coordinate is (x, y), let i = floor(x) and j = floor(y).
The pixel that contains this point is the one identified as (i, j). The
region belonging to that pixel is defined to be the set of points (x’, y’)
such that i ≤ x’ < i + 1 and j ≤ y’ < j + 1.

Like pixels, shapes to be painted by operators such as fill or stroke are
also treated as half-open regions that include the boundaries along
their “floor” sides, but not along their “ceiling” sides.

A shape is scan converted by painting any pixel whose square region
intersects the shape, no matter how small the intersection is. This
ensures that no shape ever disappears as a result of unfavorable place-
ment relative to the device pixel grid, as might happen with other pos-
sible scan conversion rules. The area covered by painted pixels is always
at least as large as the area of the original shape.

This scan conversion rule applies to both fill operations and to strokes
with non-zero width. Zero-width strokes are done in a device-
dependent manner that may include fewer pixels than this rule
specifies.

The region of device space to be painted by the image operator is deter-
mined similarly to that of a filled shape, though not identically. The
interpreter transforms the image source rectangle into device space and
defines a half-open region, just as for fill operations. However, only
those pixels whose centers lie within the region are painted. The posi-
tion of the center of such a pixel—in other words, the point whose coor-
dinate values have fractional parts of one-half—is mapped back into
source space to determine how to color the pixel. There is no averaging
over the pixel area; if the resolution of the source image is higher than
that of device space, some source samples will not be used.

For clipping, the clip region consists of the set of pixels that would be
included by a fill. A subsequent painting operation affects a region that
is the intersection of the set of pixels defined by the clip region with the
set of pixels for the region to be painted.

Scan conversion of character shapes is performed by a different algo-
rithm than the one above. That font rendering algorithm uses hints in
the character descriptions and techniques that are specialized to charac-
ter rasterization.

PLRM 2nd Edition January 25, 1994 Rendering

322 Chapter 6: Rendering

6.5.2 Automatic Stroke Adjustment

When a stroke is drawn along a path, the scan conversion algorithm
may produce lines of non-uniform thickness because of rasterization
effects. In general, the line width and the coordinates of the endpoints,
transformed into device space, are arbitrary real numbers not quantized
to device pixels. A line of a given width can intersect with a different
number of device pixels, depending on where it is positioned. Figure
6.2 shows this.

Figure 6.2 Rasterization without stroke adjustment

For best results, it is important to compensate for the rasterization
effects to produce strokes of uniform thickness. This is especially impor-
tant in low-resolution display applications. To meet this need, Level 2
and Display PostScript implementations provide an optional stroke
adjustment feature. When stroke adjustment is enabled, the line width
and the coordinates of a stroke are automatically adjusted as necessary
to produce lines of uniform thickness. The thickness is as near as possi-
ble to the requested line width—no more than half a pixel different.

Note If stroke adjustment is enabled and the requested line width, transformed into
device space, is less than half a pixel, the stroke is rendered as a single-pixel
line. This is the thinnest line that can be rendered at device resolution. It is
equivalent to the effect produced by setting the line width to zero (see section
6.5.1, “Scan Conversion Rules”).

path

resulting line

line width

resulting line

line width

path

1
pixel

PLRM 2nd Edition January 25, 1994 Rendering

6.5 Scan Conversion Details 323

Because automatic stroke adjustment can have a substantial effect on
the appearance of lines, an application must be able to control whether
or not the adjustment is to be performed. The operator setstrokeadjust
alters a boolean value in the graphics state that determines if stroke
adjustment will be performed during subsequent stroke and related
operators.

PLRM 2nd Edition January 25, 1994 Rendering

324 Chapter 6: Rendering

PLRM 2nd Edition January 21, 1994 Display PostScript

325

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

CHAPTER 7

Display PostScript

This chapter introduces the concepts and PostScript language operators
specific to display applications. Display PostScript system features are
not part of Level 2.

The Display PostScript system provides application programs with a
device-independent imaging model for displaying information on a
screen. It is only a component of a complete application programming
environment, consisting of:

• The PostScript interpreter.

• The Client Library, a C language interface to the basic facilities of the
Display PostScript system.

• pswrap, a preprocessor that facilitates invoking arbitrary PostScript
language programs from a C program.

• Window system support libraries, such as one for the X Window
System™.

• Operating system, runtime library, and libraries of higher-level tools.

This chapter describes the PostScript language extensions that are sup-
ported by the interpreter in a Display PostScript system. Other compo-
nents of the application programming environment are described in a
separate document, the Display PostScript System Reference Manual. The
language extensions include:

• Multiple execution contexts. The Display PostScript system can support
the execution of multiple independent PostScript language programs
at the same time.

Example 7.0
Table 7.0
Figure 7.0

PLRM 2nd Edition January 21, 1994 Display PostScript

326 Chapter 7: Display PostScript

• User name encodings. The Client Library can dynamically encode arbi-
trary name objects as small integers instead of as full text strings,
resulting in improved efficiency.

• Support for windowing systems. These features extend the imaging
model to deal with special display-specific requirements, including
incremental update, hit detection, and halftone phase adjustment.

• Bitmap font coordination. The Display PostScript system provides sup-
port for hand-tuned screen resolution bitmap fonts to improve legi-
bility of text.

7.1 Multiple Execution Contexts

The Display PostScript system can support multiple, concurrent execu-
tion contexts. Each context has an environment consisting of stacks,
local and global VM, graphics state, and certain variables, such as VM
allocation mode and array packing mode. Except for VM, a context’s
environment is entirely private to that context and is never visible to
any other context. Under suitable conditions, a context’s VM can be
shared with other contexts.

7.1.1 Creating Contexts

Applications normally access the Display PostScript system through the
Client Library, which includes procedures for creating, communicating
with, and destroying PostScript execution contexts. The Client Library
facilities are not part of the PostScript language definition; they are
described in the Display PostScript System Reference Manual.

When an application creates a context, it chooses whether the context
is to share VM with some other existing context. The choices are:

1. Local and global VM are completely private to the context.

2. Local VM is private to the context, but global VM is shared with
some other context.

3. Local and global VM are shared with some other context.

PLRM 2nd Edition January 21, 1994 Display PostScript

7.1 Multiple Execution Contexts 327

The Client Library procedure that creates a context provides a means to
specify how the new context’s VM is to be set up and which other con-
text’s VM, if any, it is to share. A PostScript language program can also
create a context by executing the fork operator, which always uses
method 3.

Method 1 creates a context that is completely isolated from other con-
texts. The context has its own private userdict, globaldict, and other
standard dictionaries, all of which have their standard initial contents.
A context that is to operate as a “job server,” supporting the encapsu-
lated job model described in section 3.7.7, “Job Execution Environ-
ment,” must be created by method 1, because the semantics of job
encapsulation conflict with the semantics of shared VM.

Method 2 creates a context with its own private local VM but sharing
the global VM of one or more other contexts. In other words, objects in
local VM, such as userdict, are private to the context; objects in global
VM, such as globaldict and GlobalFontDirectory, are shared with the
other contexts. When one context modifies the value of a global object,
the effect is immediately visible to the other contexts.

Method 3 creates a context that shares both the local VM and the glo-
bal VM of one or more other contexts. When one context modifies the
value of any object in VM, the effect is immediately visible to the other
contexts.

7.1.2 Context Operators

For the context operators, a context is an integer that identifies a Post-
Script execution context. Each context has a unique identifier, whether
it was created by calling a Client Library procedure or by executing the
fork operator. This integer identifies the context during communication
between the application and the Display PostScript system, and during
execution of the join and detach operators. Identifiers for contexts that
have terminated become invalid and are not reused during the lifetime
of any currently active session. The currentcontext operator returns the
identifier for the context that is executing.

The fork operator creates a new context that shares the local and global
VM of the context that executes fork. One of the operands to fork is a
procedure the new context is to execute. The remaining operands are
used to initialize the new context’s operand stack.

PLRM 2nd Edition January 21, 1994 Display PostScript

328 Chapter 7: Display PostScript

The join operator waits for a context that was previously created by fork
to return from its top-level procedure. It then copies that context’s
operand stack to the caller’s operand stack and destroys the context. If
there is no need for the context to return results when it terminates, it
can declare this by means of the detach operator.

A context can suspend its own execution by any of a variety of means:
execute the wait, monitor, or yield operators (described below) or return
from its top-level procedure to await a join. The context retains the state
it had at the moment of suspension and can ordinarily be resumed
from the point of suspension.

A context can terminate by executing the quit operator or as a result of
an explicit termination request from the Client Library. Termination
also occurs if an error occurs that is not caught by an explicit use of
stopped. When a context terminates, its stacks are destroyed, its stan-
dard input and output files are closed, and its context identifier
becomes invalid.

There is no hierarchical relationship among contexts. Termination of a
context has no effect on other contexts that it may have created. An
integer that identifies a context has the same meaning in every context;
it may be referenced in a context different from the one that created it.

An invalidcontext error occurs if an invalid context identifier is pre-
sented to any of the context operators or if certain other improper con-
ditions are detected. See section 7.1.4, “Programming Restrictions.”

7.1.3 Context Synchronization

When multiple contexts share objects in a single VM, they require a
way to synchronize their activities. To facilitate this, the language
includes two special types of synchronization objects and several opera-
tors for manipulating them.

A lock is a semaphore for mutual exclusion. Cooperating contexts can
use it to guard against concurrent access to data that they are sharing. A
context acquires a lock before accessing the data and releases it after-
ward. During that time, other contexts are prevented from acquiring
the lock—they cannot access the data when it is in a possibly inconsis-
tent state. The association between a lock object and the data protected
by the lock is entirely a matter of programming convention.

PLRM 2nd Edition January 21, 1994 Display PostScript

7.1 Multiple Execution Contexts 329

A condition is a binary semaphore that cooperating contexts can use to
synchronize their activity. One or more contexts can wait on a
condition—in other words, suspend execution for an arbitrary length of
time until notified by another context that the condition has been sat-
isfied. Once again, the association between the condition object and
the event or state it represents is a matter of programming convention.

The objects lock and condition are distinct types of objects, created by
the operators lock and condition, respectively. They are composite
objects in the sense that their values occupy space in VM separate from
the objects themselves. When a lock or condition object is stored in
multiple places, all the instances share the same value. However, the
values of locks and conditions can be accessed only by the synchroniza-
tion operators.

Locks and conditions are ordinarily used together in a stylized way. The
monitor operator acquires a lock (waiting if necessary), executes an
arbitrary PostScript language procedure, then releases the lock. The wait
operator is executed within a procedure invoked by monitor. It releases
the lock, waits for the condition to be satisfied, and reacquires the lock.
The notify operator indicates that a condition has been satisfied and
resumes any contexts waiting on that condition.

The recommended style of use of wait and notify is based on the notion
that a context first waits for a shared data structure to reach some
desired state, then performs some computation based on that state, and
finally alerts other contexts of any changes it has made to the data. A
lock and a condition are used to implement this protocol. The lock pro-
tects against concurrent access to the data; the condition is used to
notify other contexts that some potentially interesting change has
occurred.

Note Locks and conditions are treated separately because one may want to have
several conditions that represent different states of the same shared data.

PLRM 2nd Edition January 21, 1994 Display PostScript

330 Chapter 7: Display PostScript

This protocol is illustrated by the following two program fragments,
which are likely to be executed by different contexts.

Example 7.1

/lock1 lock def
/cond1 condition def

lock1 {
 {

... boolean expression testing monitored data ...
 {exit} {lock1 cond1 wait} ifelse
 } loop
 ... computation involving monitored data ...
} monitor

Example 7.2

lock1 {
 ... computation that changes monitored data ...
 cond1 notify
} monitor

Example 7.1 executes monitor to acquire the lock named lock1; it must
do so to safely access the shared data associated with it. The program
then checks whether the boolean expression has become true; it waits on
the condition named cond1 (repeatedly, if necessary) until the expres-
sion evaluates to true. Now, while still holding the lock, it performs
some computation based on this state of the shared data. It might alter
the data in such a way that the boolean expression would evaluate false.
Finally, it releases lock1 by leaving the procedure invoked by monitor.

Example 7.2 acquires lock1 and then performs some computation that
alters the data in a way that might favorably affect the outcome of the
boolean expression. It then notifies cond1 and releases lock1. If there is a
context suspended at the wait in Example 7.1, it now resumes and gets
another chance to evaluate the boolean expression. (If multiple contexts
are waiting for cond1, the notify resumes all of them; however, only
one context at a time gets to acquire lock1.)

Note that it is unsafe to assume that the state tested by the boolean
expression is true immediately after resumption from a wait. Even if it
was true at the moment of the notify, it might have become false due to
intervening execution by some other context. Notifying cond1 does not
certify that the value of the boolean expression is true, only that it might
be true. Programs that conform to this protocol are immune from dead-
locks due to “lost notifies” or malfunctions due to “extra notifies.”

PLRM 2nd Edition January 21, 1994 Display PostScript

7.1 Multiple Execution Contexts 331

A program must not make any assumptions regarding context schedul-
ing. In some environments, the PostScript interpreter switches control
among contexts pre-emptively and at any time; therefore, program exe-
cution in different contexts may be interleaved arbitrarily. Pre-emption
may occur within a single operator, such as one that causes a PostScript
language procedure to be executed or that reads or writes a file. To
ensure predictable behavior, contexts must use the synchronization
primitives to control access to shared data.

In any environment that supports concurrent execution of indepen-
dent threads of control, there is the possibility of deadlock. The most
familiar form of deadlock occurs among two or more contexts when
each waits for a notification from the other or each attempts to acquire
a lock already held by the other. Another deadlock situation arises
when all available communication buffers become filled with data for a
context that is waiting for notification from some other context, but
the other context cannot proceed because it has no way to communi-
cate. Such deadlocks can be avoided only through careful system and
application design.

The synchronization primitives can be used to synchronize access to
shared data in either local or global VM. Of course, this requires prear-
rangement among all contexts involved; the lock and condition objects
used for this purpose should be in the same VM as the data being
shared.

7.1.4 Programming Restrictions

Each context has its own private pair of standard input and output files.
That is, different contexts obtain different file objects as a result of exe-
cuting currentfile or applying the file operator to the special device
names %stdin and %stdout. A context must not attempt to make its
standard input and output files available for use by other contexts.
Doing so will cause unpredictable behavior.

The behavior of the save and restore operators varies according to how
the executing context was created. In the case of an isolated context,
created by method 1 as described in section 7.1.1, “Creating Contexts,”
the outermost save and restore apply to both global and local VM;
nested save and restore apply only to local VM. This supports the
encapsulated job model.

In the case of a context that can share VM with other contexts, created
by method 2 or 3, save and restore always apply only to local VM,
never to global VM. Additionally, when multiple contexts share local

PLRM 2nd Edition January 21, 1994 Display PostScript

332 Chapter 7: Display PostScript

VM (method 3), the semantics of save and restore become restricted.
The operation performed by restore is logically to restore local VM to
its state when save was executed. If one context does this, another con-
text sharing the same local VM might observe the effect of the restore
at some totally unpredictable time during its own execution. That is, its
recent computations would be undone unexpectedly.

If any context executes save, all other contexts sharing the same local
VM are suspended until the original context executes the matching
restore. This ensures that the restore does not disrupt the activities of
those other contexts. This restriction applies only to contexts sharing
the same local VM. Contexts that have different local VMs proceed
unhindered.

Note In contexts that can share VM, save and restore never affect global VM.
Therefore, contexts with separate local VMs but shared global VM cannot
interfere with each other by executing save and restore.

There are some restrictions on the synchronization operators that a
context may execute while it has an unmatched save pending. For
example, attempting to acquire a lock that is already held by another
context sharing the same local VM is not allowed because it would
surely lead to deadlock. If a context terminates when it has an
unmatched save pending, an automatic restore is executed, allowing
other contexts to proceed.

As a practical matter, save and restore are not of much use when a local
VM is shared among multiple contexts. Programs organized this way
should avoid using save and restore. On the other hand, programs
organized as one local VM per context can use save and restore without
restriction. The semantics described above are designed to maintain
compatibility with existing page descriptions and font programs.

7.2 Encoded User Names

Section 3.12, “Binary Encoding Details,” discusses binary token and
binary object sequence encodings. Both encodings provide optional
ways to represent names as small integers instead of as full text strings.
Such an integer is either a system name index or a user name index. Care-
ful use of encoded names can result in substantial space savings and
execution performance improvement.

PLRM 2nd Edition January 21, 1994 Display PostScript

7.2 Encoded User Names 333

As discussed in section 3.12.3, “Encoded System Names,” a name index
is a reference to an element of a name table already known to the Post-
Script interpreter. A system name index is an index into the system name
table, which is built-in and has a standard value. Encoded system
names are supported by all Level 2 implementations.

A user name index is an index into the user name table, whose contents
may be defined by a PostScript language program using the
defineusername operator. This provides efficient encodings of arbitrary
names that are used frequently. However, there are various restrictions
on user name encodings, making them suitable for use only with the
Display PostScript system.

Note Do not confuse encoded user names with user objects, described in section
3.7.6, “User Objects,” and available in all Level 2 implementations.

The user name index facility is intended for use only during interactive
sessions, where the application generates PostScript language com-
mands that are immediately consumed by the Display PostScript sys-
tem. It should not be used in a PostScript language program that must
stand by itself, such as one sent to a printer or written to a file for later
use. If a program contains user name index encodings, it cannot be composed
with or embedded in other PostScript language programs, and it cannot easily
be translated to the ASCII encoding. The Client Library has an option to
disable generation of user name encodings and produce plain text
names always. This option may be invoked dynamically in an applica-
tion program to produce a PostScript language program that is to be
captured in a file or diverted to a printer.

As with everything else related to binary encodings, encoded names are
intended for machine generation only. The pswrap and Client Library
facilities are the preferred means for application programs to generate
binary-encoded programs. Those facilities maintain the user name table
automatically and can encode names using both the system and user
name tables. An application should not attempt to alter the user name
table itself, because that would interfere with the activity of the Client
Library.

The meaning of a given user name index is local to a specific PostScript
execution context—precisely, to a context’s local VM. If several con-
texts share the same local VM, a user name index defined in one con-
text may be used in another context. In this case, it is the application
programmer’s responsibility to synchronize execution of the contexts
so definition and use occur in the correct order.

PLRM 2nd Edition January 21, 1994 Display PostScript

334 Chapter 7: Display PostScript

Entries placed in the user name table by defineusername accumulate
during the lifetime of the context’s local VM; they do not obey save and
restore, and they cannot be removed or replaced. These restrictions are
intentional: they permit the Client Library to manage user name defi-
nitions without understanding the semantics of the PostScript language
program being generated.

If the scanner encounters a binary encoded system or user name index
for which no name has been defined, it generates an undefined error.
The name object produced is systemn or usern. For example, if entry
number 123 is missing from the user name table, the name object pro-
duced is user123.

7.3 Graphics and Window Systems

For each windowing system that uses the Display PostScript system for
graphical output, there is a collection of operators for doing such things
as specifying the window that is to be affected by subsequent painting
operators, for scrolling the contents of the window, for obtaining input
events (keystrokes and mouse clicks), and so on. These operators are
window system specific because their syntax and semantics vary accord-
ing to the properties and capabilities of the underlying window system.
They are not documented in this manual, but in manuals for specific
window systems or operating systems.

In addition to the window system specific operators, there are several
operators that are window related but have a consistent meaning across
all window systems. They fall into the following categories:

• View clipping, to control the areas affected by incremental updates.

• Hit detection, to associate cursor positions with displayed objects.

• Halftone phase adjustment, to compensate for the effect of scrolling.

• Device information, to obtain characteristics of the display device.

The Display PostScript system supports these features with all window-
ing systems.

PLRM 2nd Edition January 21, 1994 Display PostScript

7.3 Graphics and Window Systems 335

7.3.1 View Clipping

Interactive applications frequently make incremental updates to the
displayed image. Such updates arise from changes to the displayed
graphical objects and from window system manipulations that cause
formerly obscured objects to become visible. For efficiency’s sake, it is
desirable for the application to redraw only those graphical objects that
are affected by the change. This function is assisted by operators that do
view clipping.

One way to handle incremental updating is to define a path that
encloses the changed areas of the display, then redraw only those
graphical objects that are enclosed or partially enclosed within the
path. To produce correct results, it is necessary to impose this path as a
clipping path while redrawing. Otherwise, portions of objects that are
redrawn might incorrectly obscure objects that are not redrawn.

This clipping could be accomplished by adjusting the clipping path in
the graphics state in the normal way. However, this is not particularly
convenient, because the program that imposes the clipping and the
program that is executed to redraw objects on the display may have dif-
ferent ideas about what the clipping path should be. This problem
becomes particularly acute given the ability to switch entire graphics
states arbitrarily.

To alleviate this, the Display PostScript system provides another level of
clipping, the view clip, that is entirely independent of the graphics state.
Objects are rendered on the device only in areas that are enclosed by
both the current clipping path and the current view clipping path.

The view clipping path is part of the PostScript execution context, not
the graphics state. A context initially has no view clipping path (see
initviewclip in Chapter 8). The operators that alter the view clipping
path do not affect the clipping path in the graphics state or vice versa.
The view clipping path is not affected by gsave and grestore. However,
a restore will reinstate the view clipping path that was in effect at the
time of the matching save. View clips do not nest; rather, a new view
clipping path replaces the existing one.

Note View clipping is temporarily disabled when the current output device is a
mask device, such as the one installed by setcachedevice.

PLRM 2nd Edition January 21, 1994 Display PostScript

336 Chapter 7: Display PostScript

The following operators manipulate view clips:

• viewclip replaces the current view clipping path by a copy of the cur-
rent path in the graphics state.

• eoviewclip is similar to viewclip, but it uses the even-odd rule instead
of the non-zero winding number rule to determine the inside of the
current path. See section 4.5.2, “Filling.”

• rectviewclip replaces the current view clipping path by a rectangular
path. See section 4.6.5, “Rectangles.”

• initviewclip replaces the current view clipping path with one that
encloses the entire imageable area of the output device.

• viewclippath replaces the current path by a copy of the current view
clipping path.

7.3.2 Hit Detection

Interactive windowing systems usually have some system specific
method of detecting the movement and clicking of pointing devices.
Some means is required to associate this information with the position
of graphical objects that are visible on the display. This operation is
called hit detection.

The insideness testing operators, such as infill and instroke, can assist in
hit detection. Those operators are a standard part of Level 2 implemen-
tations, not just of Display PostScript. They are described in section
4.5.3, “Insideness Testing.” Having obtained the user space coordinates
of some interesting point, a program can:

• Determine whether that point would be painted by filling or strok-
ing some object defined by either the current path or a user path.

• Determine whether an aperture surrounding the point would inter-
sect any painted area of the object. The aperture defines a “sensitive
area,” that can have various shapes such as a circle or a diamond.

If a window system specific extension provides a way for a PostScript
language program to receive input events directly, the program itself
can perform operations such as mouse tracking and hit detection. With
some window systems, however, the application always receives input
events. In that case, the application must either perform such computa-
tions itself or issue queries to the Display PostScript system. This deci-

PLRM 2nd Edition January 21, 1994 Display PostScript

7.3 Graphics and Window Systems 337

sion involves a trade-off between performance and application
complexity. One possible approach is for the application to perform hit
detection itself for simple shapes, but to query for more complex
shapes.

Some window systems report the coordinates of an input event in a
window coordinate system that is translated from the PostScript inter-
preter’s device space. The wtranslation operator returns the amount of
this translation. A PostScript language program can shift the coordi-
nates by this amount, then use itransform to transform them into user
space for testing by means of the insideness testing operators.

7.3.3 Halftone Phase

Normally, the halftone screen tiles the device space starting at the
device space origin. That is, the halftone grid is aligned such that the
lower-left corner of the lower-left halftone cell is positioned at (0, 0) in
device space, independent of the value of the current transformation
matrix. This ensures that adjacent gray areas will be painted with half-
tones having the same phase, avoiding “seams” or other such artifacts.

On a display, the phase relationship between the halftone grid and
device space must be more flexible. This need arises because most win-
dow systems provide a scrolling operation in which the existing con-
tents of raster memory are copied from one place to another in device
space. This operation can alter the phase of halftones that have already
been scan converted. It is necessary to alter the phase of the halftone
generation algorithm correspondingly so that newly painted halftones
will align with the existing ones.

In the Display PostScript system, the graphics state includes a pair of
halftone phase parameters, one for x and one for y. These integers define
an offset from the device space origin to the halftone grid origin. Of
course, the halftone grid does not actually have an origin, so the offset
values are interpreted modulo the width and height of the halftone cell.
They ensure that some halftone cell will have its lower-left corner at
(x, y) in device space.

The intended use of the halftone phase operators sethalftonephase and
currenthalftonephase is with window system operations that perform
scrolling. If the application scrolls the displayed image by (dx, dy) pixels
in device space, it should simply add dx and dy to the halftone phase
parameters; it should not worry about computing them modulo the size
of the halftone cell. This has the correct effect even if the displayed
image is composed of several different halftone screens.

PLRM 2nd Edition January 21, 1994 Display PostScript

338 Chapter 7: Display PostScript

The halftone phase is defined to be part of the graphics state, not part
of the device. This is because an application may subdivide device space
into multiple regions that it scrolls independently. A recommended
technique is to associate a separate gstate (graphics state) object with
each such region. This object carries all the parameters required to paint
within that region, including the halftone phase.

Altering the halftone phase also alters the placement of any patterns
that were previously instantiated by makepattern (see section 4.9, “Pat-
terns”). This ensures that in areas painted with the same pattern before
and after the halftone phase adjustment, the pattern cells will align.
The current halftone phase does not affect makepattern itself; rather,
changes to the halftone phase affect the placement of existing patterns.

7.3.4 Device Information

A program may require information about certain properties of the ras-
ter output device, such as whether or not it supports color and how
many distinguishable color or gray values it can reproduce. A PostScript
language program that is a page description should not need such infor-
mation; using it compromises device independence. However, an inter-
active application may need to vary its behavior according to the
available display technology. For example, a computer aided design
application may use stipple patterns on a binary black-and-white dis-
play, but separate colors on a color display.

The deviceinfo operator returns a dictionary whose entries describe
static information about the device. (Dynamic information must be
read from the graphics state or obtained through operators such as
wtranslation.) Some of the entries in this dictionary have standard
names that are described in Table 7.1; others may have meanings that
are device dependent. Most entries are optional and are present only if
they are relevant for that type of device.

Table 7.1 Entries in the deviceinfo dictionary

Key Type Semantics

Colors integer Number of independent color components:

1 Black-and-white or gray scale only

3 Red, green, and blue

4 Red, green, blue, and gray or their complements: cyan, magenta, yellow,
and black, as is typically used in printers.

PLRM 2nd Edition January 21, 1994 Display PostScript

7.4 Bitmap Fonts 339

GrayValues integer Number of different gray values that individual pixels can reproduce without
halftoning. For example:

2 Binary black-and-white device

256 8 bits-per-pixel, gray-scale device.

RedValues integer Number of different red values that individual pixels can reproduce,
independent of other colors.

GreenValues integer Number of different green values.

BlueValues integer Number of different blue values.

ColorValues integer Total number of different color values that each pixel can reproduce. If this entry
is present and the entries for gray, red, green, and blue are absent, this means the
color components cannot be varied independently, only in combination.

7.4 Bitmap Fonts

In display systems, the resolution of the device is typically quite low
when compared with printers and typesetters. Resolutions in the range
of 60 to 100 pixels per inch are common. When characters are pro-
duced algorithmically from outlines in typical sizes (10 to 12 points),
the results are often not as legible as they must be for comfortable read-
ing. The usual way to deal with this problem is to use screen fonts con-
sisting of bitmap characters that have been tuned manually. The hand
tuning increases legibility, although possibly at the expense of fidelity
to the original character shapes.

The Display PostScript system includes the ability to take advantage of
hand-tuned bitmap fonts when they are available. This facility is fully
integrated with the font machinery. Its operation is almost totally invis-
ible to a PostScript language program.

When a program sets text by executing an operator such as show, this is
what happens internally:

1. The PostScript interpreter consults the font cache.

2. If the character is not there, the interpreter consults the current
device, requesting it to provide a bitmap form of the character at the
required size.

3. If the device can provide such a bitmap, it does so. The PostScript
interpreter places the bitmap in the font cache for subsequent use.

PLRM 2nd Edition January 21, 1994 Display PostScript

340 Chapter 7: Display PostScript

4. If there is no such character, the interpreter executes the character
description, placing the scan converted result in the font cache.

The mechanism by which bitmap characters are provided by a device is
not part of the language and is entirely hidden from a PostScript lan-
guage program. The conventions for locating and representing bitmap
characters are environment dependent; they vary from one window
system to another. Re-encoding a font preserves the association with
bitmap characters. Most other modifications to a font dictionary
destroy the association.

Bitmap fonts are typically provided in one orientation and a range of
sizes from 10 to 24 points. Beyond 24 points, characters scan converted
from outlines are perfectly acceptable. The PostScript interpreter can
usually choose a bitmap character whose size is sufficiently close to the
one requested and render it directly.

Associated with each hand-tuned bitmap is a width—a displacement
from the origin of the character to the origin of the next character. This
width is also hand-tuned for maximum legibility; it is an integer inter-
preted in device space. It is different from the width produced when the
same character is scan converted from the font definition, because that
width (the scalable width) is defined by a real number scaled according
to the requested font size.

Note Hand-tuned bitmaps are carefully designed so the bitmap widths and scalable
widths are as similar as possible when averaged over large amounts of text.

To achieve fidelity between displays and printers when rendering char-
acters, an application must use the scalable widths to position charac-
ters on the display. Unfortunately, this leads to uneven letter spacing
due to the need to round character positions to device pixel boundaries.
At display resolution, this unevenness is objectionable. On the other
hand, using the integer bitmap widths to produce evenly spaced text on
the display leads to incorrect results on the printer.

One solution is to use integer widths for spacing within a word, but to
use scalable widths for word-positioning and word-wrapping. This pro-
vides correctness at the cost of maintaining two current points. Many
word processing and page layout programs use the following technique
when rendering text on the display:

• Set the characters according to their integer bitmap widths, but keep
track of the accumulated difference between the bitmap widths and
the true scalable widths.

PLRM 2nd Edition January 21, 1994 Display PostScript

7.4 Bitmap Fonts 341

• Adjust the spaces between words to compensate for the accumulated
error. The most accurate way to do this is to compute the error for an
entire line and then distribute the accumulated error among all the
spaces in that line.

This technique allows minor variation between display and printer
within a line but maintains fidelity on a line-by-line basis.

The Display PostScript system determines whether to use bitmap
widths or scalable widths for a font by checking the BitmapWidths
entry in the font dictionary. If this entry is present, it must have a bool-
ean value: true indicates that bitmap widths are to be used if available;
false indicates that scalable widths are to be used always. If the entry is
not present or if the device does not provide bitmaps for this font, scal-
able widths are always used.

The hand-tuned bitmaps are ordinarily used at rotations that are multi-
ples of 90 degrees (0, 90, 180, and 270) relative to device space. In all
other cases, the scan converted outlines are used. There is usually a dif-
ference in appearance between the hand-tuned bitmaps and the scan
converted outlines for a given character at a given size. If this difference
is found to be objectionable, the application can request that trans-
formed characters be produced by transforming the bitmaps instead of
scan converting the transformed outlines.

Hand-tuned bitmaps are provided in a range of discrete sizes. When a
size is requested that doesn’t match the hand-tuned bitmap size exactly,
but lies between two discrete sizes, one of the discrete sizes is used and
its widths are scaled accordingly. An application can request that the
bitmaps be scaled for these in-between sizes or that the scan converted
outlines be used.

There are three entries that can be added to a font dictionary to control
the behavior for each of three cases: ExactSize, InBetweenSize, and
TransformedChar. Each entry’s value is an integer code:

0 Use outlines.
1 Use the discrete size directly.
2 Transform the discrete size.

PLRM 2nd Edition January 21, 1994 Display PostScript

342 Chapter 7: Display PostScript

The entries are interpreted as follows:

• ExactSize determines what to do when there is an exact match
between the size requested and a hand-tuned bitmap, the user coor-
dinate system axes are perpendicular to each other, the scale is uni-
form in x and y, and the angle of rotation is a multiple of 90 degrees.
(Default value: 1)

• InBetweenSize determines what to do when a size requested falls
between discrete hand-tuned bitmap sizes under the same condi-
tions as ExactSize. (Default value: 0)

• TransformedChar determines what to do for any size request when
the transformation is other than the ones described for ExactSize.
(Default value: 0)

Since font dictionaries are read-only, the usual way to change whether
bitmap widths are used for a font and to control their behavior is to cre-
ate a copy of the font dictionary, modify the copy, and execute a new
definefont. Example 7.3 creates a copy of the Helvetica font and adds
the BitmapWidths key.

Example 7.3

/Helvetica findfont
dup length 1 add dict begin
 {1 index /FID ne {def} {pop pop} ifelse} forall
 /BitmapWidths true def
 currentdict
end
/Helvetica-BitmapWidths exch definefont pop

PLRM 2nd Edition January 26, 1994 Operators

343

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

CHAPTER 8

Operators

This chapter contains detailed information about all the standard oper-
ators in the PostScript language. It is divided into two parts.

First, there is a summary of the operators, organized into groups of
related functions. The summary is intended to help locate the operators
needed to perform specific tasks.

Second, there are detailed descriptions of all operators, organized alpha-
betically by operator name. Each operator description is presented in
the following format:

operator operand1 operand2 ... operandn operator result1 ... resultm

Detailed explanation of the operator.

Example

An example of the use of this operator.
The symbol ⇒ designates the values left on the operand stack by the example.

Errors: A list of errors that this operator might execute.

See Also: A list of related operators.

At the head of an operator description, operand1 through operandn are
the operands that the operator requires, with operandn being the top-
most element on the operand stack. The operator pops these objects
from the operand stack and consumes them. After executing, the opera-
tor leaves the objects result1 through resultm on the stack, with resultm

being the topmost element.

Example 8.0
Table 8.0
Figure 8.0

PLRM 2nd Edition January 26, 1994 Operators

344 Chapter 8: Operators

Normally, the operand and result names suggest either their types or
their uses. Table 8.1 summarizes names (other than basic type names)
that appear commonly.

Table 8.1 Operand and result types

Name Description

angle Angle (in degrees)

any Value of any type

bool Boolean (true or false) value

context Integer representing an execution context

dict Dictionary object

font Font dictionary

form Form dictionary

halftone Halftone dictionary

int Integer number

matrix Array of six numbers describing a transformation matrix

num Number (integer or floating point)

numarray Array of numbers

numstring Encoded number string

pattern Pattern dictionary

proc Procedure (executable array or executable packed array)

real Floating point (real) number

userpath Array of path construction operators and their operands

Some operators are polymorphic: their operands may be any of several
types. For example, the notation file |proc |string indicates an operand
that is a file, procedure, or string.

The notation “ ” indicates the bottom of the stack. The notation “–”
in the operand position indicates that the operator expects no oper-
ands, and a “–” in the result position indicates that the operator returns
no results.

PLRM 2nd Edition January 26, 1994 Operators

345

The documented effects on the operand stack and the possible errors
are those produced directly by the operator itself. Many operators
invoke arbitrary PostScript language procedures. Such procedures can
have arbitrary effects that are not mentioned in the operator
descriptions.

Note In several descriptions of operators, the semantics of an operator are described
as “being equivalent to” a PostScript language program using lower-level
operators. Unless explicitly documented to the contrary, operator definitions
are independent; redefining an operator name does not change the behavior of
any other operator.

The PostScript language consists of three distinct groups of operators:
Level 1, Level 2, and Display PostScript operators. This chapter clearly
identifies Level 2 and Display PostScript operators with the following
icons:

Level 2 operator

 Display PostScript operator

Level 1 operators are not identified with a specific icon. Note that some
Level 2 operators are present in Level 1 implementations that contain
various language extensions; see Appendix A for details.

LEVEL 2

DPS

PLRM 2nd Edition January 26, 1994 Operators

346 Chapter 8: Operators

8.1 Operator Summary

Operand Stack Manipulation Operators

any pop – discard top element

any1 any2 exch any2 any1 exchange top two elements

any dup any any duplicate top element

any1 ... anyn n copy any1 ... anyn any1 ... anyn duplicate top n elements

anyn ... any0 n index anyn ... any0 anyn duplicate arbitrary element

an–1 ... a0 n j roll a(j–1) mod n ... a0 an–1 ... aj mod n roll n elements up j times

 any1 ... anyn clear discard all elements

 any1 ... anyn count any1 ... anyn n count elements on stack

– mark mark push mark on stack

mark obj1 ... objn cleartomark – discard elements down through mark

mark obj1 ... objn counttomark mark obj1 ... objn n count elements down to mark

Arithmetic and Math Operators

num1 num2 add sum num1 plus num2

num1 num2 div quotient num1 divided by num2

int1 int2 idiv quotient integer divide

int1 int2 mod remainder int1 mod int2
num1 num2 mul product num1 times num2

num1 num2 sub difference num1 minus num2

num1 abs num2 absolute value of num1

num1 neg num2 negative of num1

num1 ceiling num2 ceiling of num1

num1 floor num2 floor of num1

num1 round num2 round num1 to nearest integer

num1 truncate num2 remove fractional part of num1

num sqrt real square root of num

num den atan angle arctangent of num/den in degrees

angle cos real cosine of angle (degrees)

angle sin real sine of angle (degrees)

base exponent exp real raise base to exponent power

num ln real natural logarithm (base e)

num log real logarithm (base 10)

– rand int generate pseudo-random integer

int srand – set random number seed

– rrand int return random number seed

PLRM 2nd Edition January 26, 1994 Operators

8.1 Operator Summary 347

Array Operators

int array array create array of length int

– [mark start array construction

mark obj0 ... objn-1] array end array construction

array length int number of elements in array

array index get any get array element indexed by index

array index any put – put any into array at index

array index count getinterval subarray subarray of array starting at index for count
elements

array1 index array2 putinterval – replace subarray of array1 starting at index by
array2

any0 ... anyn–1 array astore array pop elements from stack into array

array aload a0 ... an–1 array push all elements of array on stack

array1 array2 copy subarray2 copy elements of array1 to initial subarray of
array2

array proc forall – execute proc for each element of array

Packed Array Operators

any0 ... anyn–1 n packedarray packedarray create packed array consisting of the
specified n elements

– currentpacking bool return array packing mode

bool setpacking – set array packing mode for {...} syntax
(true = packedarray)

packedarray length int number of elements in packedarray

packedarray index get any get packedarray element indexed by index

packedarray index count getinterval subarray subarray of packedarray starting at index for
count elements

packedarray aload a0 ... an–1 packedarray push all elements of packedarray on stack

packedarray1 array2 copy subarray2 copy elements of packedarray1 to initial
subarray of array2

packedarray proc forall – execute proc for each element of packedarray

PLRM 2nd Edition January 26, 1994 Operators

348 Chapter 8: Operators

Dictionary Operators

int dict dict create dictionary with capacity for int
elements

– << mark start dictionary construction

mark key1 value1 ... keyn valuen >> dict end dictionary construction

dict length int number of key-value pairs in dict

dict maxlength int current capacity of dict

dict begin – push dict on dictionary stack

– end – pop dictionary stack

key value def – associate key and value in current dictionary

key load value search dictionary stack for key and return
associated value

key value store – replace topmost definition of key

dict key get any get value associated with key in dict

dict key value put – associate key with value in dict

dict key undef – remove key and its value from dict

dict key known bool test whether key is in dict

key where dict true find dictionary in which key is defined
or false

dict1 dict2 copy dict2 copy contents of dict1 to dict2
dict proc forall – execute proc for each element of dict

– currentdict dict push current dictionary on operand stack

– errordict dict error handler dictionary

– $error dict error control and status dictionary

– systemdict dict system dictionary

– userdict dict writable dictionary in local VM

– globaldict dict writable dictionary in global VM

– statusdict dict product-dependent dictionary

– countdictstack int count elements on dictionary stack

array dictstack subarray copy dictionary stack into array

– cleardictstack – pop all non-permanent dictionaries off
dictionary stack

String Operators

int string string create string of length int

string length int number of elements in string

string index get int get string element indexed by index

string index int put – put int into string at index

string index count getinterval substring substring of string starting at index for count
elements

string1 index string2 putinterval – replace substring of string1 starting at index by
string2

string1 string2 copy substring2 copy elements of string1 to initial substring of
string2

PLRM 2nd Edition January 26, 1994 Operators

8.1 Operator Summary 349

string proc forall – execute proc for each element of string

string seek anchorsearch post match true determine if seek is initial substring of string
or string false

string seek search post match pre true search for seek in string
or string false

string token post token true read token from start of string
or false

Relational, Boolean, and Bitwise Operators

any1 any2 eq bool test equal

any1 any2 ne bool test not equal

num1 |str1 num2 |str2 ge bool test greater or equal

num1 |str1 num2 |str2 gt bool test greater than

num1 |str1 num2 |str2 le bool test less or equal

num1 |str1 num2 |str2 lt bool test less than

bool1 | int1 bool2 | int2 and bool3 | int3 logical | bitwise and

bool1 | int1 not bool2 | int2 logical | bitwise not

bool1 | int1 bool2 | int2 or bool3 | int3 logical | bitwise inclusive or

bool1 | int1 bool2 | int2 xor bool3 | int3 logical | bitwise exclusive or

– true true push boolean value true

– false false push boolean value false

int1 shift bitshift int2 bitwise shift of int1 (positive is left)

Control Operators

any exec – execute arbitrary object

bool proc if – execute proc if bool is true

bool proc1 proc2 ifelse – execute proc1 if bool is true, proc2 if bool is
false

init incr limit proc for – execute proc with values from init by steps of
incr to limit

int proc repeat – execute proc int times

proc loop – execute proc an indefinite number of times

– exit – exit innermost active loop

– stop – terminate stopped context

any stopped bool establish context for catching stop
– countexecstack int count elements on exec stack

array execstack subarray copy exec stack into array

– quit – terminate interpreter

– start – executed at interpreter startup

PLRM 2nd Edition January 26, 1994 Operators

350 Chapter 8: Operators

Type, Attribute, and Conversion Operators

any type name return name identifying the type of any

any cvlit any make object be literal

any cvx any make object be executable

any xcheck bool test executable attribute

array |packedarray |file |string executeonly array |packedarray |file |string
reduce access to execute-only

array |packedarray |dict |file |string noaccess array |packedarray |dict |file |string
disallow any access

array |packedarray |dict |file |string readonly array |packedarray |dict |file |string
reduce access to read-only

array |packedarray |dict |file |string rcheck bool test read access

array |packedarray |dict |file |string wcheck bool test write access

num |string cvi int convert to integer

string cvn name convert to name

num |string cvr real convert to real

num radix string cvrs substring convert to string with radix

any string cvs substring convert to string

File Operators

string1 string2 file file open file identified by string1 with access
string2

src |tgt param1 ... paramn name filter file establish filtered file

file closefile – close file

file read int true read one character from file
or false

file int write – write one character to file

file string readhexstring substring bool read hex from file into string

file string writehexstring – write string to file as hex

file string readstring substring bool read string from file

file string writestring – write string to file

file string readline substring bool read line from file into string

file token token true read token from file
or false

file bytesavailable int number of bytes available to read

– flush – send buffered data to standard output file

file flushfile – send buffered data or read to EOF

file resetfile – discard buffered characters

file status bool return status of file

string status pages bytes referenced created true
or false return information about named file

string run – execute contents of named file

– currentfile file return file currently being executed

string deletefile – delete named file

PLRM 2nd Edition January 26, 1994 Operators

8.1 Operator Summary 351

string1 string2 renamefile – rename file string1 to string2

template proc scratch filenameforall – execute proc for each file name matching
template

file int setfileposition – set file to specified position

file fileposition int return current position in file

string print – write string to standard output file

any = – write text representation of any to standard
output file

any == – write syntactic representation of any to
standard output file

 any1 ... anyn stack any1 ... anyn print stack non-destructively using =

 any1 ... anyn pstack any1 ... anyn print stack non-destructively using ==

obj int printobject – write binary object to standard output file,
using int as tag

file obj int writeobject – write binary object to file, using int as tag

int setobjectformat – set binary object format (0=disable, 1=IEEE
high, 2=low, 3=native high, 4=low)

– currentobjectformat int return binary object format

Resource Operators

key instance category defineresource instance register named resource instance in category

key category undefineresource – remove resource registration

key category findresource instance return resource instance identified by key in
category

key category resourcestatus status size true return status of resource instance
or false

template proc scratch category resourceforall – enumerate resource instances in category

Virtual Memory Operators

– save save create VM snapshot

save restore – restore VM snapshot

bool setglobal – set VM allocation mode (false = local,
true = global)

– currentglobal bool return current VM allocation mode

any gcheck bool true if any is simple or in global VM, false if in
local VM

bool1 password startjob bool2 start new job that will alter initial VM if bool1
is true

index any defineuserobject – define user object associated with index

index execuserobject – execute user object associated with index

index undefineuserobject – remove user object associated with index

– UserObjects array current UserObjects array defined in userdict

PLRM 2nd Edition January 26, 1994 Operators

352 Chapter 8: Operators

Miscellaneous Operators

proc bind proc replace operator names in proc by operators

– null null push null on operand stack

– version string interpreter version

– realtime int return real time in milliseconds

– usertime int return execution time in milliseconds

– languagelevel int level of language features

– product string product name

– revision int product revision level

– serialnumber int machine serial number

– executive – invoke interactive executive

bool echo – turn on/off echoing

– prompt – executed when ready for interactive input

Graphics State Operators—Device Independent

– gsave – push graphics state

– grestore – pop graphics state

– grestoreall – pop to bottommost graphics state

– initgraphics – reset graphics state parameters

– gstate gstate create graphics state object

gstate setgstate – set graphics state from gstate

gstate currentgstate gstate copy current graphics state into gstate

num setlinewidth – set line width

– currentlinewidth num return current line width

int setlinecap – set shape of line ends for stroke (0 = butt,
1 = round, 2 = square)

– currentlinecap int return current line cap

int setlinejoin – set shape of corners for stroke (0 = miter,
1 = round, 2 = bevel)

– currentlinejoin int return current line join

num setmiterlimit – set miter length limit

– currentmiterlimit num return current miter limit

bool setstrokeadjust – set stroke adjust (false = disable,
true = enable)

– currentstrokeadjust bool return current stroke adjust

array offset setdash – set dash pattern for stroking

– currentdash array offset return current dash pattern

array setcolorspace – set color space

– currentcolorspace array return current color space

comp1 ... compn setcolor – set color components

– currentcolor comp1 ... compn return current color components

num setgray – set color space to DeviceGray and color to
specified gray value (0 = black, 1 = white)

PLRM 2nd Edition January 26, 1994 Operators

8.1 Operator Summary 353

– currentgray num return current color as gray value

hue sat brt sethsbcolor – set color space to DeviceRGB and color to
specified hue, saturation, brightness

– currenthsbcolor hue sat brt return current color as hue, saturation,
brightness

red green blue setrgbcolor – set color space to DeviceRGB and color to
specified red, green, blue

– currentrgbcolor red green blue return current color as red, green, blue

cyan magenta yellow black setcmykcolor – set color space to DeviceCMYK and color to
specified cyan, magenta, yellow, black

– currentcmykcolor cyan magenta yellow black
return current color as cyan, magenta,
yellow, black

Graphics State Operators—Device Dependent

dict sethalftone – set halftone dictionary

– currenthalftone dict return current halftone dictionary

frequency angle proc setscreen – set gray halftone screen

– currentscreen frequency angle proc
return current gray halftone screen

redfreq redang redproc
greenfreq greenang greenproc

bluefreq blueang blueproc
grayfreq grayang grayproc setcolorscreen – set all four halftone screens

– currentcolorscreen redfreq redang redproc greenfreq greenang greenproc
bluefreq blueang blueproc grayfreq grayang grayproc

return all four halftone screens

proc settransfer – set gray transfer function

– currenttransfer proc return current gray transfer function

redproc greenproc blueproc
grayproc setcolortransfer – set all four transfer functions

– currentcolortransfer redproc greenproc blueproc grayproc
return current transfer functions

proc setblackgeneration – set black generation function

– currentblackgeneration proc return current black generation function

proc setundercolorremoval – set undercolor removal function

– currentundercolorremoval proc return current undercolor removal function

dict setcolorrendering – set CIE based color rendering dictionary

– currentcolorrendering dict return current CIE based color rendering
dictionary

num setflat – set flatness tolerance

– currentflat num return current flatness

bool setoverprint – set overprint parameter

– currentoverprint bool return current overprint parameter

PLRM 2nd Edition January 26, 1994 Operators

354 Chapter 8: Operators

Coordinate System and Matrix Operators

– matrix matrix create identity matrix

– initmatrix – set CTM to device default

matrix identmatrix matrix fill matrix with identity transform

matrix defaultmatrix matrix fill matrix with device default matrix

matrix currentmatrix matrix fill matrix with CTM

matrix setmatrix – replace CTM by matrix

tx ty translate – translate user space by (tx, ty)

tx ty matrix translate matrix define translation by (tx, ty)

sx sy scale – scale user space by sx and sy

sx sy matrix scale matrix define scaling by sx and sy

angle rotate – rotate user space by angle degrees

angle matrix rotate matrix define rotation by angle degrees

matrix concat – replace CTM by matrix × CTM

matrix1 matrix2 matrix3 concatmatrix matrix3 fill matrix3 with matrix1 × matrix2

x y transform x’ y’ transform (x, y) by CTM

x y matrix transform x’ y‘ transform (x, y) by matrix

dx dy dtransform dx’ dy’ transform distance (dx, dy) by CTM

dx dy matrix dtransform dx’ dy’ transform distance (dx, dy) by matrix

x’ y’ itransform x y inverse transform (x‘, y‘) by CTM

x’ y’ matrix itransform x y inverse transform (x‘, y‘) by matrix

dx‘ dy‘ idtransform dx dy inverse transform distance (dx‘, dy‘) by CTM

dx‘ dy‘ matrix idtransform dx dy inverse transform distance (dx‘, dy‘) by matrix

matrix1 matrix2 invertmatrix matrix2 fill matrix2 with inverse of matrix1

Path Construction Operators

– newpath – initialize current path to be empty

– currentpoint x y return current point coordinate

x y moveto – set current point to (x, y)

dx dy rmoveto – relative moveto
x y lineto – append straight line to (x, y)

dx dy rlineto – relative lineto
x y r ang1 ang2 arc – append counterclockwise arc

x y r ang1 ang2 arcn – append clockwise arc

x1 y1 x2 y2 r arct – append tangent arc

x1 y1 x2 y2 r arcto xt1 yt1 xt2 yt2 append tangent arc

x1 y1 x2 y2 x3 y3 curveto – append Bézier cubic section

dx1 dy1 dx2 dy2 dx3 dy3 rcurveto – relative curveto
– closepath – connect subpath back to its starting point

– flattenpath – convert curves to sequences of straight lines

– reversepath – reverse direction of current path

– strokepath – compute outline of stroked path

userpath ustrokepath – compute outline of stroked userpath

PLRM 2nd Edition January 26, 1994 Operators

8.1 Operator Summary 355

userpath matrix ustrokepath – compute outline of stroked userpath

string bool charpath – append character outline to current path

userpath uappend – interpret userpath and append to current
path

– clippath – set current path to clipping path

llx lly urx ury setbbox – set bounding box for current path

– pathbbox llx lly urx ury return bounding box of current path

move line curve close pathforall – enumerate current path

bool upath userpath create userpath for current path; include
ucache if bool is true

– initclip – set clipping path to device default

– clip – clip using non-zero winding number rule

– eoclip – clip using even-odd inside rule

x y width height rectclip – clip with rectangular path

numarray |numstring rectclip – clip with rectangular paths

– ucache – declare that user path is to be cached

Painting Operators

– erasepage – paint current page white

– fill – fill current path with current color

– eofill – fill using even-odd rule

– stroke – draw line along current path

userpath ufill – interpret and fill userpath

userpath ueofill – fill userpath using even-odd rule

userpath ustroke – interpret and stroke userpath

userpath matrix ustroke – interpret userpath, concatenate matrix, and
stroke

x y width height rectfill – fill rectangular path

numarray |numstring rectfill – fill rectangular paths

x y width height rectstroke – stroke rectangular path

numarray |numstring rectstroke – stroke rectangular paths

dict image – paint any sampled image

width height bits/samp matrix
datasrc image – paint monochrome sampled image

width height bits/comp matrix
datasrc0 ... datasrcn–1

multi ncomp colorimage – paint color sampled image

dict imagemask – paint current color through mask

width height polarity matrix
datasrc imagemask – paint current color through mask

PLRM 2nd Edition January 26, 1994 Operators

356 Chapter 8: Operators

Insideness Testing Operators

x y infill bool test whether point (x, y) would be painted by
fill

userpath infill bool test whether pixels in userpath would be
painted by fill

x y ineofill bool test whether point (x, y) would be painted by
eofill

userpath ineofill bool test whether pixels in userpath would be
painted by eofill

x y userpath inufill bool test whether point (x, y) would be painted by
ufill of userpath

userpath1 userpath2 inufill bool test whether pixels in userpath1 would be
painted by inufill of userpath2

x y userpath inueofill bool test whether point (x, y) would be painted by
ueofill of userpath

userpath1 userpath2 inueofill bool test whether pixels in userpath1 would be
painted by ueofill of userpath2

x y instroke bool test whether point (x, y) would be painted by
stroke

x y userpath inustroke bool test whether point (x, y) would be painted by
ustroke of userpath

x y userpath matrix inustroke bool test whether point (x, y) would be painted by
ustroke of userpath

userpath1 userpath2 inustroke bool test whether pixels in userpath1 would be
painted by ustroke of userpath2

userpath1 userpath2 matrix inustroke bool test whether pixels in userpath1 would be
painted by ustroke of userpath2

Form and Pattern Operators

pattern matrix makepattern pattern’ create pattern instance from prototype

comp1 ... compn pattern setpattern – install pattern as current color

form execform – paint form

Device Setup and Output Operators

– showpage – transmit and reset current page

– copypage – transmit current page

dict setpagedevice – install page-oriented output device

– currentpagedevice dict return current page device parameters

– nulldevice – install no-output device

PLRM 2nd Edition January 26, 1994 Operators

8.1 Operator Summary 357

Character and Font Operators

key font definefont font register font as a font dictionary

key undefinefont – remove font registration

key findfont font return font dictionary identified by key

font scale scalefont font’ scale font by scale to produce new font′
font matrix makefont font’ transform font by matrix to produce new font′

font setfont – set font dictionary in graphics state

– currentfont font return current font dictionary

– rootfont font return root composite font dictionary

key scale |matrix selectfont – set font dictionary given name and
transform

string show – paint characters of string on page

ax ay string ashow – add (ax, ay) to width of each character while
showing string

cx cy char string widthshow – add (cx, cy) to width of char while showing
string

cx cy char ax ay string awidthshow – combine effects of ashow and widthshow
string numarray |numstring xshow – paint characters of string using x widths in

numarray |numstring

string numarray |numstring xyshow – paint characters of string using x and y
widths in numarray |numstring

string numarray |numstring yshow – paint characters of string using y widths in
numarray |numstring

name glyphshow – paint character identified by name

string stringwidth wx wy width of string in current font

proc string cshow – invoke show mapping algorithm and call
proc

proc string kshow – execute proc between characters shown from
string

– FontDirectory dict dictionary of font dictionaries

– GlobalFontDirectory dict dictionary of font dictionaries in global VM

– StandardEncoding array Adobe standard font encoding vector

– ISOLatin1Encoding array international ISO Latin-1 font encoding
vector

key findencoding array find encoding array

wx wy llx lly urx ury setcachedevice – declare cached character metrics

w0x w0y llx lly urx ury
w1x w1y vx vy setcachedevice2 – declare cached character metrics

wx wy setcharwidth – declare uncached character metrics

PLRM 2nd Edition January 26, 1994 Operators

358 Chapter 8: Operators

Interpreter Parameter Operators

dict setsystemparams – set system-wide interpreter parameters

– currentsystemparams dict return system-wide interpreter parameters

dict setuserparams – set per-context interpreter parameters

– currentuserparams dict return per-context interpreter parameters

string dict setdevparams – set parameters for input/output device

string currentdevparams dict return device parameters

int vmreclaim – control garbage collector

int setvmthreshold – control garbage collector

– vmstatus level used maximum report VM status

– cachestatus bsize bmax msize mmax csize cmax blimit
return font cache status and parameters

num setcachelimit – set maximum bytes in cached character

mark size lower upper setcacheparams – change font cache parameters

– currentcacheparams mark size lower upper
return current font cache parameters

mark blimit setucacheparams – set user path cache parameters

– ucachestatus mark bsize bmax rsize rmax blimit
return user path cache status and parameters

Display PostScript Operators

– currentcontext context return current context identifier

mark obj1 ... objn proc fork context create context executing proc with
obj1 ... objn as operands

context join mark obj1 ... objn await context termination and return its
results

context detach – enable context to terminate immediately
when done

– lock lock create lock object

lock proc monitor – execute proc while holding lock

– condition condition create condition object

lock condition wait – release lock, wait for condition, reacquire lock

condition notify – resume contexts waiting for condition

– yield – suspend current context momentarily

index name defineusername – define encoded name index

– viewclip – set view clip from current path

– eoviewclip – set view clip using even-odd rule

x y width height rectviewclip – set rectangular view clipping path

numarray |numstring rectviewclip – set rectangular view clipping paths

– initviewclip – reset view clip

– viewclippath – set current path from view clip

– deviceinfo dict return dictionary containing information
about current device

PLRM 2nd Edition January 26, 1994 Operators

8.1 Operator Summary 359

– wtranslation x y return translation from window origin to
device space origin

x y sethalftonephase – set halftone phase

– currenthalftonephase x y return current halftone phase

Errors

configurationerror setpagedevice request cannot be satisfied

dictfull no more room in dictionary

dictstackoverflow too many begins

dictstackunderflow too many ends

execstackoverflow exec nesting too deep

handleerror called to report error information

interrupt external interrupt request (e.g., Control-C)

invalidaccess attempt to violate access attribute

invalidcontext improper use of context operation

invalidexit exit not in loop

invalidfileaccess unacceptable access string

invalidfont invalid font name or dictionary

invalidid invalid identifier for external object

invalidrestore improper restore
ioerror input/output error occurred

limitcheck implementation limit exceeded

nocurrentpoint current point is undefined

rangecheck operand out of bounds

stackoverflow operand stack overflow

stackunderflow operand stack underflow

syntaxerror PostScript language syntax error

timeout time limit exceeded

typecheck operand of wrong type

undefined name not known

undefinedfilename file not found

undefinedresource resource instance not found

undefinedresult over/underflow or meaningless result

unmatchedmark expected mark not on stack

unregistered internal error

VMerror VM exhausted

PLRM 2nd Edition January 26, 1994 Operators

360 Chapter 8: Operators

8.2 Operator Details

[– [mark

pushes a mark object on the operand stack (see mark). The customary use of the
[operator is to mark the beginning of an indefinitely long sequence of objects
that will eventually be formed into a new array object by the] operator. See the
discussion of the array syntax in section 3.2, “Syntax,” and of array construction
in section 3.6, “Overview of Basic Operators.”

Errors: stackoverflow

See Also:], mark, array, astore

] mark obj0 ... objn-1] array

creates a new array of n elements, where n is the number of elements above the
topmost mark on the operand stack; stores those elements into the array; and
returns the array on the operand stack. The] operator stores the topmost object
from the stack into element n–1 of array and the bottommost one (the one
immediately above the mark) into element 0 of array. It removes all the array ele-
ments from the stack, as well as the mark object.

The array is allocated in local or global VM according to the current VM alloca-
tion mode. An invalidaccess error occurs if the array is in global VM and any of
obj0 ... objn-1 are in local VM. See section 3.7.2, “Local and Global VM.”

Example

[5 4 3] ⇒ % a 3-element array, with elements 5, 4, 3
mark 5 4 3 counttomark array astore exch pop ⇒ [5 4 3]
[1 2 add] ⇒ % a 1-element array, with element 3

The second line of the example has the same effect as the first, but uses lower-
level array and stack manipulation primitives instead of [and].

In the last line of the example, note that the PostScript interpreter acts on all of
the array elements as it encounters them (unlike its behavior with the {...} syntax
for executable array construction) so the add operator is executed before the
array is constructed.

Errors: stackoverflow, unmatchedmark, VMerror

See Also: [, mark, array, astore

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 361

<< – << mark

pushes a mark object on the operand stack (same as mark and [operators).

Errors: stackoverflow

See Also: >>, mark

>> mark key1 value1 ... keyn valuen >> dict

creates and returns a dictionary containing the specified key-value pairs. The
operands are a mark followed by an even number of objects, which the operator
uses alternately as keys and values to be inserted into the dictionary. The dic-
tionary is allocated space for precisely the number of key-value pairs supplied.

The dictionary is allocated in local or global VM according to the current VM
allocation mode. An invalidaccess error occurs if the dictionary is in global VM
and any keys or values are in local VM. See section 3.7.2, “Local and Global
VM.” A rangecheck error occurs if there is an odd number of objects above the
topmost mark on the stack.

>> is equivalent to:

counttomark 2 idiv dup dict begin
{def} repeat
pop currentdict
end

Example

<< /Duplex true /PageSize [612 792] /Collate false >>
setpagedevice

This example constructs a dictionary containing three key-value pairs, which it
immediately passes to the setpagedevice operator.

Errors: invalidaccess, rangecheck, unmatchedmark, VMerror

See Also: <<, mark, dict

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

362 Chapter 8: Operators

= any = –

pops an object from the operand stack, produces a text representation of that
object’s value, and writes the result followed by a newline character to the stan-
dard output file. The text is that produced by the cvs operator; thus, = prints the
value of a number, boolean, string, name, or operator object and prints
--nostringval-- for an object of any other type.

The name = is not special. In PostScript language programs it must be delimited
by white space or special characters the same as names composed of alphabetical
characters. The value of = is not an operator, but rather a built-in procedure.

Errors: stackunderflow

See Also: ==, stack, cvs, print, flush

== any == –

pops an object from the operand stack, produces a text representation of that
object followed by a newline character, and writes the result to the standard out-
put file. == attempts to produce a result that resembles the PostScript syntax for
creating the object. It precedes literal names by /, brackets strings with (...), and
expands the values of arrays and packed arrays and brackets them with [...] or
{...}. For an object with no printable representation, == produces the name of its
type in the form -mark- or -dict-. For an operator object, it produces the opera-
tor’s name in the form --add--.

The name == is not special. In PostScript language programs it must be delimited
by white space or special characters the same as names composed of alphabetical
characters. The value of == is not an operator, but rather a built-in procedure.

The == operator is intended for convenience in debugging. The details of how ==
formats its output are intentionally unspecified. A program requiring detailed
control over output format should do its own formatting explicitly, using lower-
level operators, such as cvs. Also, printobject and writeobject (Level 2 features)
may be more suitable for generating machine-readable output.

Errors: stackunderflow

See Also: =, print, pstack, flush

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 363

$error – $error dict

pushes the dictionary object $error on the operand stack (see section 3.10,
“Errors”). $error is not an operator; it is a name in systemdict associated with
the dictionary object.

Errors: stackoverflow

See Also: errordict

abs num1 abs num2

returns the absolute value of num1. The type of the result is the same as the type
of num1 unless num1 is the most negative integer, in which case the result is a
real.

Example

4.5 abs ⇒ 4.5
–3 abs ⇒ 3
0 abs ⇒ 0

Errors: stackunderflow, typecheck

See Also: neg

add num1 num2 add sum

returns the sum of num1 and num2. If both operands are integers and the result is
within integer range, the result is an integer; otherwise, the result is a real.

Example

3 4 add ⇒ 7
9.9 1.1 add ⇒ 11.0

Errors: stackunderflow, typecheck, undefinedresult

See Also: div, mul, sub, idiv, mod

PLRM 2nd Edition January 26, 1994 Operators

364 Chapter 8: Operators

aload array aload array0 ... arrayn–1 array
packedarray aload packedarray0 ... packedarrayn–1 packedarray

successively pushes all n elements of array or packedarray on the operand stack
(where n is the length of the operand), and finally pushes the operand itself.

Example

[23 (ab) –6] aload ⇒ 23 (ab) –6 [23 (ab) –6]

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: astore, get, getinterval

anchorsearch string seek anchorsearch post match true (if found)
string false (if not found)

determines if the string seek matches the initial substring of string (that is, string
is at least as long as seek and the corresponding characters are equal). If it
matches, anchorsearch splits string into two segments: match, the portion of
string that matches seek, and post, the remainder of string; it then pushes the
string objects post and match and the boolean true. If not, anchorsearch pushes
the original string and the boolean false. anchorsearch is a special case of the
search operator.

Example

(abbc) (ab) anchorsearch ⇒ (bc) (ab) true
(abbc) (bb) anchorsearch ⇒ (abbc) false
(abbc) (bc) anchorsearch ⇒ (abbc) false
(abbc) (B) anchorsearch ⇒ (abbc) false

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: search, token

and bool1 bool2 and bool3
int1 int2 and int3

If the operands are booleans, and returns their logical conjunction. If the oper-
ands are integers, and returns the bitwise and of their binary representations.

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 365

Example

true true and ⇒ true % a complete truth table
true false and ⇒ false
false true and ⇒ false
false false and ⇒ false

99 1 and ⇒ 1
52 7 and ⇒ 4

Errors: stackunderflow, typecheck

See Also: or, xor, not, true, false

arc x y r ang1 ang2 arc –

appends a counterclockwise arc of a circle to the current path, possibly preceded
by a straight line segment. The arc has (x, y) as center, r as radius, ang1 the angle
of a vector from (x, y) of length r to the first endpoint of the arc, and ang2 the
angle of a vector from (x, y) of length r to the second endpoint of the arc.

If there is a current point, the arc operator includes a straight line segment from
the current point to the first endpoint of this arc and then adds the arc into the
current path. If the current path is empty, the arc operator does not produce the
initial straight line segment. In any event, the second endpoint of the arc
becomes the new current point.

Angles are measured in degrees counterclockwise from the positive x-axis of the
current user coordinate system. The curve produced is circular in user space. If
user space is scaled non-uniformly (i.e., differently in x and y) arc will produce
elliptical curves in device space.

The operators that produce arcs (arc, arcn, arct, and arcto) represent them inter-
nally as one or more Bézier cubic curves (see curveto) that approximate the
required shape. This is done with sufficient accuracy that a faithful rendition of
an arc is produced. However, a program that reads the constructed path using
pathforall will encounter curveto segments where arcs were specified originally.

Example

newpath 0 0 moveto 0 0 1 0 45 arc closepath

This constructs a 1-unit radius, 45-degree “pie slice.”

Errors: limitcheck, stackunderflow, typecheck

See Also: arcn, arct, arcto, curveto

x,y

current
point

second
endpoint

first
endpointang2

ang1

r

0,0 1,0
45°

PLRM 2nd Edition January 26, 1994 Operators

366 Chapter 8: Operators

arcn x y r ang1 ang2 arcn –

(arc negative) behaves like arc, but arcn builds its arc segment in a clockwise
direction in user space.

Example

newpath 0 0 2 0 90 arc 0 0 1 90 0 arcn closepath

This constructs a 2-unit radius, 1-unit wide, 90-degree “windshield wiper swath.”

Errors: limitcheck, stackunderflow, typecheck

See Also: arc, arct, arcto, curveto

arct x1 y 1 x2 y2 r arct –

appends an arc of a circle to the current path, possibly preceded by a straight line
segment. The arc is defined by a radius r and two tangent lines.The tangent lines
are those drawn from the current point, here called (x0, y0), to (x1, y1), and from
(x1, y1) to (x2, y2). If the current point is undefined, arct executes the error
nocurrentpoint.

The center of the arc is located within the inner angle between the tangent lines.
It is the only point located at distance r in a direction perpendicular to both
lines. The arc begins at the first tangent point (xt1, yt1) on the first tangent line,
passes between its center and the point (x1, y1), and ends at the second tangent
point (xt2, yt2) on the second tangent line.

Before constructing the arc, arct adds a straight line segment from the current
point (x0, y0) to (xt1, yt1), unless those points are the same. In any event, (xt2, yt2)
becomes the new current point.

The curve produced is circular in user space. If user space is scaled non-uni-
formly (i.e., differently in x and y) arct will produce elliptical curves in device
space.

If the two tangent lines are collinear, (xt1, yt1) and (xt2, yt2) are identical. In this
case, the joining arc has length zero and arct merely appends a straight line seg-
ment from (x0, y0) to (x1, y1).

0,0 1,0 2,0

90°

LEVEL 2

x ,y xt ,yt x ,y 0 0 1 1 1 1

r

xt ,yt 2 2

x ,y 2 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 367

Example

newpath 0 0 moveto
0 4 4 4 1 arct
4 4 lineto

This constructs a 4-unit wide, 4-unit high right angle with a 1-unit radius
“rounded corner.”

Errors: limitcheck, nocurrentpoint, stackunderflow, typecheck,
undefinedresult

See Also: arc, arcn, arcto, curveto

arcto x1 y1 x2 y2 r arcto xt1 yt1 xt2 yt2

produces the same effect as arct. It also returns the two tangent point coordi-
nates (xt1, yt1) and (xt2, yt2) in user space. arcto is not allowed as an element of a
user path, whereas arct is allowed. See section 4.6, “User Paths.”

Errors: limitcheck, nocurrentpoint, stackunderflow, typecheck,
undefinedresult

See Also: arc, arcn, arct, curveto

array int array array

creates an array of length int, each of whose elements is initialized with a null
object, and pushes this array on the operand stack. The int operand must be a
non-negative integer not greater than the maximum allowable array length (see
Appendix B). The array is allocated in local or global VM according to the cur-
rent VM allocation mode. See section 3.7.2, “Local and Global VM.”

Example

3 array ⇒ [null null null]

Errors: limitcheck, rangecheck, stackunderflow, typecheck, VMerror

See Also: [,], aload, astore, packedarray

0,4 1,4 4,4

0,3
1

0,0

PLRM 2nd Edition January 26, 1994 Operators

368 Chapter 8: Operators

ashow ax ay string ashow –

paints the characters of string in a manner similar to show. But while doing so,
ashow adjusts the width of each character shown by adding ax to the character’s
x width and ay to its y width, thus modifying the spacing between characters.
The numbers ax and ay are x and y displacements in the user coordinate system,
not in the character coordinate system.

This operator enables a string of text to be fitted to a specific width by adjusting
all the spaces between characters by a uniform amount. For a discussion about
character widths, see section 5.4, “Font Metric Information.”

Example

 /Helvetica findfont 12 scalefont setfont
14 61 moveto (Normal spacing) show
14 47 moveto 4 0 (Wide spacing) ashow

Errors: invalidaccess, invalidfont, nocurrentpoint, stackunderflow, typecheck

See Also: show, awidthshow, cshow, kshow, widthshow, xshow, xyshow, yshow

astore any0 ... anyn–1 array astore array

stores the objects any0 through anyn–1 from the operand stack into array, where n
is the length of array. The astore operator first removes the array operand from
the stack and determines its length. It then removes that number of objects from
the stack, storing the topmost one into element n – 1 of array and the bottom-
most one into element 0 of array. Finally, it pushes array back on the stack. Note
that astore cannot be performed on packed arrays.

If the value of array is in global VM and any of any0 ... anyn–1 are composite
objects whose values are in local VM, an invalidaccess error occurs. See section
3.7.2, “Local and Global VM.”

Example

(a) (bcd) (ef) 3 array astore ⇒ [(a) (bcd) (ef)]

This creates a three element array, stores the strings (a), (bcd), and (ef) into it as
elements 0, 1, and 2, and leaves the array object on the operand stack.

Errors: invalidaccess, stackunderflow, typecheck

See Also: aload, put, putinterval

Normal spacing
W i d e s p a c i n g

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 369

atan num den atan angle

returns the angle (in degrees between 0 and 360) whose tangent is num/den.
Either num or den may be zero, but not both. The signs of num and den determine
the quadrant in which the result will lie: a positive num yields a result in the pos-
itive y plane, a positive den yields a result in the positive x plane. The result is a
real.

Example

0 1 atan ⇒ 0.0
1 0 atan ⇒ 90.0
–100 0 atan ⇒ 270.0
4 4 atan ⇒ 45.0

Errors: stackunderflow, typecheck, undefinedresult

See Also: cos, sin

awidthshow cx cy char ax ay string awidthshow –

paints the characters of string in a manner similar to show, but combines the spe-
cial effects of ashow and widthshow. awidthshow adjusts the width of each char-
acter shown by adding ax to its x width and ay to its y width, thus modifying the
spacing between characters. Furthermore, awidthshow modifies the width of
each occurrence of the character char by an additional amount (cx, cy). The inter-
pretation of char is as described for the widthshow operator.

This operator enables fitting a string of text to a specific width by adjusting all of
the spaces between characters by a uniform amount, while independently con-
trolling the width of some specific character, such as the space character. For a
discussion about character widths, see section 5.4, “Font Metric Information.”

Example

 /Helvetica findfont 12 scalefont setfont
30 60 moveto (Normal spacing) show
30 46 moveto 6 0 8#040 .5 0 (Wide spacing) awidthshow

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheck,
stackunderflow, typecheck

See Also: ashow, cshow, kshow, show, widthshow, xshow, xyshow, yshow

Normal spacing
Wide spacing

PLRM 2nd Edition January 26, 1994 Operators

370 Chapter 8: Operators

begin dict begin –

pushes dict on the dictionary stack, making it the current dictionary and install-
ing it as the first of the dictionaries consulted during implicit name lookup and
by def, load, store, and where.

Errors: dictstackoverflow, invalidaccess, stackunderflow, typecheck

See Also: end, countdictstack, dictstack

bind proc bind proc

replaces executable operator names in proc by their values. For each element of
proc that is an executable name, bind looks up the name in the context of the
current dictionary stack as if by load. If the name is found and its value is an
operator object, bind replaces the name by the operator in proc. If the name is
not found or its value is not an operator, bind does not make a change.

For each procedure object in proc, bind applies itself recursively to that proce-
dure, makes the procedure read-only, and stores it back into proc. The bind oper-
ator applies to both arrays and packed arrays, but it treats their access attributes
differently. It will ignore a read-only array; that is, it will neither bind elements
of the array nor examine nested procedures. On the other hand, bind will oper-
ate on a packed array (which is always read-only), disregarding its access
attribute. No error occurs in either case.

The effect of bind is that all operator names in proc and in procedures nested in
proc to any depth become “tightly bound” to the operators themselves. During
subsequent execution of proc, the interpreter encounters the operators them-
selves rather than the names of operators. See section 3.11, “Early Name Bind-
ing.”

Errors: typecheck

See Also: load

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 371

bitshift int1 shift bitshift int2

shifts the binary representation of int1 left by shift bits and returns the result. Bits
shifted out are lost; bits shifted in are zero. If shift is negative, then a right shift
by –shift bits is performed. This produces an arithmetically correct result only for
positive values of int1. Both int1 and shift must be integers.

Example

7 3 bitshift ⇒ 56
142 –3 bitshift ⇒ 17

Errors: stackunderflow, typecheck

See Also: and, or, xor, not

bytesavailable file bytesavailable int

returns the number of bytes that are immediately available for reading from file
without waiting. The result is –1 if end-of-file has been encountered or if the
number of bytes available cannot be determined for other reasons.

Errors: ioerror, stackunderflow, typecheck

See Also: read, readhexstring, readline, readstring

cachestatus – cachestatus bsize bmax msize mmax csize cmax blimit

returns measurements of several aspects of the font cache (see section 5.5, “Font
Cache”). cachestatus reports the current consumption and limit for each of
three font cache resources: bytes of bitmap storage (bsize and bmax), font/matrix
combinations (msize and mmax), and total number of cached characters (csize
and cmax). It also reports the limit on the number of bytes occupied by a single
cached character (blimit). Characters whose bitmaps are larger than this are not
cached.

Errors: stackoverflow

See Also: setcachelimit, setsystemparams

PLRM 2nd Edition January 26, 1994 Operators

372 Chapter 8: Operators

ceiling num1 ceiling num2

returns the least integer value greater than or equal to num1. The type of the
result is the same as the type of the operand.

Example

3.2 ceiling ⇒ 4.0
–4.8 ceiling ⇒ –4.0
99 ceiling ⇒ 99

Errors: stackunderflow, typecheck

See Also: floor, round, truncate, cvi

charpath string bool charpath –

obtains the character path outlines that would result if string were shown at the
current point using show. Instead of painting the path, however, charpath
appends the path to the current path. This yields a result suitable for general fill-
ing, stroking, or clipping (see sections 4.4, “Path Construction,” 4.5, “Painting,”
and 5.1, “Organization and Use of Fonts”).

The bool operand determines what happens if the character path is designed to
be stroked rather than filled or outlined. If bool is false, charpath simply appends
the character path to the current path; the result is suitable only for stroking. If
bool is true, charpath applies the strokepath operator to the character path; the
result is suitable for filling or clipping, but not for stroking. charpath does not
produce results for portions of a character defined as images or masks rather
than as paths.

The outlines of some fonts are protected. (In Level 1 implementations, this
applies to all fonts; in Level 2, only to certain special fonts and not to ordinary
Type 1 or Type 3 fonts.) If the current font is protected, using charpath to obtain
its outlines causes the pathforall and upath operators to be disabled for as long
as those outlines remain in the current path.

Errors: limitcheck, nocurrentpoint, stackunderflow, typecheck

See Also: show, flattenpath, pathbbox, clip

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 373

clear any1 ... anyn clear

pops all objects from the operand stack and discards them.

Errors: (none)

See Also: count, cleartomark, pop

cleardictstack – cleardictstack –

pops all dictionaries off the dictionary stack except for the permanent entries. In
Level 1 implementations the permanent entries are systemdict and userdict; in
Level 2 they are systemdict, globaldict, and userdict. (In Level 1 implementa-
tions, cleardictstack is a procedure defined in userdict instead of an operator
defined in systemdict.)

Errors: (none)

See Also: begin, end

cleartomark mark obj1 ... objn cleartomark –

pops the operand stack repeatedly until it encounters a mark, which it also pops
from the stack (obj1 through objn are any objects other than marks).

Errors: unmatchedmark

See Also: clear, mark, counttomark, pop

PLRM 2nd Edition January 26, 1994 Operators

374 Chapter 8: Operators

clip – clip –

intersects the inside of the current clipping path with the inside of the current
path to produce a new, smaller current clipping path. The inside of the current
path is determined by the normal PostScript non-zero winding number rule (see
section 4.5, “Painting”), while the inside of the current clipping path is deter-
mined by whatever rule was used at the time that path was created.

In general, clip produces a new path whose inside (according to the non-zero
winding number rule) consists of all areas that are inside both of the original
paths. The way this new path is constructed (the order of its segments, whether
it self-intersects, etc.) is not specified. clip treats an open subpath of the current
path as though it were closed; it does not actually alter the path itself. It is per-
missible for the current path to be empty. The result of executing clip is always a
non-empty clipping path, though it may enclose zero area.

There is no way to enlarge the current clipping path (other than by initclip or
initgraphics) or to set a new clipping path without reference to the current one.
The recommended way of using clip is to bracket the clip and the sequence of
graphics to be clipped with gsave and grestore. The grestore will restore the
clipping path that was in effect before the gsave. The setgstate operator can also
be used to reset the clipping path to an earlier state.

Unlike fill and stroke, clip does not implicitly perform a newpath after it has fin-
ished using the current path. Any subsequent path construction operators will
append to the current path unless newpath is executed explicitly. This can cause
unexpected behavior.

Errors: limitcheck

See Also: eoclip, clippath, initclip, rectclip

clippath – clippath –

sets the current path to one that describes the current clipping path. This opera-
tor is useful for determining the exact extent of the imaging area on the current
output device.

If the current clipping path is the result of application of the clip or eoclip opera-
tor, the path set by clippath is generally suitable only for filling or clipping. It is
not suitable for stroking because it may contain interior segments or discon-
nected subpaths produced by the clipping process.

Example

clippath 1 setgray fill

This erases (fills with white) the interior of the current clipping path.

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 375

Errors: (none)

See Also: clip, eoclip, initclip, rectclip

closefile file closefile –

closes file—in other words, breaks the association between the file object and the
underlying file. For an output file, closefile first performs a flushfile. It may also
take device-dependent actions, such as truncating a disk file to the current posi-
tion or transmitting an end-of-file indication. See section 3.8, “File Input and
Output.”

Errors: ioerror, stackunderflow, typecheck

See Also: file, filter, status

closepath – closepath –

closes the current subpath by appending a straight line segment connecting the
current point to the subpath’s starting point—generally, the point most recently
specified by moveto. If the current subpath is already closed or the current path
is empty, closepath does not do anything (see section 4.4, “Path Construction”).

closepath terminates the current subpath. Appending another segment to the
current path will begin a new subpath, even if it is drawn from the endpoint
reached by the closepath.

Errors: limitcheck

See Also: newpath, moveto, lineto

PLRM 2nd Edition January 26, 1994 Operators

376 Chapter 8: Operators

colorimage width height bits/comp matrix
datasrc0 ... datasrcn–1 multi ncomp colorimage –

paints a sampled image onto the current page. The description here only sum-
marizes the colorimage operator. See section 4.10, “Images” for full details.

The sampled image is a rectangular array of width × height sample values.
colorimage interprets the width, height, and matrix operands in the same way as
does image.

Each image sample consists of 1, 3, or 4 color components, as specified by the
ncomp operand. Each component consists of bits/comp bits (1, 2, 4, 8, or 12). All
components are the same size.

If ncomp is 1, the samples have only one (gray) component; the operation of
colorimage is equivalent to that of image using the first five operands. If ncomp
is 3, the samples consist of red, green, and blue components. If ncomp is 4, the
samples consist of cyan, magenta, yellow, and black components. The 1, 3, and 4
component values are interpreted according to the DeviceGray, DeviceRGB, and
DeviceCMYK color spaces, respectively (see section 4.8, “Color Spaces”), regard-
less of the current color space.

The multi operand is a boolean that determines how colorimage is to obtain sam-
ple data from its data sources. If multi is false, there is a single data source,
datasrc0; colorimage obtains all components from that source, interleaved on a
per-sample basis. If multi is true, there are ncomp data sources, datasrc0 ...
datasrcn-1, one for each component. The data sources can be procedures, strings,
or files, including filtered files. They must all be of the same type (see section
4.10.2, “Sample Data Representation”).

Unlike image and imagemask, colorimage does not have an alternate form in
which the parameters are bundled into a single image dictionary operand. In
Level 2 implementations, given the appropriate image dictionary, the image
operator can do anything that colorimage can do, and many other things. For
example, image can interpret color samples in any color space, whereas
colorimage is limited to the DeviceGray, DeviceRGB, and DeviceCMYK color
spaces.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: invalidaccess, ioerror, limitcheck, rangecheck, stackunderflow,
typecheck, undefined, undefinedresult

See Also: image, imagemask

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 377

concat matrix concat –

concatenates matrix with the current transformation matrix (CTM). Precisely,
concat replaces the CTM by matrix × CTM (see section 4.3, “Coordinate Systems
and Transformations”). The effect of this is to define a new user space whose
coordinates are transformed into the former user space according to matrix.

Examples

[72 0 0 72 0 0] concat
72 72 scale

The two examples have the same effect on the current transformation.

Errors: rangecheck, stackunderflow, typecheck

See Also: concatmatrix, matrix, rotate, scale, setmatrix, translate

concatmatrix matrix1 matrix2 matrix3 concatmatrix matrix3

replaces the value of matrix3 by the result of multiplying matrix1 × matrix2, and
pushes the modified matrix3 back on the operand stack. This operator does not
affect the CTM.

Errors: rangecheck, stackunderflow, typecheck

See Also: concat, matrix, rotate, scale, setmatrix, translate

condition – condition condition

creates a new condition object, unequal to any condition object already in exist-
ence, and pushes it on the operand stack. The condition initially has no contexts
waiting on it (see section 7.1, “Multiple Execution Contexts”). Since a condition
is a composite object, creating one consumes VM. The condition’s value is allo-
cated in local or global VM according to the current VM allocation mode.

Errors: stackoverflow, VMerror

See Also: wait, notify

DPS

PLRM 2nd Edition January 26, 1994 Operators

378 Chapter 8: Operators

configurationerror (error)

occurs when setpagedevice or setdevparams has been executed with a request
for a feature that either is not available in the interpreter implementation or is
not currently available because of the state of the hardware. For setpagedevice,
this error is generated only if the PolicyDict entry in a page device dictionary
specifies that an error should be generated.

When a configurationerror is generated, a two-element array called errorinfo is
placed in $error. This array contains the key and value of the request that could
not be met. See section 3.10, “Errors.”

See Also: setpagedevice, setdevparams

copy any1 ... anyn n copy any1 ... anyn any1 ... anyn

array1 array2 copy subarray2

dict1 dict2 copy dict2
string1 string2 copy substring2

packedarray1 array2 copy subarray2

gstate1 gstate2 copy gstate2

performs two entirely different functions, depending on the type of the topmost
operand.

In the first instance, where the top element on the operand stack is a non-nega-
tive integer n, copy pops n from the stack and duplicates the top n elements on
the operand stack as shown above. This form of copy operates only on the
objects themselves, not on the values of composite objects.

Example

1 2 3 2 copy ⇒ 1 2 3 2 3
1 2 3 0 copy ⇒ 1 2 3

In the other instances, copy copies all the elements of the first composite object
into the second. The composite object operands must be of the same type,
except that a packed array can be copied into an array. This form of copy copies
the value of a composite object. This is quite different from dup and other opera-
tors that copy only the objects themselves (see section 3.3.1, “Simple and Com-
posite Objects”). However, copy performs only one level of copying. It does not
apply recursively to elements that are themselves composite objects; instead, the
values of those elements become shared.

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 379

In the case of arrays or strings, the length of the second object must be at least as
great as the first; copy returns the initial subarray or substring of the second oper-
and into which the elements were copied. Any remaining elements of array2 or
string2 are unaffected. copy cannot copy into packed arrays, because they are
read-only, but it can copy packed arrays into ordinary arrays.

In the case of dictionaries, Level 1 implementations require that dict2 have a
length of zero and a maxlength at least as great as the length of dict1. Level 2
implementations do not impose this restriction, since dictionaries can expand
when necessary.

The attributes (literal or executable and access) of the result are normally the
same as those of the second operand. However, in Level 1 implementations, the
access attribute of dict2 is copied from that of dict1.

If the value of the destination object is in global VM and any of the elements
copied from the source object are composite objects whose values are in local
VM, an invalidaccess error occurs (see section 3.7.2, “Local and Global VM”).

Example

/a1 [1 2 3] def
a1 dup length array copy ⇒ [1 2 3]

Errors: invalidaccess, rangecheck, stackunderflow, stackoverflow, typecheck

See Also: dup, get, put, putinterval

copypage – copypage –

transmits one copy of the current page to the current output device without
erasing the current page or changing the graphics state. This is in contrast to
showpage, which performs the equivalent of an erasepage and an initgraphics.
Aside from these differences, the behavior of copypage is identical to that of
showpage.

copypage is intended primarily as a debugging aid or as a means of printing suc-
cessive pages with incrementally accumulated contents. Routine use of
copypage as a substitute for showpage may severely degrade the page through-
put of some PostScript printers. To print multiple copies of the same page, use
the #copies implicit parameter of showpage or the NumCopies parameter of
setpagedevice.

Errors: (none)

See Also: showpage, erasepage

PLRM 2nd Edition January 26, 1994 Operators

380 Chapter 8: Operators

cos angle cos real

returns the cosine of angle, which is interpreted as an angle in degrees. The result
is a real.

Example

0 cos ⇒ 1.0
90 cos ⇒ 0.0

Errors: stackunderflow, typecheck

See Also: atan, sin

count any1 ... anyn count any1 ... anyn n

counts the number of items on the operand stack and pushes this count on the
operand stack.

Example

clear count ⇒ 0
clear 1 2 3 count ⇒ 1 2 3 3

Errors: stackoverflow

See Also: counttomark

countdictstack – countdictstack int

counts the number of dictionaries currently on the dictionary stack and pushes
this count on the operand stack.

Errors: stackoverflow

See Also: dictstack, begin, end

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 381

countexecstack – countexecstack int

counts the number of objects on the execution stack and pushes this count on
the operand stack.

Errors: stackoverflow

See Also: execstack

counttomark mark obj1 ... objn counttomark mark obj1 ... objn n

counts the number of objects on the operand stack starting with the top element
and continuing down to but not including the first mark encountered. obj1
through objn are any objects other than marks.

Example

1 mark 2 3 counttomark ⇒ 1 mark 2 3 2
1 mark counttomark ⇒ 1 mark 0

Errors: stackoverflow, unmatchedmark

See Also: mark, count

cshow proc string cshow –

invokes proc once for each operation of the font mapping algorithm (see section
5.9.1, “Character Mapping”). The value of currentfont during the execution of
proc is the base font that the algorithm ultimately selects. When proc is invoked,
the stack contains three values: the selected character’s code (an integer) and the
x and y components of the width vector for the character in the user coordinate
system. cshow does not paint the character and does not change the current
point, although proc may do so. When proc completes execution, the value of
currentfont is restored.

cshow can be used to provide careful positioning of individual characters while
taking advantage of the composite font mapping machinery of the interpreter.
cshow is intended primarily for use with composite fonts (see section 5.9, “Com-
posite Fonts”). However, it can also be used with a base font. The mapping algo-
rithm for a base font simply selects consecutive characters from the string.

Errors: invalidfont, invalidaccess, nocurrentpoint, rangecheck,
stackunderflow, typecheck

See Also: show, ashow, awidthshow, kshow, widthshow, xshow, xyshow, yshow

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

382 Chapter 8: Operators

currentblackgeneration – currentblackgeneration proc

returns the current black generation function in the graphics state.

Errors: stackoverflow

See Also: setblackgeneration

currentcacheparams – currentcacheparams mark size lower upper

pushes a mark object followed by the current cache parameters on the operand
stack. The number of cache parameters returned is variable (see
setcacheparams).

Errors: stackoverflow

See Also: setcacheparams, setsystemparams, setuserparams

currentcmykcolor – currentcmykcolor cyan magenta yellow black

returns the current color in the graphics state according to the cyan-magenta-
yellow-black color space. If the current color space is DeviceCMYK,
currentcmykcolor returns the color values most recently specified by
setcmykcolor or setcolor. If the current color space is DeviceRGB or DeviceGray,
currentcmykcolor converts the current color to CMYK according to the conven-
tions described in section 6.2, “Conversions Among Device Color Spaces.” For
any other color space, currentcmykcolor returns 0.0 0.0 0.0 1.0.

Errors: stackoverflow

See Also: setcmykcolor

currentcolor – currentcolor comp1 comp2 ... compm

returns the components, in the current color space, of the color specified by the
current color parameters in the graphics state.

Errors: stackoverflow

See Also: setcolor, setcolorspace

LEVEL 2

LEVEL 2

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 383

currentcolorrendering – currentcolorrendering dict

returns the value of the CIE based color rendering dictionary parameter in the
graphics state.

Errors: stackoverflow

See Also: setcolorrendering

currentcolorscreen – currentcolorscreen redfreq redang redproc
greenfreq greenang greenproc
bluefreq blueang blueproc
grayfreq grayang grayproc

If the current halftone screen was specified by setcolorscreen,
currentcolorscreen returns all 12 current halftone screen parameters in the
graphics state. If the current screen was specified by setscreen,
currentcolorscreen returns the three screen parameters repeated four times. If
the current screen was specified by sethalftone, currentcolorscreen returns 60, 0,
and the halftone dictionary, repeated four times.

Errors: stackoverflow

See Also: setcolorscreen, setscreen, sethalftone

currentcolorspace – currentcolorspace array

returns an array containing the identifying key and parameters of the color
space in the graphics state. currentcolorspace always returns an array, even if the
color space has no parameters and was selected by presenting just a name to
setcolorspace.

Errors: stackoverflow

See Also: setcolorspace, setcolor

LEVEL 2

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

384 Chapter 8: Operators

currentcolortransfer – currentcolortransfer redproc greenproc blueproc grayproc

returns the current transfer functions in the graphics state for all four color com-
ponents. If the current transfer functions were specified by setcolortransfer,
currentcolortransfer returns those four operands. If settransfer was used,
currentcolortransfer returns the single transfer function, repeated four times.

Errors: stackoverflow

See Also: setcolortransfer, settransfer

currentcontext – currentcontext context

returns an integer that identifies the current execution context. See section 7.1,
“Multiple Execution Contexts.”

Errors: stackoverflow

See Also: fork, join, detach

currentdash – currentdash array offset

returns the current dash array and offset in the graphics state.

Errors: stackoverflow

See Also: setdash, stroke

currentdevparams string currentdevparams dict

returns a dictionary containing the keys and current values of all parameters for
the device identified by string. The returned dictionary is merely a container for
key-value pairs. Each execution of currentdevparams allocates and returns a new
dictionary.

Errors: stackoverflow, VMerror

See Also: setdevparams

LEVEL 2

DPS

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 385

currentdict – currentdict dict

pushes the current dictionary (the dictionary on top of the dictionary stack) on
the operand stack. currentdict does not pop the dictionary stack; it just pushes a
duplicate of its top element on the operand stack.

Errors: stackoverflow

See Also: begin, dictstack

currentfile – currentfile file

returns the file object from which the PostScript interpreter is currently or was
most recently reading program input. Precisely, currentfile returns the topmost
file object on the execution stack. If there isn’t one, it returns an invalid file
object that doesn’t correspond to any file. This never occurs during execution of
ordinary user programs.

The file returned by currentfile is usually but not always the standard input file.
An important exception occurs during interactive mode operation (see section
3.8.3, “Special Files”). In this case, the interpreter does not read directly from the
standard input file; instead, it reads from a file representing an edited statement
(each statement is represented by a different file).

The currentfile operator is useful for obtaining images or other data residing in
the program file itself (see the example below). At any given time, this file is
positioned at the end of the last PostScript language token read from the file by
the interpreter. If that token was a number or a name immediately followed by a
white space character, the file is positioned after the white space character (the
first, if there are several). Otherwise it is positioned after the last character of the
token.

Example

/str 100 string def
currentfile str readline
here is a line of text
pop /textline exch def

After execution of this example, the name /textline is associated with the string
“here is a line of text”.

Errors: stackoverflow

See Also: exec, run

PLRM 2nd Edition January 26, 1994 Operators

386 Chapter 8: Operators

currentflat – currentflat num

returns the current value of the flatness parameter in the graphics state.

Errors: stackoverflow

See Also: setflat, flattenpath, stroke, fill

currentfont – currentfont font

returns the current font dictionary in the graphics state. Normally, this is the
font most recently established by setfont or selectfont. However, when executed
inside a font’s BuildGlyph or BuildChar procedure or a procedure invoked by
cshow, currentfont returns the currently selected base font (descendant of a
composite font).

Errors: stackoverflow

See Also: rootfont, selectfont, setfont

currentglobal – currentglobal bool

returns the VM allocation mode currently in effect.

Errors: stackoverflow

See Also: setglobal

currentgray – currentgray num

returns the gray value of the current color parameter in the graphics state. If the
current color space is DeviceGray, currentgray returns the color value most
recently specified to setgray or setcolor. If the current color space is DeviceRGB
or DeviceCMYK, currentgray converts the current color to a gray value according
to the conventions described in section 6.2, “Conversions Among Device Color
Spaces.” For any other color space, currentgray returns 0.0.

Errors: stackoverflow

See Also: setgray, currentcolor, currentcolorspace, currenthsbcolor,
currentrgbcolor

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 387

currentgstate gstate currentgstate gstate

replaces the value of the gstate object by a copy of the current graphics state and
pushes gstate back on the operand stack. If gstate is in global VM (see section 3.7,
“Memory Management”), currentgstate will generate an invalidaccess error if
any of the composite objects in the current graphics state are in local VM. Such
objects might include the current font, screen function, halftone dictionary,
transfer function, or dash pattern. In general, allocating gstate objects in global
VM is risky and should be avoided.

Errors: invalidaccess, stackunderflow, typecheck

See Also: gstate, setgstate

currenthalftone – currenthalftone halftone

returns the current halftone dictionary in the graphics state. If the current half-
tone was defined by setscreen or setcolorscreen instead of by sethalftone,
currenthalftone fabricates and returns a halftone dictionary (type 1 or 2) that
contains the screen parameters.

Errors: stackoverflow, VMerror

See Also: setscreen, setcolorscreen, sethalftone

currenthalftonephase – currenthalftonephase x y

returns the current values of the halftone phase parameters in the graphics state.
If sethalftonephase has not been executed, zero is returned for both values.

Errors: stackoverflow

See Also: sethalftonephase

LEVEL 2

LEVEL 2

DPS

PLRM 2nd Edition January 26, 1994 Operators

388 Chapter 8: Operators

currenthsbcolor – currenthsbcolor hue saturation brightness

returns the current color parameter in the graphics state according to the hue-
saturation-brightness model. If the current color space is DeviceRGB,
currenthsbcolor returns the color values most recently specified by sethsbcolor,
setrgbcolor, or setcolor, converting them from RGB to HSB coordinates if neces-
sary. If the current color space is DeviceGray or DeviceCMYK, currenthsbcolor
first converts the current color to RGB according to the conventions described in
section 6.2, “Conversions Among Device Color Spaces.” For any other color
space, currenthsbcolor returns 0.0 0.0 0.0.

Errors: stackoverflow

See Also: sethsbcolor, currentcolor, currentgray, currentrgbcolor

currentlinecap – currentlinecap int

returns the current value of the line cap parameter in the graphics state.

Errors: stackoverflow

See Also: setlinecap, stroke, currentlinejoin

currentlinejoin – currentlinejoin int

returns the current value of the line join parameter in the graphics state.

Errors: stackoverflow

See Also: setlinejoin, stroke, currentlinecap

currentlinewidth – currentlinewidth num

returns the current value of the line width parameter in the graphics state.

Errors: stackoverflow

See Also: setlinewidth, stroke

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 389

currentmatrix matrix currentmatrix matrix

replaces the value of matrix with the value of the current transformation matrix
(CTM) in the graphics state, and pushes the modified matrix back on the oper-
and stack (see section 4.3, “Coordinate Systems and Transformations”).

Errors: rangecheck, stackunderflow, typecheck

See Also: setmatrix, defaultmatrix, initmatrix, rotate, scale, translate

currentmiterlimit – currentmiterlimit num

returns the current value of the miter limit parameter in the graphics state.

Errors: stackoverflow

See Also: setmiterlimit, stroke

currentobjectformat – currentobjectformat int

returns the object format parameter currently in effect.

Errors: stackoverflow

See Also: setobjectformat

currentoverprint – currentoverprint bool

returns the value of the overprint parameter in the graphics state.

Errors: stackoverflow

See Also: setoverprint

currentpacking – currentpacking bool

returns the array packing mode currently in effect.

Errors: stackoverflow

See Also: setpacking, packedarray

LEVEL 2

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

390 Chapter 8: Operators

currentpagedevice – currentpagedevice dict

returns a read-only dictionary that describes the page-oriented output device in
the current graphics state. currentpagedevice creates a new dictionary if neces-
sary. If the device in the current graphics state is not a page device,
currentpagedevice returns an empty dictionary (length of 0). See section 4.11,
“Device Setup.”

Changes made to the hardware state of the output device since the last execu-
tion of setpagedevice, such as changing paper trays or switches, are not immedi-
ately reflected in this dictionary. If the current context is under the control of a
job server (see section 3.7.7, “Job Execution Environment”), the server sets up a
device that matches the hardware state before starting each job. At the begin-
ning of each job, therefore, the dictionary currentpagedevice returns matches
the current hardware state.

Errors: stackoverflow, VMerror

See Also: setpagedevice

currentpoint – currentpoint x y

returns the x and y coordinates of the current point in the graphics state (i.e., the
trailing endpoint of the current path). If the current point is undefined because
the current path is empty, currentpoint executes the nocurrentpoint error.

The current point is reported in the user coordinate system. As discussed in sec-
tion 4.4, “Path Construction,” points entered into a path are immediately con-
verted to device coordinates by the current transformation matrix (CTM);
existing points are not changed by subsequent modifications to the CTM.
currentpoint computes the user space coordinate that corresponds to the current
point according to the current value of the CTM. If a current point is set and
then the CTM is changed, currentpoint will report a different position in user
space than it did before.

Errors: nocurrentpoint, stackoverflow, undefinedresult

See Also: moveto, lineto, curveto, arc

currentrgbcolor – currentrgbcolor red green blue

returns the three components of the current color in the graphics state accord-
ing to the red-green-blue color model. If the current color space is DeviceRGB,
currentrgbcolor returns the color values most recently specified to setrgbcolor
or setcolor (or transformed values specified to sethsbcolor). If the current color

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 391

space is DeviceGray or DeviceCMYK, currentrgbcolor converts the current color
to RGB according to the conventions described in section 6.2, “Conversions
Among Device Color Spaces.” For any other color space, currentrgbcolor returns
0.0 0.0 0.0.

Errors: stackoverflow

See Also: setrgbcolor, currentcolor, currentgray, currenthsbcolor

currentscreen – currentscreen frequency angle proc
– currentscreen frequency angle halftone

returns the current halftone screen parameters (frequency, angle, and proc) in the
graphics state, assuming the current screen was established by setscreen. If
setcolorscreen was executed, currentscreen returns the parameters for the gray
screen. If sethalftone was executed, currentscreen returns the frequency, angle,
and halftone dictionary. For type 1 halftone dictionaries, the frequency and angle
values are extracted from the halftone dictionary. For all other types,
currentscreen returns a frequency of 60 and an angle of 0.

Errors: stackoverflow

See Also: setcolorscreen, setscreen, sethalftone

currentshared – currentshared bool

has the same semantics as currentglobal. This operator is defined for compatibil-
ity with existing Display PostScript applications.

Errors: stackoverflow

See Also: setglobal, setshared

currentstrokeadjust – currentstrokeadjust bool

returns the current stroke adjust parameter in the graphics state.

Errors: stackoverflow

See Also: setstrokeadjust

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

392 Chapter 8: Operators

currentsystemparams – currentsystemparams dict

returns a dictionary containing the keys and current values of all system param-
eters that are defined in the implementation. The returned dictionary is merely a
container for key-value pairs. Each execution of currentsystemparams allocates
and returns a new dictionary. See Appendix C for information about specific sys-
tem parameters.

Errors: stackoverflow, VMerror

See Also: setsystemparams

currenttransfer – currenttransfer proc

returns the current transfer function in the graphics state, assuming that it was
established by settransfer. If setcolortransfer was executed, currenttransfer
returns the gray transfer function.

Errors: stackoverflow

See Also: settransfer, setcolortransfer

currentundercolorremoval – currentundercolorremoval proc

returns the current undercolor removal function in the graphics state.

Errors: stackoverflow

See Also: setundercolorremoval

currentuserparams – currentuserparams dict

returns a dictionary containing the keys and current values of all user parame-
ters that are defined in the implementation. The returned dictionary is a con-
tainer for key-value pairs. Each execution of currentuserparams allocates and
returns a new dictionary. See Appendix C for more information about specific
user parameters.

Errors: stackoverflow, VMerror

See Also: setuserparams

LEVEL 2

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 393

curveto x1 y1 x2 y2 x3 y3 curveto –

adds a Bézier cubic section to the current path between the current point,
referred to here as (x0, y0), and the point (x3, y3), using (x1, y1) and (x2, y2) as the
Bézier cubic control points. After constructing the curve, curveto makes (x3, y3)
the new current point. If the current point is undefined because the current path
is empty, curveto executes the error nocurrentpoint.

The four points define the shape of the curve geometrically. The curve starts at
(x0, y0), it is tangent to the line from (x0, y0) to (x1, y1) at that point, and it leaves
the point in that direction. The curve ends at (x3, y3), it is tangent to the line
from (x2, y2) to (x3, y3) at that point, and it approaches the point from that direc-
tion. The lengths of the lines (x0, y0) to (x1, y1) and (x2, y2) to (x3, y3) represent, in
a sense, the “velocity” of the path at the endpoints. The curve is always entirely
enclosed by the convex quadrilateral defined by the four points.

The mathematical formulation of a Bézier cubic curve is derived from a pair of
parametric cubic equations:

The cubic section produced by curveto is the path traced by x(t) and y(t) as t
ranges from 0 to 1. The Bézier control points corresponding to this curve are:

Errors: limitcheck, nocurrentpoint, stackunderflow, typecheck

See Also: lineto, moveto, arc, arcn, arct, arcto

x , y 1 1

x , y 2 2

x , y 3 3x , y 0 0

x , y 1 1

x , y 2 2

x , y 3 3

x , y 0 0

x , y 1 1x , y 2 2

x , y 3 3
x , y 0 0

x t() axt3 bxt2 cxt x0+ + +=

y t() ayt3 byt2 cyt y0+ + +=

x1 x0 cx 3⁄+= y1 y0 cy 3⁄+=

x2 x1 cx bx+() 3⁄+= y2 y1 cy by+() 3⁄+=

x3 x0 cx bx ax+ + += y3 y0 cy by ay+ + +=

PLRM 2nd Edition January 26, 1994 Operators

394 Chapter 8: Operators

cvi num cvi int
string cvi int

(convert to integer) takes an integer, real, or string object from the stack and pro-
duces an integer result. If the operand is an integer, cvi simply returns it. If the
operand is a real, it truncates any fractional part (i.e., rounds it toward 0) and
converts it to an integer. If the operand is a string, it interprets the characters of
the string as a number according to the PostScript syntax rules. If that number is
a real, cvi converts it to an integer. cvi executes a rangecheck error if a real is too
large to convert to an integer. (See the round, truncate, floor, and ceiling opera-
tors, which remove fractional parts without performing type conversion.)

Example

(3.3E1) cvi ⇒ 33
–47.8 cvi ⇒ –47
520.9 cvi ⇒ 520

Errors: invalidaccess, rangecheck, stackunderflow, syntaxerror, typecheck,
undefinedresult

See Also: cvr, ceiling, floor, round, truncate

cvlit any cvlit any

(convert to literal) makes the object on the top of the operand stack have the lit-
eral instead of executable attribute.

Errors: stackunderflow

See Also: cvx, xcheck

cvn string cvn name

(convert to name) converts the string operand to a name object that is lexically
the same as the string. The name object is executable if the string was.

Example

(abc) cvn ⇒ /abc
(abc) cvx cvn ⇒ abc

Errors: invalidaccess, limitcheck, stackunderflow, typecheck

See Also: cvs, type

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 395

cvr num cvr real
string cvr real

(convert to real) takes an integer, real, or string object and produces a real result.
If the operand is an integer, cvr converts it to a real. If the operand is a real, cvr
simply returns it. If the operand is a string, it interprets the characters of the
string as a number according to the PostScript syntax rules. If that number is an
integer, cvr converts it to a real.

Errors: invalidaccess, limitcheck, stackunderflow, syntaxerror, typecheck,
undefinedresult

See Also: cvi

cvrs num radix string cvrs substring

(convert to string with radix) produces a text representation of the number num
in the specified radix, stores the text into the supplied string (overwriting some
initial portion of its value), and returns a string object designating the substring
actually used. If string is too small to hold the result of the conversion, cvrs exe-
cutes the error rangecheck.

If radix is 10, cvrs produces the same result as cvs when applied to either an inte-
ger or a real. That is, it produces a signed integer or real token that conforms to
the PostScript language syntax for that number.

If radix is not 10, cvrs converts num to an integer, as if by cvi. Then it treats the
machine representation of that integer as an unsigned positive integer and con-
verts it to text form according to the specific radix. The resulting text is not nec-
essarily a valid number. However, if it is immediately preceded by the same radix
and #, the combination is a valid PostScript language token that represents the
same number.

Example

/temp 12 string def
123 10 temp cvrs ⇒ (123)
–123 10 temp cvrs ⇒ (–123)
123.4 10 temp cvrs ⇒ (123.4)
123 16 temp cvrs ⇒ (7B)
–123 16 temp cvrs ⇒ (FFFFFF85)
123.4 16 temp cvrs ⇒ (7B)

Errors: invalidaccess, rangecheck, stackunderflow, typecheck

See Also: cvs

PLRM 2nd Edition January 26, 1994 Operators

396 Chapter 8: Operators

cvs any string cvs substring

(convert to string) produces a text representation of an arbitrary object any,
stores the text into the supplied string (overwriting some initial portion of its
value), and returns a string object designating the substring actually used. If the
string is too small to hold the result of conversion, cvs executes the error
rangecheck.

If any is a number, cvs produces a string representation of that number. If any is a
boolean, cvs produces either the string true or the string false. If any is a string,
cvs copies its contents into string. If any is a name or an operator, cvs produces
the text representation of that name or the operator’s name. If any is any other
type, cvs produces the text --nostringval--.

If any is a real number, the precise format of the result string is implementation
dependent and not under program control. For example, the value 0.001 might
be represented as 0.001 or as 1.0E-3.

Example

 /str 20 string def
123 456 add str cvs ⇒ (579)
mark str cvs ⇒ (--nostringval--)

Errors: invalidaccess, rangecheck, stackunderflow, typecheck

See Also: cvi, cvr, string, type

cvx any cvx any

(convert to executable) makes the object on top of the operand stack have the
executable instead of literal attribute.

Errors: stackunderflow

See Also: cvlit, xcheck

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 397

def key value def –

associates key with value in the current dictionary—the one on the top of the dic-
tionary stack (see section 3.4, “Stacks”). If key is already present in the current
dictionary, def simply replaces its value. Otherwise, def creates a new entry for
key and stores value with it.

If the current dictionary is in global VM and value is a composite object whose
value is in local VM, an invalidaccess error occurs (see section 3.7.2, “Local and
Global VM”).

Example

/ncnt 1 def % Define ncnt to be 1 in current dict
/ncnt ncnt 1 add def % ncnt now has value 2

Errors: dictfull, invalidaccess, limitcheck, stackunderflow, typecheck, VMerror

See Also: store, put

defaultmatrix matrix defaultmatrix matrix

replaces the value of matrix with the default transformation matrix for the cur-
rent output device and pushes this modified matrix back on the operand stack.

Errors: rangecheck, stackunderflow, typecheck

See Also: currentmatrix, initmatrix, setmatrix

PLRM 2nd Edition January 26, 1994 Operators

398 Chapter 8: Operators

definefont key font definefont font

registers font as a font dictionary associated with key (usually a name), as dis-
cussed in section 5.2, “Font Dictionaries.” definefont first checks that font is a
well-formed font dictionary—in other words, contains all required key-value
pairs. It inserts an additional entry whose key is FID and whose value is an object
of type fontID. The dictionary must be large enough to accommodate this addi-
tional entry. It makes the dictionary’s access read-only. Finally, it associates key
with font in the font directory.

In Level 2, it is permissible to associate a font dictionary with more than one
key. If font has already been registered, definefont does not alter it in any way.

If font is a composite font (see section 5.9, “Composite Fonts”), definefont also
inserts the entries MIDVector and CurMID, and adds entries PrefEnc, EscChar,
ShiftIn, and ShiftOut if they are required and are not already present. All the
descendant fonts must have been registered by definefont previously.

Subsequent invocation of findfont with key will return font. Font registration is
subject to the normal semantics of VM (see section 3.7, “Memory Manage-
ment”). In particular, the lifetime of the definition depends on the VM alloca-
tion mode at the time definefont is executed. A local definition can be undone
by a subsequent restore.

definefont is actually a special case of defineresource operating on the Font cat-
egory. For details, see defineresource and section 3.9, “Named Resources.”

Errors: limitcheck, rangecheck, dictfull, invalidfont, stackunderflow,
typecheck, invalidaccess

See Also: makefont, scalefont, setfont, defineresource, FontDirectory,
GlobalFontDirectory, setglobal

defineresource key instance category defineresource instance

associates a resource instance with a resource name in a specified category.
category is a name object that identifies a resource category, such as Font (see sec-
tion 3.9.2, “Resource Categories”). key is a name or string object that will be used
to identify the resource instance. (Names and strings are interchangeable; other
types of keys are permitted but are not recommended.) instance is the resource
instance itself; its type must be appropriate to the resource category.

Before defining the resource instance, defineresource verifies that the instance
object is the correct type. Depending on the resource category, it may also per-
form additional validation of the object and may have other side effects. Finally,
it makes the object read-only if its access is not already restricted.

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 399

The lifetime of the definition depends on the VM allocation mode in effect at
the time defineresource is executed. If local VM allocation is in effect
(currentglobal returns false), the effect of defineresource is undone by the next
non-nested restore. If global VM allocation is in effect (currentglobal returns
true), the effect of defineresource persists until global VM is restored at the end
of the job. If the current job is not encapsulated, the effect of a global
defineresource persists indefinitely, and may be visible to other execution
contexts.

Local and global definitions are maintained separately. If a new resource
instance is defined with the same category and key as an existing one, the new
definition overrides the old one. The precise effect depends on whether the old
definition is local or global and whether the new definition (current VM alloca-
tion mode) is local or global. There are two main cases:

1. New definition is local—defineresource installs the new local definition,
replacing an existing local definition if there is one. If there is an existing glo-
bal definition, defineresource does not disturb it. However, the global defini-
tion is obscured by the local one. If the local definition is later removed, the
global definition reappears.

2. New definition is global—defineresource first removes an existing local defi-
nition if there is one. It then installs the new global definition, replacing an
existing global definition if there is one.

It is permissible to use defineresource multiple times to associate a given
resource instance with more than one key.

If the category name is unknown, an undefined error occurs. If the instance is of
the wrong type for the specified category, a typecheck error occurs. If the
instance is in local VM but the current VM allocation mode is global, an
invalidaccess error occurs. This is analogous to storing a local object into a global
dictionary. Other errors can occur for specific categories. For example, when
dealing with the Font category, defineresource can execute an invalidfont error.

Errors: invalidaccess, stackunderflow, typecheck, undefined

See Also: undefineresource, findresource, resourcestatus, resourceforall

PLRM 2nd Edition January 26, 1994 Operators

400 Chapter 8: Operators

defineusername index name defineusername –

establishes an association between the non-negative integer index and the name
object name in the user name table. Subsequently, the scanner will substitute
name when it encounters any binary encoded name token or object that refers to
the specified user name index. Because binary encoded names specify their own
literal or executable attributes, it does not matter whether name is literal or exe-
cutable. See section 7.2, “Encoded User Names.”

The user name table is an adjunct to the current context’s local VM (see section
7.1, “Multiple Execution Contexts”). The effect of adding an entry to the table is
immediately visible to all contexts that share the same local VM. Additions to
the table are not affected by save and restore. The association between index and
name persists for the remaining lifetime of the local VM.

The specified index must previously be unused in the name table or must already
be associated with the same name. Changing an existing association is not per-
mitted (an invalidaccess error will occur). There may be an implementation limit
on index values. Assigning index values sequentially starting at zero is strongly
recommended.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

defineuserobject index any defineuserobject –

establishes an association between the non-negative integer index and the object
any in the UserObjects array. First, it creates a UserObjects array in userdict if
one is not already present. It extends an existing UserObjects array if necessary.
It then executes the equivalent of

userdict /UserObjects get
3 1 roll put

In other words, it simply stores any into the array at the position specified by
index. See section 3.7.6, “User Objects.”

If defineuserobject creates or extends the UserObjects array, it allocates the array
in local VM, regardless of the current VM allocation mode.

The behavior of defineuserobject obeys normal PostScript language semantics in
all respects. In particular, the modification to the UserObjects array and to
userdict, if any, is immediately visible to all contexts that share the same local
VM. It can be undone by a subsequent restore according to the usual VM rules.
index values must be within the range permitted for arrays; a large index value
may cause allocation of an array that would exhaust VM resources. Assigning
index values sequentially starting at zero is strongly recommended.

DPS

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 401

Errors: limitcheck, rangecheck, stackunderflow, typecheck, VMerror

See Also: execuserobject, undefineuserobject, UserObjects

deletefile filename deletefile –

removes the specified file from its storage device. If no such file exists, an
undefinedfilename error occurs. If the device does not allow this operation, an
invalidfileaccess error occurs. If an environment dependent error is detected, an
ioerror occurs. See section 3.8.2, “Named Files.”

Errors: invalidfileaccess, ioerror, stackunderflow, typecheck,
undefinedfilename

See Also: file, renamefile, status

detach context detach –

specifies that the execution context identified by the integer context is to termi-
nate immediately when it finishes executing its top-level procedure, whereas
ordinarily it would wait for a join. If the context is already waiting for a join,
detach causes it to terminate immediately. See section 7.1, “Multiple Execution
Contexts.”

detach executes an invalidcontext error if context is not a valid context identifier
or if the context has already been joined or detached. It is permissible for context
to identify the current context.

Errors: invalidcontext, stackunderflow, typecheck

See Also: currentcontext, fork, join

LEVEL 2

DPS

PLRM 2nd Edition January 26, 1994 Operators

402 Chapter 8: Operators

deviceinfo – deviceinfo dict

returns a read-only dictionary containing static information about the current
device. The composition of this dictionary varies according to the properties of
the device. Typical entries are given in the table in section 7.3, “Graphics and
Window Systems.” The information in the dictionary may not be meaningful for
a page-oriented or other non-display device.

The use of deviceinfo after a setcachedevice operation within the scope of a
BuildChar procedure is not permitted. An undefined error results.

Errors: stackoverflow, undefined

dict int dict dict

creates an empty dictionary with an initial capacity of int elements and pushes
the created dictionary object on the operand stack. int is expected to be a non-
negative integer. The dictionary is allocated in local or global VM according to
the VM allocation mode. See section 3.7.2, “Local and Global VM.”

In Level 1 implementations, the resulting dictionary has a maximum capacity of
int elements. Attempting to exceed that limit causes a dictfull error.

In Level 2 implementations, the int operand specifies only the initial capacity;
the dictionary can grow beyond that capacity if necessary. The dict operator
immediately consumes sufficient VM to hold int key-value pairs. If more than
that number of entries are subsequently stored in the dictionary, additional VM
is consumed at that time.

There is a cost associated with expanding a dictionary beyond its initial alloca-
tion. For efficiency reasons, a dictionary is expanded in chunks rather than one
element at a time, so it may contain a substantial amount of unused space. If a
program knows how large a dictionary it needs, it should create one of that size
initially. On the other hand, if a program cannot predict how large the diction-
ary will eventually grow, it should choose a small initial allocation sufficient for
its immediate needs. The built-in writable dictionaries (for example, userdict)
follow the latter convention.

Errors: limitcheck, stackunderflow, typecheck, VMerror

See Also: begin, end, length, maxlength

DPS

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 403

dictfull (error)

occurs when def, put, or store attempts to define a new entry in a dictionary
that is already full—in other words, whose length and maxlength are already
equal. This can occur only in Level 1 implementations, where a dictionary has a
fixed limit on the number of entries with distinct keys it can hold. This limit is
established by the operand to the dict operator that creates the dictionary.

See Also: def, put, store, dict

dictstack array dictstack subarray

stores all elements of the dictionary stack into array and returns an object
describing the initial n-element subarray of array, where n is the current depth of
the dictionary stack. dictstack copies the topmost dictionary into element n–1 of
array and the bottommost one into element 0 of array. The dictionary stack itself
is unchanged. If the length of array is less than the depth of the dictionary stack,
dictstack executes a rangecheck error.

Errors: invalidaccess, rangecheck, stackunderflow, typecheck

See Also: countdictstack

dictstackoverflow (error)

The dictionary stack has grown too large. Too many begin operators without
corresponding end operators have pushed too many dictionaries on the diction-
ary stack. See Appendix B for the limit on the size of the dictionary stack.

Before invoking this error, the interpreter creates an array containing all ele-
ments of the dictionary stack stored as if by dictstack, pushes this array on the
operand stack, and resets the dictionary stack to contain only the permanent
entries.

See Also: begin, countdictstack, cleardictstack

dictstackunderflow (error)

An attempt has been made to remove (end) the bottommost instance of userdict
from the dictionary stack. This occurs if an end is executed for which there was
no corresponding begin.

See Also: end

PLRM 2nd Edition January 26, 1994 Operators

404 Chapter 8: Operators

div num1 num2 div quotient

divides num1 by num2, producing a result that is always a real even if both oper-
ands are integers. Use idiv if an integer result is desired.

Example

3 2 div ⇒ 1.5
4 2 div ⇒ 2.0

Errors: stackunderflow, typecheck, undefinedresult

See Also: idiv, add, mul, sub, mod

dtransform dx dy dtransform dx‘ dy‘
dx dy matrix dtransform dx‘ dy‘

With no matrix operand, dtransform (delta transform) transforms the distance
vector (dx, dy) by the CTM to produce the corresponding distance vector (dx‘, dy‘)
in device space. If the matrix operand is supplied, dtransform transforms the dis-
tance vector by matrix rather than by CTM.

A delta transformation is similar to a normal transformation (see section 4.3,
“Coordinate Systems and Transformations”), but the translation components
(tx and ty) of the transformation matrix are not used, making the distance vec-
tors positionless in both user space and device space. This is useful for determin-
ing how distances map from user space to device space.

Errors: rangecheck, stackunderflow, typecheck

See Also: idtransform, transform, itransform

dup any dup any any

duplicates the top element on the operand stack. Note that dup copies only the
object. The value of a composite object is not copied but is shared. See section
3.3, “Data Types and Objects.”

Errors: stackoverflow, stackunderflow

See Also: copy, index

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 405

echo bool echo –

specifies whether the special files %lineedit and %statementedit are to copy char-
acters from the standard input file to the standard output file. This affects only
the behavior of executive; it does not apply to normal communication with the
PostScript interpreter. echo is not defined in products that do not support
executive. See section 2.4.4, “Using the Interpreter Interactively,” and section
3.8.3, “Special Files.”

Errors: stackunderflow, typecheck

See Also: executive, file

eexec file eexec –
string eexec –

causes the contents of file (open for reading) or string to be decrypted and then
executed in a manner similar to the exec operator. The decryption operation
does not cause the file or string to be modified.

eexec creates a new file object that serves as a decryption filter on the specified
file or string. It pushes the new file object on the execution stack, making it the
current file for the PostScript interpreter. Subsequently, each time the interpreter
reads a character from this file, or a program reads explicitly from currentfile, the
decryption filter reads one character from the original file or string and decrypts
it.

The decryption filter file is closed automatically when the end of the original file
or string is encountered. It may also be closed explicitly by closefile. If the file
passed to eexec was currentfile, this resumes direct execution of that file with
the decryption filter removed. The file may consist of encrypted text followed by
unencrypted text if the last thing executed in the encrypted text is currentfile
closefile.

Before beginning execution, eexec pushes systemdict on the dictionary stack.
This ensures that the operators executed by the encrypted program have their
standard meanings. When the decryption filter file is closed either explicitly or
implicitly, the dictionary stack is popped. The program must be aware that it is
being executed with systemdict as the current dictionary; in particular, any defi-
nitions that it makes must be into a specific dictionary rather than the current
one, since systemdict is read-only.

The encrypted file may be represented in either binary or hex; the eexec opera-
tor can decrypt it without being told which type it is. The recommended repre-
sentation is hex, because hex data can be transmitted through communication
channels that are not completely transparent. Regardless of the representation of

PLRM 2nd Edition January 26, 1994 Operators

406 Chapter 8: Operators

the encrypted file, the encryption and decryption processes are transparent. That
is, an arbitrary binary file can be encrypted, transmitted as either binary or hex,
and decrypted to yield the original information.

The encryption employed by eexec is intended primarily for use in Type 1 font
programs. The book Adobe Type 1 Font Format contains a complete description of
the encryption algorithm and recommended uses of eexec.

Errors: dictstackoverflow, invalidaccess, invalidfileaccess, limitcheck,
stackunderflow, typecheck

See Also: exec, filter

end – end –

pops the current dictionary off the dictionary stack, making the dictionary
below it the current dictionary. If end tries to pop the bottommost instance of
userdict, it executes the error dictstackunderflow.

Errors: dictstackunderflow

See Also: begin, dictstack, countdictstack

eoclip – eoclip –

intersects the inside of the current clipping path with the inside of the current
path to produce a new, smaller current clipping path. The inside of the current
path is determined by the even-odd rule (see section 4.5, “Painting”), while the
inside of the current clipping path is determined by whatever rule was used at
the time that path was created.

Except for the choice of insideness rule, the behavior of eoclip is identical to that
of clip.

Errors: limitcheck

See Also: clip, clippath, initclip

eofill – eofill –

paints the inside of the current path with the current color, using the even-odd
rule (see section 4.5, “Painting”) to determine what points are inside. Except for
the choice of insideness rule, the behavior of eofill is identical to that of fill.

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 407

Errors: limitcheck

See Also: fill, ineofill, ueofill

eoviewclip – eoviewclip

is similar to viewclip, except that it uses the even-odd rule (see section 4.5,
“Painting”) to determine the inside of the current path.

Errors: limitcheck

See Also: viewclip

eq any1 any2 eq bool

pops two objects from the operand stack and pushes the boolean value true if
they are equal, false if not. The definition of equality depends on the types of the
objects being compared. Simple objects are equal if their types and values are the
same. Strings are equal if their lengths and individual elements are equal. Other
composite objects (arrays and dictionaries) are equal only if they share the same
value. Separate values are considered unequal, even if all the components of
those values are the same.

Some type conversions are performed by eq. Integers and reals can be compared
freely: An integer and a real representing the same mathematical value are con-
sidered equal by eq. Strings and names can likewise be compared freely: A name
defined by some sequence of characters is equal to a string whose elements are
the same sequence of characters.

The literal/executable and access attributes of objects are not considered in com-
parisons between objects.

Example

4.0 4 eq ⇒ true % A real and an integer may be equal
(abc) (abc) eq ⇒ true % Strings with equal elements are equal
(abc) /abc eq ⇒ true % A string and a name may be equal
[1 2 3] dup eq ⇒ true % An array is equal to itself
[1 2 3] [1 2 3] eq ⇒ false % Distinct array objects not equal

Errors: invalidaccess, stackunderflow

See Also: ne, le, lt, ge, gt

DPS

PLRM 2nd Edition January 26, 1994 Operators

408 Chapter 8: Operators

erasepage – erasepage –

erases the entire current page by painting it with gray level 1, which is ordinarily
white, but may be some other color if an atypical transfer function has been
defined. The entire page is erased, regardless of the clip path currently in force.
erasepage affects only the contents of raster memory. It does not modify the
graphics state nor does it cause a page to be transmitted to the output device.

erasepage is executed automatically by showpage after imaging. There are few
situations in which a PostScript language page description should execute
erasepage explicitly, because the operator affects portions of the current page
outside the current clip path. It is usually more appropriate to erase just the
inside of the current clip path (see clippath). Then the page description can be
embedded within another, composite page without undesirable effects.

Errors: (none)

See Also: showpage, clippath, fill

errordict – errordict dict

pushes the dictionary object errordict on the operand stack (see section 3.10,
“Errors”). errordict is not an operator; it is a name in systemdict associated with
the dictionary object.

Errors: stackoverflow

See Also: $error

exch any1 any2 exch any2 any1

exchanges the top two elements on the operand stack.

Example

1 2 exch ⇒ 2 1

Errors: stackunderflow

See Also: dup, roll, index, pop

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 409

exec any exec –

pushes the operand on the execution stack, executing it immediately. The effect
of executing an object depends on the object’s type and literal/executable
attribute; this is discussed in detail in section 3.5, “Execution.” In particular, exe-
cuting a literal object will cause it only to be pushed back on the operand stack.
Executing a procedure, however, will cause the procedure to be called.

Example

(3 2 add) cvx exec ⇒ 5
3 2 /add exec ⇒ 3 2 /add
3 2 /add cvx exec ⇒ 5

In the first line, the string (3 2 add) is made executable and then executed. Exe-
cuting a string causes its characters to be scanned and interpreted according to
the PostScript language syntax rules.

In the second line, the literal objects 3, 2, and /add are pushed on the operand
stack, then exec is applied to the add. Since the add is a literal name, executing
it simply causes it to be pushed back on the operand stack. The exec in this case
has no useful effect.

In the third line, the literal name /add on the top of the operand stack is made
executable by cvx. Applying exec to this executable name causes it to be looked
up and the add operation to be performed.

Errors: stackunderflow

See Also: xcheck, cvx, run

PLRM 2nd Edition January 26, 1994 Operators

410 Chapter 8: Operators

execform form execform –

paints a form specified by a form dictionary constructed as described in section
4.7, “Forms.” The graphical output produced by execform is defined by the form
dictionary’s PaintProc procedure.

If this is the first invocation of execform for form, execform first verifies that the
dictionary contains the required entries. Then it adds an entry to the dictionary
with the key Implementation, whose value is private to the implementation.
Finally, it makes the dictionary read-only. (execform performs these alterations
directly to the operand dictionary; it does not copy the dictionary.)

When execform needs to call the PaintProc procedure, it pushes the form dic-
tionary on the operand stack, then executes the equivalent of

gsave % Operand stack: dict
dup /Matrix get concat
dup /BBox get aload pop % Stack: dict llx lly urx ury
exch 3 index sub
exch 2 index sub % Stack: dict llx lly width height
rectclip % Also does a newpath
dup /PaintProc get % Stack: dict proc
exec % Execute PaintProc with dict on stack
grestore

The PaintProc procedure is expected to consume the dictionary operand and to
execute a sequence of graphics operators to paint the form. The PaintProc must
always produce the same output, given the same graphics state parameters, inde-
pendent of the number of times it is called and independent, for example, of the
contents of userdict. The PostScript language program should not expect any
particular execution of execform to cause execution of the specified PaintProc.

The documented errors are those produced directly by execform. Obviously, the
PaintProc can cause other errors.

Errors: limitcheck, rangecheck, stackunderflow, typecheck, undefined,
VMerror

See Also: findresource

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 411

execstack array execstack subarray

stores all elements of the execution stack into array and returns an object
describing the initial n-element subarray of array, where n is the current depth of
the execution stack. execstack copies the topmost object into element n–1 of
array and the bottommost one into element 0 of array. The execution stack itself
is unchanged. If the length of array is less than the depth of the execution stack,
execstack executes a rangecheck error.

Errors: invalidaccess, rangecheck, stackunderflow, typecheck

See Also: countexecstack, exec

execstackoverflow (error)

The execution stack has grown too large; procedure invocation is nested deeper
than the PostScript interpreter permits. See Appendix B for the limit on the size
of the execution stack.

See Also: exec

execuserobject index execuserobject –

executes the object associated with the non-negative integer index in the
UserObjects array. execuserobject is equivalent to:

userdict /UserObjects get
exch get exec

execuserobject’s semantics are similar to those of exec or other explicit execu-
tion operators. That is, if the object is executable, it is executed; otherwise, it is
pushed on the operand stack. See section 3.7.6, “User Objects.”

If UserObjects is not defined in userdict because defineuserobject has never
been executed, an undefined error occurs. If index is not a valid index for the
existing UserObjects array, a rangecheck error occurs. If index is a valid index but
defineuserobject has not been executed previously for that index, a null object is
returned.

Errors: invalidaccess, rangecheck, stackunderflow, typecheck, undefined

See Also: defineuserobject, undefineuserobject, UserObjects

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

412 Chapter 8: Operators

executeonly array executeonly array
packedarray executeonly packedarray

file executeonly file
string executeonly string

reduces the access attribute of an array, packed array, file, or string object to exe-
cute-only (see section 3.3.2, “Attributes of Objects”). Access can only be reduced
by these means, never increased. When an object is execute-only, its value can-
not be read or modified explicitly by PostScript operators (an invalidaccess error
will result), but it can still be executed by the PostScript interpreter—for exam-
ple, by invoking it with exec.

executeonly affects the access attribute only of the object that it returns. If there
are other composite objects that share the same value, their access attributes are
unaffected.

Errors: invalidaccess, stackunderflow, typecheck

See Also: rcheck, wcheck, xcheck, readonly, noaccess

executive – executive –

invokes the interactive executive, which facilitates direct user interaction with
the PostScript interpreter. See section 2.4.4, “Using the Interpreter Interactively”
for complete information.

executive uses the special %statementedit file to obtain commands from the user
(see section 3.8.3, “Special Files”). The echo operator and the value of prompt
also affect the behavior of executive.

executive is not necessarily defined in all products. It should not be considered a
standard part of the PostScript language.

Errors: undefined

See Also: prompt, echo, file

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 413

exit – exit –

terminates execution of the innermost, dynamically enclosing instance of a
looping context without regard to lexical relationship. A looping context is a
procedure invoked repeatedly by one of the following control operators:

cshow forall pathforall
filenameforall kshow repeat
for loop resourceforall

exit pops the execution stack down to the level of that operator. The interpreter
then resumes execution at the next object in normal sequence after that
operator.

exit does not affect the operand or dictionary stacks. Any objects pushed on
those stacks during execution of the looping context remain after the context is
exited.

If exit would escape from the context of a run or stopped operator, it executes
the invalidexit error (still in the context of the run or stopped). If there is no
enclosing looping context, the interpreter prints an error message and executes
the built-in operator quit. This never occurs during execution of ordinary user
programs, because they are enclosed by a stopped context.

Errors: invalidexit

See Also: stop, stopped

exp base exponent exp real

raises base to the exponent power. The operands may be either integers or reals. If
the exponent has a fractional part, the result is meaningful only if the base is
non-negative. The result is always a real.

Example

9 0.5 exp ⇒ 3.0
–9 –1 exp ⇒ –0.111111

Errors: stackunderflow, typecheck, undefinedresult

See Also: sqrt, ln, log, mul

PLRM 2nd Edition January 26, 1994 Operators

414 Chapter 8: Operators

false – false false

pushes a boolean object whose value is false on the operand stack. false is not an
operator; it is a name in systemdict associated with the boolean value false.

Errors: stackoverflow

See Also: true, and, or, not, xor

file filename access file file

creates a file object for the file identified by filename, accessing it as specified by
access. Both operands are strings. Conventions for both file names and access
specifications depend on the operating system environment in which the Post-
Script interpreter is running. See section 3.8.2, “Named Files.”

Once created and opened, the file object remains valid until the file is closed
either explicitly (by executing closefile) or implicitly (by encountering end-of-
file while reading or executing the file). A file is also closed by restore if the file
object was created more recently than the save snapshot being restored, or is
closed by garbage collection if the file object is no longer accessible. There is a
limit on the number of files that can be open simultaneously. See Appendix B.

If the specified filename is malformed or if the file doesn’t exist and access does
not permit creating a new file, file executes an undefinedfilename error. If access
is malformed or the requested access is not permitted by the device, an
invalidfileaccess error occurs. If the number of files opened by the current con-
text exceeds an implementation limit, a limitcheck error occurs. If an environ-
ment-dependent error is detected, an ioerror occurs.

Example

(%stdin) (r) file ⇒ % standard input file object
(myfile) (w) file ⇒ % output file object, writing to named file

Errors: invalidfileaccess, ioerror, limitcheck, stackunderflow, typecheck,
undefinedfilename

See Also: closefile, currentfile, filter, status

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 415

filenameforall template proc scratch filenameforall –

enumerates all files whose names match the specified template string. For each
matching file, filenameforall copies the file’s name into the supplied scratch
string, pushes a string object designating the substring of scratch actually used,
and calls proc. filenameforall does not return any results of its own, but proc may
do so.

The details of template matching are device dependent, but the following con-
vention is typical. All characters in the template are treated literally and are case
sensitive, except the following special characters:

* matches zero or more consecutive characters.

? matches exactly one character.

\ causes the next character of the template to be treated literally, even if it
is *, ?, or \.

If template does not begin with %, it is matched against device relative file names
of all devices in the search order (see section 3.8.2, “Named Files”). When a
match occurs, the file name passed to proc is likewise device relative—in other
words, it does not have a %device% prefix.

If template does begin with %, it is matched against complete file names in the
form %device%file. Template matching can be performed on the device, the file, or
both parts of the name. When a match occurs, the file name passed to proc is
likewise in the complete form %device%file.

The order of enumeration is unspecified and device dependent. There are no
restrictions on what proc can do. However, if proc causes new files to be created,
it is unspecified whether or not those files will be encountered later in the same
enumeration. Likewise, the set of file names considered for template matching is
device dependent.

Errors: invalidaccess, ioerror, rangecheck, stackoverflow, stackunderflow,
typecheck

See also: file, status

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

416 Chapter 8: Operators

fileposition file fileposition position

returns the current position in an existing open file. The result is a non-negative
integer interpreted as number of bytes from the beginning of the file. If the file
object is not valid or the underlying file is not positionable, an ioerror occurs.

Errors: ioerror, stackunderflow, typecheck

See also: setfileposition, file

fill – fill –

paints the area enclosed by the current path with the current color. Any previous
contents of that area on the current page are obscured, so areas may be erased by
filling with color set to white.

Before painting, fill implicitly closes any open subpaths of the current path. The
inside of the current path is determined by the normal non-zero winding num-
ber rule (see section 4.5, “Painting”).

fill implicitly performs a newpath after it has finished filling the current path. To
preserve the current path across a fill operation, use the sequence:

gsave fill grestore

Errors: limitcheck

See Also: clip, eofill, stroke, ufill

filter src |tgt param1 ... paramn name filter file

creates and returns a filtered file. Filters are described in section 3.8.4, “Filters,”
and section 3.13, “Filtered Files Details.”

The src |tgt operand specifies the underlying data source or data target that the
filter is to read or write. It can be a file, procedure, or string.

The param1 ... paramn operands are additional parameters that control how the
filter is to operate. The number and types of these operands depend on the filter
name. Most filters require no additional parameters.

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 417

The name operand identifies the data transformation that the filter is to perform.
The standard filter names are:

ASCIIHexEncode ASCIIHexDecode
ASCII85Encode ASCII85Decode
LZWEncode LZWDecode
RunLengthEncode RunLengthDecode
CCITTFaxEncode CCITTFaxDecode
DCTEncode DCTDecode
NullEncode SubFileDecode

An encoding filter is an output (writable) file. A decoding filter is an input (read-
able) file. The file object returned by the filter can be used as an operand of nor-
mal file input and output operators, such as read and write. Reading from an
input filtered file causes the filter to read from the underlying data source and
transform the data. Similarly, writing to an output filtered file causes the filter to
transform the data and write it to the underlying data target.

Errors: limitcheck, undefined, typecheck, rangecheck, stackunderflow,
invalidaccess

See Also: file, closefile, resourceforall

findencoding key findencoding array

obtains an encoding vector identified by the specified key and pushes it onto the
operand stack. Encoding vectors are described in section 5.3, “Character
Encoding.”

findencoding is a special case of findresource applied to the Encoding category
(see section 3.9, “Named Resources”). If the encoding array specified by key does
not exist or cannot be found, findencoding executes the undefinedresource
error.

Errors: stackunderflow, typecheck, undefinedresource

See Also: findresource, StandardEncoding, ISOLatin1Encoding

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

418 Chapter 8: Operators

findfont key findfont font

obtains a font dictionary identified by the specified key and pushes it on the
operand stack (see section 5.1, “Organization and Use of Fonts”). key may be a
key previously passed to definefont, in which case the font dictionary associated
with key (in the font directory) is returned.

If key is not registered as a font in VM, findfont takes an action that varies
according to the environment in which the PostScript interpreter is operating. In
some environments, findfont may attempt to read a font definition from an
external source, such as a file. In other environments, findfont substitutes a
default font or executes the error invalidfont. findfont is a special case of
findresource applied to the Font category. See section 3.9, “Named Resources.”

findfont, like findresource, normally looks first for fonts defined in local VM,
then for fonts defined in global VM. However, if the current VM allocation mode
is global, findfont considers only fonts defined in global VM. If findfont needs to
load a font into VM, it may use either local or global VM, depending on the font.
Generally, Type 1 fonts are loaded into global VM; fonts of other types are
loaded in to local VM. See section 3.9.2, “Resource Categories,” for an explana-
tion of the VM behavior of font definitions.

findfont is not an operator, but rather a built-in procedure. It may be redefined
by a PostScript language program that requires different strategies for finding
fonts.

Errors: invalidfont, stackunderflow, typecheck

See Also: scalefont, makefont, setfont, selectfont, definefont, findresource,
FontDirectory, GlobalFontDirectory

findresource key category findresource instance

attempts to obtain a named resource instance in a specified category. category is a
name object that identifies a resource category, such as Font (see section 3.9.2,
“Resource Categories”). key is a name or string object that identifies the resource
instance. (Names and strings are interchangeable; other types of keys are permit-
ted but are not recommended.) If it succeeds, findresource pushes the resource
instance on the operand stack; this is an object whose type depends on the
resource category.

findresource first attempts to obtain a resource instance that has previously been
defined in VM by defineresource. If the current VM allocation mode is local,
findresource considers local resource definitions first, then global definitions
(see defineresource). However, if the current VM allocation mode is global,
findresource considers only global resource definitions.

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 419

If the requested resource instance is not currently defined in VM, findresource
attempts to obtain it from an external source. The way this is done is not speci-
fied by the PostScript language; it varies among different implementations and
different resource categories. The effect of this action is to create an object in VM
and execute defineresource. findresource then returns the newly created object.
If key is not a name or string, findresource will not attempt to obtain an external
resource.

When findresource loads an object into VM, it ordinarily attempts to use global
VM, regardless of the current VM allocation mode. In other words, it sets the VM
allocation mode to global (true setglobal) while loading the resource instance
and executing defineresource. However, certain resource instances do not func-
tion correctly when loaded into global VM; findresource uses local VM instead.
This always occurs for type 3 font definitions and for any resource instance
whose definition includes an explicit false setglobal.

During its execution, findresource may remove the definitions of resource
instances that were previously loaded into VM by findresource. The mechanisms
and policies for this depend on the category and the implementation; reclama-
tion of resources may occur at times other than during execution of
findresource. However, resource definitions that were made by explicit execu-
tion of defineresource are never disturbed by automatic reclamation.

If the specified resource category does not exist, an undefined error occurs. If the
category exists but there is no instance whose name is key, an undefinedresource
error occurs.

Errors: stackunderflow, typecheck, undefined, undefinedresource

See Also: defineresource, resourcestatus, resourceforall, undefineresource

flattenpath – flattenpath –

replaces the current path with an equivalent path that preserves all straight line
segments, but has all curveto segments replaced by sequences of lineto (straight
line) segments that approximate the curves. If the current path does not contain
any curveto segments, flattenpath leaves it unchanged.

This “flattening” of curves to straight line segments is done automatically when
a path is used to control painting (for example, by stroke, fill, or clip). Only
rarely does a program need to flatten a path explicitly (see pathbbox). The accu-
racy of the approximation to the curve is controlled by the current flatness
parameter in the graphics state (see setflat).

Errors: limitcheck

See Also: setflat, curveto, lineto, pathbbox

PLRM 2nd Edition January 26, 1994 Operators

420 Chapter 8: Operators

floor num1 floor num2

returns the greatest integer value less than or equal to num1. The type of the
result is the same as the type of the operand.

Example

 3.2 floor ⇒ 3.0
–4.8 floor ⇒ –5.0
99 floor ⇒ 99

Errors: stackunderflow, typecheck

See Also: ceiling, round, truncate, cvi

flush – flush –

causes any buffered characters for the standard output file to be delivered imme-
diately. In general, a program requiring output to be sent immediately, such as
during real-time, two-way interactions, should call flush after generating that
output.

Errors: ioerror

See Also: flushfile, print

flushfile file flushfile –

If file is an output file, flushfile causes any buffered characters for that file to be
delivered immediately. In general, a program requiring output to be sent imme-
diately, such as during real-time, two-way interactions, should call flushfile after
generating that output.

If file is an input file, flushfile reads and discards data from file until the end-of-
file indication is encountered. This is useful during error recovery, and the Post-
Script job server uses it for that purpose. flushfile does not close the file, unless it
is a decoding filter file.

Errors: ioerror, stackunderflow, typecheck

See Also: flush, read, write

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 421

FontDirectory – FontDirectory dict

pushes a dictionary of defined fonts on the operand stack. FontDirectory is not
an operator; it is a name in systemdict associated with the dictionary object.

The FontDirectory dictionary associates font names with font dictionaries.
definefont places entries in FontDirectory, and findfont looks there first. The dic-
tionary is read-only; only definefont and undefinefont can change it.

Although FontDirectory contains all fonts that are currently defined in VM, it
does not necessarily describe all the fonts available to a PostScript language pro-
gram. This is because the findfont operator can sometimes obtain fonts from an
external source and load them into VM dynamically. Consequently, examining
FontDirectory is not a reliable method of inquiring about available fonts. The
preferred method is to use the resourcestatus and resourceforall operators,
which are Level 2 features, to inquire about the Font resource category. See sec-
tion 3.9, “Named Resources.”

In Level 2, when global VM allocation mode is in effect (see section 3.7.2, “Local
and Global VM”), the name FontDirectory is temporarily rebound to the value of
GlobalFontDirectory, which contains only those fonts that have been defined in
global VM. This ensures the correct behavior of fonts that are defined in terms of
other fonts.

Errors: stackoverflow

See Also: definefont, undefinefont, findfont, findresource,
GlobalFontDirectory

PLRM 2nd Edition January 26, 1994 Operators

422 Chapter 8: Operators

for initial increment limit proc for –

executes proc repeatedly, passing it a sequence of values from initial by steps of
increment to limit. The for operator expects initial, increment, and limit to be num-
bers. It maintains a temporary internal variable, known as the control variable,
which it first sets to initial. Then, before each repetition, it compares the control
variable with the termination value limit. If limit has not been exceeded, it pushes
the control variable on the operand stack, executes proc, and adds increment to
the control variable.

The termination condition depends on whether increment is positive or negative.
If increment is positive, for terminates when the control variable becomes greater
than limit. If increment is negative, for terminates when the control variable
becomes less than limit. If initial meets the termination condition, for does not
execute proc at all. If proc executes the exit operator, for terminates prematurely.

Usually, proc will use the value on the operand stack for some purpose. However,
if proc does not remove the value, it will remain there. Successive executions of
proc will cause successive values of the control variable to accumulate on the
operand stack.

Example

0 1 1 4 {add} for ⇒ 10
1 2 6 { } for ⇒ 1 3 5
3 –.5 1 { } for ⇒ 3.0 2.5 2.0 1.5 1.0

In the first example, the value of the control variable is added to whatever is on
the stack, so 1, 2, 3, and 4 are added in turn to a running sum whose initial value
is 0. The second example has an empty procedure, so the successive values of the
control variable are left on the stack. The last example counts backward from 3
to 1 by halves, leaving the successive values on the stack.

Beware of using reals instead of integers for any of the first three operands. Most
real numbers are not represented exactly. This can cause an error to accumulate
in the value of the control variable, with possibly surprising results. In particular,
if the difference between initial and limit is a multiple of increment, as in the third
line of the example, the control variable may not achieve the limit value.

Errors: stackoverflow, stackunderflow, typecheck

See Also: repeat, loop, forall, exit

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 423

forall array proc forall –
packedarray proc forall –

dict proc forall –
string proc forall –

enumerates the elements of the first operand, executing the procedure proc for
each element. If the first operand is an array, string, or packed array, forall
pushes an element on the operand stack and executes proc for each element in
the array, string, or packed array, beginning with the element whose index is 0
and continuing sequentially. The objects pushed on the operand stack are the
array, packed array, or string elements. In the case of a string, these elements are
integers in the range 0 to 255, not one-character strings.

If the first operand is a dictionary, forall pushes a key and a value on the operand
stack and executes proc for each key-value pair in the dictionary. The order in
which forall enumerates the entries in the dictionary is arbitrary. New entries
put in the dictionary during execution of proc may or may not be included in
the enumeration.

If the first operand is empty (i.e., has length 0), forall does not execute proc at all.
If proc executes the exit operator, forall terminates prematurely.

Although forall does not leave any results on the operand stack when it is fin-
ished, the execution of proc may leave arbitrary results there. If proc does not
remove each enumerated element from the operand stack, the elements will
accumulate there.

Example

0 [13 29 3 –8 21] {add} forall ⇒ 58
/d 2 dict def
d /abc 123 put
d /xyz (test) put
d {} forall ⇒ /xyz (test) /abc 123

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: for, repeat, loop, exit

PLRM 2nd Edition January 26, 1994 Operators

424 Chapter 8: Operators

 fork mark obj1 ... objn proc fork context

creates a new execution context using the same local and global VM as the cur-
rent context. The new context begins execution concurrent with continued exe-
cution of the current context. Which context executes first is unpredictable. See
section 7.1, “Multiple Execution Contexts.”

The new context’s environment is formed by copying the dictionary and graph-
ics state stacks of the current context. The initial operand stack consists of obj1
through objn, pushed in the same order (obj1 through objn are objects of any type
other than mark). fork consumes all operands down to and including the top-
most mark. It then pushes an integer that uniquely identifies the new context.
The forked context inherits its object format from the current context; other per-
context parameters are initialized to default values.

When the new context begins execution, it executes the procedure proc. If proc
runs to completion and returns, the context ordinarily will suspend until some
other context executes a join on context. However, if the context has been
detached, it will terminate immediately (see join and detach).

If proc executes a stop that causes the execution of proc to end prematurely, the
context will terminate immediately. proc is effectively called as follows:

proc stopped {handleerror quit} if
% ...Wait for join or detach...
quit

In other words, if proc stops due to an error, the context invokes the error han-
dler in the usual way to report the error. Then it terminates regardless of whether
it has been detached.

It is illegal to execute fork if there has been any previous save not yet matched
by a restore. Attempting to do so will cause an invalidcontext error.

Errors: invalidaccess, invalidcontext, limitcheck, stackunderflow, typecheck,
unmatchedmark

See Also: join, detach, currentcontext

DPS

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 425

gcheck any gcheck bool

returns true if the operand is simple or if it is composite and its value resides in
global VM. It returns false if the operand is composite and its value resides in
local VM. In other words, gcheck returns true if one could legally store its oper-
and as an element of another object in global VM. See section 3.7.2, “Local and
Global VM.”

Errors: stackunderflow

ge num1 num2 ge bool
string1 string2 ge bool

pops two objects from the operand stack and pushes the boolean value true if the
first operand is greater than or equal to the second, false otherwise. If both oper-
ands are numbers, ge compares their mathematical values. If both operands are
strings, ge compares them element by element, treating the elements as integers
in the range 0 to 255, to determine whether the first string is lexically greater
than or equal to the second. If the operands are of other types or one is a string
and the other is a number, ge executes the typecheck error.

Example

4.2 4 ge ⇒ true
(abc)(d) ge ⇒ false
(aba)(ab) ge ⇒ true
(aba)(aba) ge ⇒ true

Errors: invalidaccess, stackunderflow, typecheck

See Also: gt, eq, ne, le, lt

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

426 Chapter 8: Operators

get array index get any
packedarray index get any

dict key get any
string index get int

gets a single element from the value of an array, packed array, dictionary, or
string.

If the first operand is an array, packed array, or string, get treats the second oper-
and as an index and returns the element identified by the index, counting from
zero. index must be in the range 0 to n–1, where n is the length of the array,
packed array, or string. If it is outside this range, get will execute a rangecheck
error.

If the first operand is a dictionary, get looks up the second operand as a key in
the dictionary and returns the associated value. If the key is not present in the
dictionary, get executes the undefined error.

Example

[31 41 59] 0 get ⇒ 31
[0 (a mixed-type array) [] {add 2 div}]
2 get ⇒ [] % An empty array

/mykey (myvalue) def
currentdict /mykey get ⇒ (myvalue)

(abc) 1 get ⇒ 98 % Character code for “b”
(a) 0 get ⇒ 97

Errors: invalidaccess, rangecheck, stackunderflow, typecheck, undefined

See Also: put, getinterval

getinterval array index count getinterval subarray
packedarray index count getinterval subarray

string index count getinterval substring

creates a new array, packed array, or string object whose value consists of some
subsequence of the original array, packed array, or string. The subsequence con-
sists of count elements starting at the specified index in the original object. The
elements in the subsequence are shared between the original and new objects
(see section 3.3.1, “Simple and Composite Objects”).

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 427

The returned subarray or substring is an ordinary array, packed array, or string
object whose length is count and whose elements are indexed starting at 0. The
element at index 0 in subarray is the same as the element at index index in the
original array.

getinterval requires index to be a valid index in the original object and count to
be a non-negative integer such that index + count is not greater than the length of
the original object.

Example

[9 8 7 6 5] 1 3 getinterval ⇒ [8 7 6]
(abcde) 1 3 getinterval ⇒ (bcd)
(abcde) 0 0 getinterval ⇒ () % An empty string

Errors: invalidaccess, rangecheck, stackunderflow, typecheck

See Also: get, putinterval

globaldict – globaldict dict

pushes the dictionary object globaldict on the operand stack (see section 3.7.5,
“Standard and User-Defined Dictionaries”). globaldict is not an operator; it is a
name in systemdict associated with the dictionary object.

Errors: stackoverflow

See Also: systemdict, userdict

GlobalFontDirectory – GlobalFontDirectory dict

pushes a dictionary of defined fonts on the operand stack. Its contents are lim-
ited to those fonts that have been defined in global VM. See FontDirectory for a
complete explanation. GlobalFontDirectory is not an operator; it is a name in
systemdict associated with the dictionary object.

Errors: stackoverflow

See Also: FontDirectory

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

428 Chapter 8: Operators

glyphshow name glyphshow –

shows a single character, identified by name, from the current font. Unlike all
other show variants, glyphshow bypasses the current font’s Encoding. It can
access any character in the font, whether or not that character’s name is present
in the font’s encoding vector.

The behavior of glyphshow depends on the current font’s FontType. For
FontType 1, glyphshow looks up name in the font’s CharStrings dictionary to
obtain a character description to execute. If name is not present in the
CharStrings dictionary, glyphshow substitutes the .notdef entry, which must be
present in every Type 1 font.

For FontType 3, if the font dictionary contains a BuildGlyph procedure,
glyphshow pushes the current font dictionary and name on the operand stack,
then invokes BuildGlyph in the usual way (see section 5.7, “Type 3 Fonts”). If
there is no BuildGlyph procedure, but only a BuildChar procedure, glyphshow
searches the font’s Encoding array for an occurrence of name. If it finds one, it
pushes the font dictionary and the array index on the operand stack, then
invokes BuildChar in the usual way. If name is not present in the encoding,
glyphshow substitutes the name .notdef and repeats the search. If .notdef isn’t
present either, an invalidfont error occurs.

Like show, glyphshow can access characters that are already in the font cache.
glyphshow does not always need to execute the character’s description.

glyphshow operates only with base fonts. If the current font is composite
(FontType 0), an invalidfont error occurs.

Errors: invalidaccess, invalidfont, nocurrentpoint, stackunderflow,
typecheck

See Also: show

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 429

grestore – grestore –

resets the current graphics state from the one on the top of the graphics state
stack and pops the graphics state stack, restoring the graphics state in effect at
the time of the matching gsave. This operator provides a simple way to undo
complicated transformations and other graphics state modifications without
having to re-establish all graphics state parameters individually.

If there is no matching gsave or if the most recent gsave preceded the most
recent unmatched save, grestore does not pop the graphics state stack, although
it does restore the graphics state from the top of the graphics state stack.

Errors: (none)

See Also: gsave, grestoreall, setgstate

grestoreall – grestoreall –

repeatedly pops the graphics state stack until it encounters either the bottom-
most graphics state or one that was saved by save as opposed to gsave, leaving
that state on top of the graphics state stack. It then resets the current graphics
state from that saved one.

Errors: (none)

See Also: gsave, grestore, setgstate

PLRM 2nd Edition January 26, 1994 Operators

430 Chapter 8: Operators

gsave – gsave –

pushes a copy of the current graphics state on the graphics state stack. All ele-
ments of the graphics state are saved, including the CTM, current path, clip
path, and identity of the raster output device, but not the contents of raster
memory. The saved state may later be restored by a matching grestore. See sec-
tion 4.2, “Graphics State.”

The save operator implicitly performs a gsave, but restoring a graphics state
saved by save is slightly different from restoring one saved by gsave (see the
descriptions of grestore and grestoreall).

Note that, unlike save, gsave does not return a save object on the operand stack
to represent the saved state. gsave and grestore work strictly in a stack-like fash-
ion, except for the wholesale restoration performed by restore and grestoreall.

Errors: limitcheck

See Also: grestore, grestoreall, restore, save, gstate, currentgstate

gstate – gstate gstate

creates a new gstate (graphics state) object and pushes it on the operand stack.
Its initial value is a copy of the current graphics state.

This operator consumes VM; it is the only graphics state operator that does. The
gstate is allocated in either local or global VM according to the current VM allo-
cation mode (see section 3.7, “Memory Management”).

If gstate is allocated in global VM, gstate will generate an invalidaccess error if
any of the composite objects in the current graphics state are in local VM. Such
objects might include the current font, screen function, halftone dictionary,
transfer function, or dash pattern. In general, allocating gstate objects in global
VM is risky and should be avoided.

Errors: invalidaccess, stackoverflow, VMerror

See Also: currentgstate, setgstate

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 431

gt num1 num2 gt bool
string1 string2 gt bool

pops two objects from the operand stack and pushes the boolean value true if the
first operand is greater than the second, false otherwise. If both operands are
numbers, gt compares their mathematical values. If both operands are strings, gt
compares them element by element, treating the elements as integers in the
range 0 to 255, to determine whether the first string is lexically greater than the
second. If the operands are of other types or one is a string and the other is a
number, gt executes the typecheck error.

Errors: invalidaccess, stackunderflow, typecheck

See Also: ge, eq, ne, le, lt

handleerror (error)

is looked up in errordict and executed to report error information saved by the
default error handlers (see section 3.10, “Errors”). There is also a procedure
named handleerror in systemdict; it merely calls the procedure in errordict.

identmatrix matrix identmatrix matrix

replaces the value of matrix with the value of the identity matrix

[1.0 0.0 0.0 1.0 0.0 0.0]

and pushes this modified matrix back on the operand stack. The identity matrix
transforms any coordinate to itself.

Errors: rangecheck, stackunderflow, typecheck

See Also: matrix, currentmatrix, defaultmatrix, initmatrix

PLRM 2nd Edition January 26, 1994 Operators

432 Chapter 8: Operators

idiv int1 int2 idiv quotient

divides int1 by int2 and returns the integer part of the quotient, with any frac-
tional part discarded. Both operands of idiv must be integers and the result is an
integer.

Example

3 2 idiv ⇒ 1
4 2 idiv ⇒ 2
–5 2 idiv ⇒ –2

Errors: stackunderflow, typecheck, undefinedresult

See Also: div, add, mul, sub, mod, cvi

idtransform dx‘ dy‘ idtransform dx dy
dx‘ dy‘ matrix idtransform dx dy

With no matrix operand, idtransform (inverse delta transform) transforms the
device space distance vector (dx‘, dy‘) by the inverse of CTM to produce the cor-
responding distance vector (dx, dy) in user space. If the matrix operand is sup-
plied, idtransform transforms the distance vector by the inverse of matrix rather
than by the inverse of CTM.

A delta transformation is similar to a normal transformation (see section 4.3,
“Coordinate Systems and Transformations”), but the translation components
(tx and ty) of the transformation matrix are not used, making the distance vec-
tors be positionless in both user space and device space. idtransform is the
inverse of dtransform. It is useful for determining how distances map from
device space to user space.

Errors: rangecheck, stackunderflow, typecheck, undefinedresult

See Also: dtransform, transform, itransform

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 433

if bool proc if –

removes both operands from the stack, then executes proc if bool is true. The if
operator pushes no results of its own on the operand stack, but the proc may do
so (see section 3.5, “Execution”).

Example

3 4 lt {(3 is less than 4)} if ⇒ (3 is less than 4)

Errors: stackunderflow, typecheck

See Also: ifelse

ifelse bool proc1 proc2 ifelse –

removes all three operands from the stack, then executes proc1 if bool is true or
proc2 if bool is false. The ifelse operator pushes no results of its own on the oper-
and stack, but the procedure it executes may do so (see section 3.5, “Execution”).

Example

4 3 lt {(TruePart)} {(FalsePart)} ifelse ⇒ (FalsePart) % Since 4 is not less than 3

Errors: stackunderflow, typecheck

See Also: if

PLRM 2nd Edition January 26, 1994 Operators

434 Chapter 8: Operators

image width height bits/sample matrix datasrc image –
dict image –

paints a sampled image onto the current page. The description here only sum-
marizes the image operator. See section 4.10, “Images.”

The sampled image is a rectangular array of width × height sample values, each of
which consists of bits/sample bits of data (1, 2, 4, 8, or 12). The data is received as
a sequence of characters—in other words, 8-bit integers in the range 0 to 255. If
bits/sample is less than 8, sample values are packed left to right within a character
(see section 4.10.2, “Sample Data Representation”).

In the first form of image, the parameters are specified as separate operands. This
is the only form Level 1 implementations support. image renders a mono-
chrome image according to the DeviceGray color space, regardless of the current
color space.

In the second form, the parameters are contained as key-value pairs in an image
dictionary, which is specified as the single operand of image. This form is a Level
2 feature. image renders either a monochrome or color image according to the
current color space parameter in the graphics state. The number of component
values per source sample and the interpretations of those values depend on the
current color space.

The image is considered to exist in its own coordinate system. The rectangular
boundary of the image has its lower-left corner at (0, 0) and its upper-right cor-
ner at (width, height). The matrix operand specifies a transformation from user
space to the image coordinate system.

In Level 1, datasrc must be a procedure. In Level 2, datasrc may be any data
source (see section 3.13, “Filtered Files Details”)—a procedure, string, or readable
file object (including a filtered file).

If datasrc is a procedure, image executes datasrc repeatedly to obtain the actual
image data. datasrc must return (on the operand stack) a string containing any
number of additional characters of sample data. If datasrc returns a string of
length zero, image will terminate execution prematurely. The sample values are
assumed to be received in a fixed order: (0, 0) through (width–1, 0), then (0, 1)
through (width–1, 1), and so on.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: limitcheck, invalidaccess, ioerror, rangecheck, stackunderflow,
typecheck, undefinedresult, undefined

See Also: imagemask, colorimage

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 435

imagemask width height polarity matrix datasrc imagemask –
dict imagemask –

is similar to the image operator. However, it treats the source image as a mask of
1-bit samples that are used to control where to apply paint with the current
color and where not to apply any paint. See the description of the image opera-
tor and section 4.10, “Images.”

In the first form of imagemask, the parameters are specified as separate oper-
ands. This is the only form Level 1 implementations support. In the second
form, the parameters are contained as key-value pairs in an image dictionary.
The second form is a Level 2 feature. The semantics of imagemask do not
depend on which way the operands are specified.

imagemask uses the width, height, matrix, and datasrc operands in precisely the
same way image uses them. The polarity operand is a boolean that determines
the polarity of the mask. It controls the sense of the mask only; it has no effect
on the color of the pixels that are painted. If polarity is false, portions of the
image corresponding to source sample values of 0 are painted, while those corre-
sponding to sample values of 1 are left unchanged. If polarity is true, sample val-
ues of 1 are painted and sample values of 0 are left unchanged.

In the second form of imagemask, the polarity is specified by means of the
Decode entry in the image dictionary. Decode values of [0 1] and [1 0] corre-
spond to polarity values of false and true, respectively.

In Level 1, datasrc must be a procedure. In Level 2, datasrc may be any data
source (see section 3.13, “Filtered Files Details”)—a procedure, string, or readable
file object (including a filtered file).

imagemask is most useful for painting characters represented as bitmaps. Such
bitmaps represent masks through which a color is to be transferred; the bitmaps
themselves do not have a color (see section 4.10.6, “Masks”).

Example

54 112 translate % Locate lower-left corner of square
120 120 scale % Scale 1 unit to 120 points
0 0 moveto 0 1 lineto % Fill square with gray background
1 1 lineto 1 0 lineto closepath
.9 setgray fill
0 setgray % Paint mask black
24 23 % Dimensions of source mask
true % Paint the 1 bits
[24 0 0 –23 0 23] % Map unit square to mask
{<003B00 002700 002480 0E4940 114920
14B220 3CB650 75FE88 17FF8C 175F14
1C07E2 3803C4 703182 F8EDFC B2BBC2
BB6F84 31BFC2 18EA3C 0E3E00 07FC00
03F800 1E1800 1FF800>} % Mask data
imagemask

PLRM 2nd Edition January 26, 1994 Operators

436 Chapter 8: Operators

Errors: stackunderflow, typecheck, undefinedresult, limitcheck,
invalidaccess, ioerror

See Also: image, colorimage

index anyn ... any0 n index anyn ... any0 anyn

removes the non-negative integer n from the operand stack, counts down to the
nth element from the top of the stack, and pushes a copy of that element on the
stack.

Example

(a)(b)(c)(d) 0 index ⇒ (a)(b)(c)(d)(d)
(a)(b)(c)(d) 3 index ⇒ (a)(b)(c)(d)(a)

Errors: rangecheck, stackunderflow, typecheck

See Also: copy, dup, roll

ineofill x y ineofill bool
userpath ineofill bool

is similar to infill, but its “insideness” test is based on eofill instead of fill.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: eofill, infill

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 437

infill x y infill bool
userpath infill bool

The first form returns true if the device pixel containing the point (x, y) in user
space would be painted by a fill of the current path in the graphics state. Other-
wise, it returns false.

In the second form, the device pixels that would be painted by filling userpath
become an “aperture.” This form of the operator returns true if any of the pixels
in the aperture would be painted by a fill of the current path in the graphics
state. Otherwise, it returns false.

Both forms of this operator ignore the current clipping path and current view
clip; that is, they detect a “hit” anywhere within the current path, even if filling
that path would not mark the current page due to clipping. They do not place
any marks on the current page nor do they disturb the current path. The follow-
ing program fragment takes the current clipping path into account:

gsave clippath x y infill grestore
x y infill and

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: fill, ineofill

initclip – initclip –

replaces the current clip path parameter in the graphics state by the default clip
path for the current output device. This path usually corresponds to the bound-
ary of the maximum imageable area for the current output device. For a page-
oriented output device, its dimensions are those established by the
setpagedevice operator. For a display device, the clipping region established by
initclip is not well defined. Display PostScript applications should not make the
assumption that the clipping region corresponds to the window boundary (see
viewclippath).

There are few situations in which a PostScript language program should execute
initclip explicitly. A page description that executes initclip usually produces
incorrect results if it is embedded within another, composite page.

Errors: (none)

See Also: clip, eoclip, clippath, initgraphics

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

438 Chapter 8: Operators

initgraphics – initgraphics –

resets several values in the current graphics state to their default values:

current transformation matrix (default for current device)
current path (empty)
current point (undefined)
current clipping path (default for current device)
current color space (DeviceGray)
current color (black)
current line width (one user space unit)
current line cap style (butt end caps)
current line join style (miter joins)
current dash description (undashed, i.e., solid lines)
current miter limit (10)

The initgraphics operator does not change the other graphics state parameters.
These include the current output device, font, stroke adjust, and all device-
dependent parameters. This operator affects only the graphics state, not the con-
tents of raster memory or the output device.

initgraphics is equivalent to the PostScript language sequence:

initmatrix newpath initclip
1 setlinewidth 0 setlinecap 0 setlinejoin
[] 0 setdash 0 setgray 10 setmiterlimit

There are few situations in which a PostScript language program should execute
initgraphics explicitly. A page description that executes initgraphics usually pro-
duces incorrect results if it is embedded within another, composite page. A pro-
gram requiring information about its initial graphics state should read and save
that state at the beginning of the program rather than assume that the default
state prevailed initially.

Errors: (none)

See Also: grestoreall

initmatrix – initmatrix –

sets the current transformation matrix (CTM) to the default matrix for the cur-
rent output device. This matrix transforms the default user coordinate system to
device space (see section 4.3, “Coordinate Systems and Transformations”). For a
page-oriented device, the default matrix is initially established by the
setpagedevice operator.

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 439

There are few situations in which a PostScript language program should execute
initmatrix explicitly. A page description that executes initmatrix usually produces
incorrect results if it is embedded within another, composite page.

Errors: (none)

See Also: defaultmatrix, currentmatrix, setmatrix

initviewclip – initviewclip –

returns the context to its initial view clipping state, in which no view clipping
path exists.

Errors: (none)

See Also: viewclip, viewclippath

instroke x y instroke bool
userpath instroke bool

The first form returns true if the device pixel containing the point (x, y) in user
space would be painted by a stroke of the current path in the graphics state.
Otherwise, it returns false. It does not place any marks on the current page nor
does it disturb the current path.

In the second form of the operator, the device pixels that would be painted by
filling userpath become an “aperture.” instroke returns true if any of the pixels in
the aperture would be painted by a stroke of the current path in the graphics
state. Otherwise, it returns false.

As with infill, this operator ignores the current clipping path and current view
clip; that is, it detects a “hit” on any pixel that lies beneath a stroke drawn along
the current path, even if stroking that path would not mark the current page due
to clipping.

The shape against which the point (x, y) or the aperture, userpath, is tested is
computed according to the current, stroke-related parameters in the graphics
state: line width, line cap, line join, miter limit, dash pattern, and stroke adjust.
If the current line width is zero, the set of pixels considered to be part of the
stroke is device dependent.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: infill, inustroke, stroke

DPS

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

440 Chapter 8: Operators

internaldict int internaldict dict

pushes the internal dictionary object on the operand stack. The int operand must
be the integer 1183615869. The internal dictionary is in local VM and is writ-
able. It contains operators and other information whose purpose is internal to
the PostScript interpreter. It should be referenced only in special circumstances,
such as during construction of Type 1 font programs. (See the book Adobe Type 1
Font Format for specific information about constructing Type 1 fonts.) The con-
tents of internaldict are undocumented and subject to change at any time.

This operator is not present in some PostScript interpreters.

Errors: invalidaccess, stackunderflow, undefined

interrupt (error)

processes an external request to interrupt execution of a PostScript language pro-
gram. When the interpreter receives an interrupt request, it executes interrupt as
if it were an error—in other words, it looks up the name interrupt in errordict.
Execution of interrupt is sandwiched between execution of two objects being
interpreted in normal sequence.

Unlike most other errors, occurrence of an interrupt does not cause the object
being executed to be pushed on the operand stack nor does it disturb the oper-
and stack in any way.

The precise nature of an external interrupt request depends on the environment
in which the PostScript interpreter is running. For example, in some environ-
ments, receipt of a control-C character from a serial communication channel
gives rise to the interrupt error. This enables a user to explicitly abort a PostScript
computation. The default definition of interrupt executes a stop.

inueofill x y userpath inueofill bool
userpath1 userpath2 inueofill bool

is similar to inufill, but its “insideness” test is based on ueofill instead of ufill.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: inufill, eofill

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 441

inufill x y userpath inufill bool
userpath1 userpath2 inufill bool

The first form returns true if the device pixel containing the point (x, y) in user
space would be painted by a ufill of the specified userpath (see section 4.6, “User
Paths”). Otherwise, it returns false.

In the second form, the device pixels that would be painted by filling userpath1

become an “aperture.” inufill returns true if any of the pixels in the aperture
would be painted by a ufill of userpath2. Otherwise, it returns false.

This operator does not place any marks on the current page nor does it disturb
the current path in the graphics state. Except for the manner in which the path
is specified, inufill behaves the same as infill.

By itself, this operator is seemingly a trivial composition of several other
operators:

gsave
newpath uappend
infill
grestore

However, when used with a user path that specifies ucache, inufill can access the
user path cache, potentially resulting in improved performance.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See also: inueofill, infill, ufill

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

442 Chapter 8: Operators

inustroke x y userpath inustroke bool
x y userpath matrix inustroke bool
userpath1 userpath2 inustroke bool

userpath1 userpath2 matrix inustroke bool

The first form returns true if the device pixel containing the point (x, y) in user
space would be painted by a ustroke applied to the same operands (see section
4.6, “User Paths”). Otherwise it returns false.

In the second form, inustroke concatenates matrix to the CTM after interpreting
the user paths, but before computing the stroke (see ustroke operator).

In the third and fourth forms, the device pixels that would be painted by filling
userpath1 become an “aperture.” inustroke returns true if any of the pixels in the
aperture would be painted by a ustroke of userpath2. Otherwise it returns false.

This operator does not place any marks on the current page nor does it disturb
the current path in the graphics state. Except for the manner in which the path
is specified, inustroke behaves the same as instroke.

As with inufill, if userpath is already present in the user path cache, inustroke can
take advantage of the cached information to optimize execution.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See also: stroke, ustroke, instroke

invalidaccess (error)

An access violation has occurred. Principal causes of invalidaccess are:

• Accessing the value of a composite object in violation of its access attribute
(for example, storing into a read-only array).

• Storing a composite object in local VM as an element of a composite object in
global VM.

• Executing pathforall if the current path contains an outline for a protected
font.

See Also: rcheck, wcheck, gcheck, readonly, executeonly, noaccess

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 443

invalidcontext (error)

indicates that an invalid use of the context synchronization facilities has been
detected. Possible causes include:

• Presenting an invalid context identifier to join or detach.

• Executing monitor on a lock already held by the current context.

• Executing wait on a lock not held by the current context.

• Executing any of several synchronization operators when an unmatched save
is pending if the result would be a deadlock.

The PostScript interpreter detects only the simplest types of deadlock. It is possi-
ble to encounter deadlocks for which no invalidcontext error is generated.

invalidexit (error)

An exit has been executed for which there is no dynamically enclosing looping
context (for example, for, loop, repeat, or pathforall) or it has attempted to leave
the context of a run or stopped operator.

invalidfileaccess (error)

The access string specification to the file operator is unacceptable or a file opera-
tion has been attempted (for example, deletefile) that is not permitted by the
storage device. See section 3.8.2, “Named Files.”

invalidfont (error)

Either the operand to findfont is not a valid font name or the operand to
makefont or setfont is not a well-formed font dictionary. The invalidfont error
may also be executed by other font operators upon discovering a font dictionary
is malformed.

DPS

PLRM 2nd Edition January 26, 1994 Operators

444 Chapter 8: Operators

invalidid (error)

indicates that an invalid identifier has been presented to a window system spe-
cific operator. In each integration of the Display PostScript system with a win-
dow system, there is a collection of window system specific operators. The
operands of such operators are usually integers that identify windows and other
objects that exist outside the PostScript language. This error occurs when the
operand does not identify a valid object. It is generated only by window system
specific operators and not by any standard operator.

invalidrestore (error)

An improper restore has been attempted. One or more of the operand, diction-
ary, or execution stacks contains composite objects whose values were created
more recently than the save whose context is being restored. Since restore
would destroy those values, but the stacks are unaffected by restore, the out-
come would be undefined and cannot be allowed.

See Also: restore, save

invertmatrix matrix1 matrix2 invertmatrix matrix2

replaces the value of matrix2 with the result of inverting matrix1 and pushes the
modified matrix2 back on the operand stack. The result of inverting a matrix is
that if matrix1 transforms a coordinate (x, y) to (x‘, y‘) then matrix2 transforms
(x‘, y‘) to (x, y). See section 4.3, “Coordinate Systems and Transformations.”

Errors: rangecheck, stackunderflow, typecheck, undefinedresult

See Also: itransform, idtransform

ioerror (error)

An exception other than end-of-file has occurred during execution of one of the
file operators. The nature of the exception is environment dependent, but may
include such events as parity or checksum errors, or broken network connec-
tions. Attempting to write to an input file or to a file that has been closed will
also cause an ioerror. Occurrence of an ioerror does not cause the file to become
closed unless it was already closed or the error occurs during closefile.

DPS

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 445

ISOLatin1Encoding – ISOLatin1Encoding array

pushes the ISO Latin-1 encoding vector on the operand stack. This is a
256-element literal array object, indexed by character codes whose values are the
character names for those codes. ISOLatin1Encoding is not an operator; it is a
name in systemdict associated with the array object.

Roman text fonts produced by Adobe usually use the StandardEncoding
encoding vector. However, they contain all the characters needed to support the
use of ISOLatin1Encoding. A font can have its Encoding changed to
ISOLatin1Encoding by means of the procedure shown in section 5.6.1, “Chang-
ing the Encoding Vector.” The contents of ISOLatin1Encoding are documented
in Appendix E.

Errors: stackoverflow

See Also: StandardEncoding, findencoding

itransform x‘ y‘ itransform x y
x‘ y‘ matrix itransform x y

With no matrix operand, itransform (inverse transform) transforms the device
space coordinate (x’, y’) by the inverse of CTM to produce the corresponding user
space coordinate (x, y). If the matrix operand is supplied, itransform transforms
(x’, y’) by the inverse of matrix rather than by the inverse of CTM.

Errors: rangecheck, stackunderflow, typecheck, undefinedresult

See Also: transform, dtransform, idtransform, invertmatrix

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

446 Chapter 8: Operators

join context join mark obj1 ... objn

waits for the execution context identified by the integer context to finish execut-
ing its top-level procedure (the proc operand of fork). It then pushes a mark fol-
lowed by the entire contents of that context’s operand stack onto the current
context’s operand stack. Finally, it causes the other context to terminate.

The objects obj1 through objn are those left on the operand stack by the context
that is terminating. Ordinarily, there should not be a mark among those objects,
because its presence might cause confusion in the context that executes the join.

If context is not a valid context identifier, perhaps because the context has termi-
nated prematurely due to executing quit or encountering an error, join executes
an invalidcontext error. This also occurs if the context has already been joined or
detached, if context identifies the current context, or if the context does not
share the current context’s local and global VM.

It is illegal to execute join if there has been any previous save not yet matched by
a restore. Attempting to do so will cause an invalidcontext error.

Errors: invalidcontext, stackunderflow, stackoverflow, typecheck

See Also: fork, detach, currentcontext

known dict key known bool

returns the boolean value true if there is an entry in the dictionary dict whose key
is key. Otherwise, it returns false. dict does not have to be on the dictionary stack.

Example

/mydict 5 dict def
mydict /total 0 put
mydict /total known ⇒ true
mydict /badname known ⇒ false

Errors: invalidaccess, stackunderflow, typecheck

See Also: where, load, get

DPS

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 447

kshow proc string kshow –

paints the characters of string in a manner similar to show, but allowing program
intervention between characters. If the character codes in string are c0, c1, ... cn,
kshow proceeds as follows: First it shows c0 at the current point, updating the
current point by c0’s width. Then it pushes the character codes c0 and c1 on the
operand stack (as integers) and executes proc. The proc may perform any actions
it wishes; typically, it will modify the current point to affect the subsequent
placement of c1. kshow continues by showing c1, pushing c1 and c2 on the stack,
executing proc, and so on. It finishes by pushing cn–1 and cn on the stack, execut-
ing proc, and finally showing cn.

When proc is called for the first time, the graphics state (in particular, the CTM)
is the same as it was at the time kshow was invoked, except that the current
point has been updated by the width of c0. Execution of proc is permitted to have
any side effects, including changes to the graphics state. Such changes persist
from one call of proc to the next and may affect graphical output for the remain-
der of kshow’s execution and afterward.

The name kshow is derived from “kern-show.” To kern characters is to adjust the
spacing between adjacent pairs of characters in order to achieve a visually pleas-
ing result. The kshow operator enables user-defined kerning and other manipu-
lations, because arbitrary computations can be performed between each pair of
characters.

kshow can be applied only to base fonts. If the current font is composite, kshow
issues an invalidfont error.

Errors: invalidaccess, invalidfont, nocurrentpoint, stackunderflow, typecheck

See Also: show, ashow, awidthshow, widthshow, xshow, xyshow, yshow, cshow

languagelevel – languagelevel int

is an integer designating the PostScript language level supported by the Post-
Script interpreter. If the value of languagelevel is 2, the PostScript interpreter
supports all PostScript Level 2 language features. If the value of languagelevel is
1 or if languagelevel is not defined in systemdict, the PostScript interpreter does
not support all PostScript Level 2 language features.

Errors: stackoverflow, undefined

See Also: product, revision, serialnumber, version

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

448 Chapter 8: Operators

le num1 num2 le bool
string1 string2 le bool

pops two objects from the operand stack and pushes the boolean value true if the
first operand is less than or equal to the second, false otherwise. If both operands
are numbers, le compares their mathematical values. If both operands are
strings, le compares them element by element (treating the elements as integers
in the range 0 to 255) to determine whether the first string is lexically less than
or equal to the second. If the operands are of other types or one is a string and
the other is a number, le executes the typecheck error.

Errors: invalidaccess, stackunderflow, typecheck

See Also: lt, eq, ne, ge, gt

length array length int
packedarray length int

dict length int
string length int
name length int

depends on the type of its operand. If the operand is an array, packed array, or
string, length returns the number of elements in its value. If the operand is a dic-
tionary, length returns the current number of key-value pairs it contains, as
opposed to its maximum capacity, which is returned by maxlength. If the oper-
and is a name object, the length is the number of characters in the text string
that defines it.

Example

[1 2 4] length ⇒ 3
[] length ⇒ 0 % An array of zero length
/ar 20 array def ar length ⇒ 20

/mydict 5 dict def
mydict length ⇒ 0
mydict /firstkey (firstvalue) put
mydict length ⇒ 1

(abc\n) length ⇒ 4 % The “\n” is one character
() length ⇒ 0 % No characters between (and)
/foo length ⇒ 3

Errors: invalidaccess, stackunderflow, typecheck

See Also: maxlength

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 449

limitcheck (error)

An implementation limit has been exceeded (for example, too many files have
been opened simultaneously or a path has become too complex). Appendix B
gives typical values for all such limits.

lineto x y lineto –

appends a straight line segment to the current path (see section 4.4, “Path Con-
struction”). The line extends from the current point to the point (x, y) in user
space; (x, y) then becomes the current point. If the current point is undefined
because the current path is empty, lineto executes the error nocurrentpoint.

Errors: limitcheck, nocurrentpoint, stackunderflow, typecheck

See Also: rlineto, moveto, arc, curveto, closepath

ln num ln real

returns the natural logarithm (base e) of num. The result is a real.

Example

10 ln ⇒ 2.30259
100 ln ⇒ 4.60517

Errors: rangecheck, stackunderflow, typecheck

See Also: log, exp

PLRM 2nd Edition January 26, 1994 Operators

450 Chapter 8: Operators

load key load value

searches for key in each dictionary on the dictionary stack, starting with the top-
most (current) dictionary. If key is found in some dictionary, load pushes the
associated value on the operand stack. If key is not found in any dictionary on
the dictionary stack, load executes the error undefined.

load looks up key the same way the interpreter looks up executable names that it
encounters during execution. However, load always pushes the associated value
on the operand stack; it never executes that value.

Example

/avg {add 2 div} def
/avg load ⇒ {add 2 div}

Errors: invalidaccess, stackunderflow, typecheck, undefined

See Also: where, get, store

lock – lock lock

creates a new lock object, unequal to any lock object already in existence, and
pushes it on the operand stack. The state of the lock is initially free (see section
7.1, “Multiple Execution Contexts”).

Since a lock is a composite object, creating one consumes VM. The lock’s value is
allocated in local or global VM according to the current VM allocation mode (see
section 3.7.2, “Local and Global VM”).

Errors: stackoverflow, VMerror

See Also: monitor, wait

log num log real

returns the common logarithm (base 10) of num. The result is a real.

Example

10 log ⇒ 1.0
100 log ⇒ 2.0

Errors: rangecheck, stackunderflow, typecheck

See Also: ln, exp

DPS

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 451

loop proc loop –

repeatedly executes proc until proc executes the exit operator, at which point
interpretation resumes at the object next in sequence after the loop. Control also
leaves proc if the stop operator is executed. If proc never executes exit or stop, an
infinite loop results, which can be broken only via an external interrupt (see
interrupt).

Errors: stackunderflow, typecheck

See Also: for, repeat, forall, exit

lt num1 num2 lt bool
string1 string2 lt bool

pops two objects from the operand stack and pushes the boolean value true if the
first operand is less than the second, false otherwise. If both operands are num-
bers, lt compares their mathematical values. If both operands are strings, lt com-
pares them element by element (treating the elements as integers in the range 0
to 255) to determine whether the first string is lexically less than the second. If
the operands are of other types or one is a string and the other is a number, lt
executes the typecheck error.

Errors: invalidaccess, stackunderflow, typecheck

See Also: le, eq, ne, ge, gt

PLRM 2nd Edition January 26, 1994 Operators

452 Chapter 8: Operators

makefont font matrix makefont font′

applies matrix to font, producing a new font′ whose characters are transformed by
matrix when they are shown. makefont first creates a copy of font. Then it
replaces the new font’s FontMatrix entry with the result of concatenating the
existing FontMatrix with matrix. It inserts two additional entries, OrigFont and
ScaleMatrix, whose purpose is internal to the implementation. Finally, it returns
the result as font′.

The makefont, scalefont, and selectfont operators produce a font dictionary
derived from an original font dictionary, but with the FontMatrix entry altered.
The derived font dictionary is allocated in local or global VM according to
whether the original font dictionary is in local or global VM. This is indepen-
dent of the current VM allocation mode.

Normally, makefont copies only the font dictionary. Subsidiary objects, such as
the CharStrings and FontInfo dictionaries, are shared with the original font.
However, if font is a composite font, makefont also copies the font dictionaries of
any descendant composite fonts. It does not copy descendant base fonts.

Showing characters from the transformed font produces the same results as
showing from the original font after having transformed user space by the same
matrix. makefont is essentially a convenience operator that permits the desired
transformation to be encapsulated in the font description. The most common
transformation is to scale a font by a uniform factor in both x and y. scalefont is
a special case of the more general makefont and should be used for such uniform
scaling. Another operator, selectfont, combines the effects of findfont and
makefont.

The interpreter keeps track of font dictionaries recently created by makefont.
Calling makefont multiple times with the same font and matrix will usually
return the same font′ rather than create a new one. However, it is usually more
efficient for a PostScript language program to apply makefont only once for each
font that it needs and to keep track of the resulting font dictionaries on its own.

See Chapter 5 for general information about fonts and section 4.3, “Coordinate
Systems and Transformations,” for a discussion of transformations.

Example

/Helvetica findfont [10 0 0 12 0 0] makefont setfont

This obtains the standard Helvetica font, which is defined with a one unit line
height, and scales it by a factor of 10 in the x dimension and 12 in the y dimen-
sion. This produces a 12-unit high font (i.e., a 12-point font in default user
space) whose characters are “condensed” in the x dimension by a ratio of 10/12.

Errors: invalidfont, rangecheck, stackunderflow, typecheck, VMerror

See Also: scalefont, setfont, findfont, selectfont

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 453

makepattern dict matrix makepattern pattern

verifies that dict is a prototype pattern dictionary with all required key-value
pairs (see section 4.9, “Patterns”). It then creates a copy of dict in local VM, add-
ing an entry, with key Implementation, for use by the implementation.
makepattern copies only the contents of dict itself, not the values of subsidiary
composite objects, which are shared with the original dictionary.

makepattern saves a copy of the current graphics state, to be used later when the
interpreter calls the PaintProc to render the pattern cell. It then modifies certain
parameters in the saved graphics state, as follows:

• Concatenates matrix with the saved copy of the CTM.

• Adjusts the resulting matrix to ensure that the device space can be tiled prop-
erly with a pattern cell of the given size in accordance with the TilingType.

• Resets the path to empty.

• Replaces the clipping path by the pattern cell bounding box specified by the
BBox entry in the pattern dictionary.

• Replaces the device by a special one the implementation provides.

Finally, makepattern makes the new dictionary read-only and pushes it on the
operand stack. The resulting pattern dictionary is suitable for use as an operand
of setpattern or as a “color value” in the Pattern color space.

Errors: limitcheck, rangecheck, stackunderflow, typecheck, undefined,
VMerror

See Also: setpattern, findresource

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

454 Chapter 8: Operators

mark – mark mark

pushes a mark (an object whose type is mark, not the mark operator itself) on the
operand stack. All marks are identical, and the operand stack may contain any
number of them at once.

The primary use of marks is to indicate the stack position of the beginning of an
indefinitely long list of operands being passed to an operator or procedure. The]
operator (array construction) is the most common operator that works this way.
It treats as operands all elements of the stack down to a mark that was pushed by
the [operator ([is a synonym for mark). It is possible to define procedures that
work similarly. Operators such as counttomark and cleartomark are useful
within such procedures.

Errors: stackoverflow

See Also: counttomark, cleartomark, pop

matrix – matrix matrix

creates a 6-element array object, fills it in with the values of an identity matrix
[1.0 0.0 0.0 1.0 0.0 0.0] and pushes this array on the operand stack. The array is
allocated in local or global VM according to the current VM allocation mode (see
section 3.7.2, “Local and Global VM”).

Example

matrix ⇒ [1.0 0.0 0.0 1.0 0.0 0.0]
6 array identmatrix ⇒ [1.0 0.0 0.0 1.0 0.0 0.0]

The two lines in the example yield identical results.

Errors: stackoverflow, VMerror

See Also: currentmatrix, defaultmatrix, initmatrix, setmatrix, array

maxlength dict maxlength int

returns the capacity of dict—in other words, the maximum number of key-value
pairs that dict can hold using the VM currently allocated to it. In Level 1 imple-
mentations, maxlength returns the length operand of the dict operator that cre-
ated the dictionary; this is the dictionary’s maximum capacity (exceeding it
causes a dictfull error). In a Level 2 implementation, which permits a dictionary
to grow beyond its initial capacity, maxlength returns its current capacity, a
number at least as large as that returned by length.

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 455

Example

/mydict 5 dict def
mydict length ⇒ 0
mydict maxlength ⇒ 5

Errors: invalidaccess, stackunderflow, typecheck

See Also: length, dict

mod int1 int2 mod remainder

returns the remainder that results from dividing int1 by int2. The sign of the
result is the same as the sign of the dividend int1. Both operands must be inte-
gers. The result is an integer.

Example

5 3 mod ⇒ 2
5 2 mod ⇒ 1
–5 3 mod ⇒ –2

The last line of the example demonstrates that mod is a remainder operation
rather than a true modulo operation.

Errors: stackunderflow, typecheck, undefinedresult

See Also: idiv, div

monitor lock proc monitor –

acquires lock, first waiting if necessary for it to become free, then executes proc,
and finally releases lock again. The release of lock occurs whether proc runs to
completion or terminates prematurely for any reason. See section 7.1, “Multiple
Execution Contexts.”

If lock is already held by the current context, monitor executes an invalidcontext
error without disturbing the lock. If the current context has previously executed
a save not yet matched by a restore and lock is already held by another context
sharing the same local VM as the current context, an invalidcontext error results.
These restrictions prevent the most straightforward cases of a context deadlock-
ing with itself.

Errors: invalidcontext, stackunderflow, typecheck

See Also: lock, fork, wait

DPS

PLRM 2nd Edition January 26, 1994 Operators

456 Chapter 8: Operators

moveto x y moveto –

starts a new subpath of the current path. moveto sets the current point in the
graphics state to the user space coordinate (x, y) without adding any line seg-
ments to the current path.

If the previous path operation in the current path was also a moveto or rmoveto,
that point is deleted from the current path and the new moveto point replaces
it.

Errors: limitcheck, stackunderflow, typecheck

See Also: rmoveto, lineto, curveto, arc, closepath

mul num1 num2 mul product

returns the product of num1 and num2. If both operands are integers and the
result is within integer range, the result is an integer. Otherwise, the result is a
real.

Errors: stackunderflow, typecheck, undefinedresult

See Also: div, idiv, add, sub, mod

ne any1 any2 ne bool

pops two objects from the operand stack and pushes the boolean value false if
they are equal, true if not. What it means for objects to be equal is presented in
the description of the eq operator.

Errors: invalidaccess, stackunderflow

See Also: eq, ge, gt, le, lt

neg num1 neg num2

returns the negative of num1. The type of the result is the same as the type of
num1, unless num1 is the most negative integer, in which case the result is a real.

Example

4.5 neg ⇒ –4.5
–3 neg ⇒ 3

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 457

Errors: stackunderflow, typecheck

See Also: abs

newpath – newpath –

initializes the current path to be empty, causing the current point to become
undefined.

Errors: (none)

See Also: closepath, stroke, fill

noaccess array noaccess array
packedarray noaccess packedarray

dict noaccess dict
file noaccess file

string noaccess string

reduces the access attribute of an array, packed array, dictionary, file, or string
object to none (see section 3.3.2, “Attributes of Objects”). The value of a no-
access object cannot be executed or accessed directly by PostScript operators. No-
access objects are of no use to PostScript language programs, but serve certain
internal purposes that are not documented in this manual.

For an array, packed array, file, or string, noaccess affects the access attribute
only of the object that it returns. If there are other objects that share the same
value, their access attributes are unaffected. However, in the case of a dictionary,
noaccess affects the value of the object, so all dictionary objects sharing the same
dictionary are affected.

Errors: invalidaccess, stackunderflow, typecheck

See Also: rcheck, wcheck, xcheck, readonly, executeonly

nocurrentpoint (error)

The current path is empty, and thus there is no current point, but an operator
requiring a current point has been executed (for example, lineto, curveto,
currentpoint, show). The most common cause of this error is neglecting to per-
form an initial moveto.

See Also: moveto

PLRM 2nd Edition January 26, 1994 Operators

458 Chapter 8: Operators

not bool1 not bool2
int1 not int2

If the operand is a boolean, not returns its logical negation. If the operand is an
integer, not returns the bitwise complement (one’s complement) of its binary
representation.

Example

true not ⇒ false % A complete truth table
false not ⇒ true

52 not ⇒ –53

Errors: stackunderflow, typecheck

See Also: and, or, xor, if

notify condition notify –

resumes execution of all contexts, if any, that are suspended in a wait for
condition. See section 7.1, “Multiple Execution Contexts.”

Ordinarily, notify should be invoked only within the execution of a monitor that
references the same lock used in the wait for condition. This ensures that notifica-
tions cannot be lost due to a race between a context executing notify and one
executing wait. However, this recommendation is not enforced by the language.

Errors: stackunderflow, typecheck

See Also: wait, monitor, condition

null – null null

pushes a literal null object on the operand stack. null is not an operator; it is a
name in systemdict associated with the null object.

Errors: stackoverflow

DPS

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 459

nulldevice – nulldevice –

installs the “null device” as the current output device. The null device corre-
sponds to no physical output device and has no raster memory associated with
it. Marks placed on the current page by painting operators (for example, show or
stroke) are discarded; output operators (showpage and copypage) do nothing.
However, in all other respects the null device behaves like a real raster output
device: the graphics operators have their normal side-effects on the graphics
state, the character operators invoke the font machinery, and so on.

nulldevice sets the default transformation matrix to be the identity transform
[1.0 0.0 0.0 1.0 0.0 0.0]. A PostScript language program may change this to any
other matrix (using setmatrix) if it desires to simulate the device coordinate sys-
tem of some real device. nulldevice also establishes the clipping path as a degen-
erate path consisting of a single point at the origin.

The null device is useful for exercising the PostScript interpreter’s graphics and
font machinery for such purposes as operating on paths, computing bounding
boxes for graphical shapes, and performing coordinate transformations using
CTM without generating output. Such manipulations should be bracketed by
gsave and grestore so the former device can be reinstated and the other side
effects of nulldevice undone.

Errors: (none)

See Also: setpagedevice

or bool1 bool2 or bool3
int1 int2 or int3

If the operands are booleans, or returns their logical disjunction. If the operands
are integers, or returns the bitwise “inclusive or” of their binary representations.

Example

true true or ⇒ true % A complete truth table
true false or ⇒ true
false true or ⇒ true
false false or ⇒ false

17 5 or ⇒ 21

Errors: stackunderflow, typecheck

See Also: and, not, xor

PLRM 2nd Edition January 26, 1994 Operators

460 Chapter 8: Operators

packedarray any0 ... anyn–1 n packedarray packedarray

creates a packed array object of length n containing the objects any0 through
anyn–1 as elements. packedarray first removes the non-negative integer n from
the operand stack. It then removes that number of objects from the operand
stack, creates a packed array containing those objects as elements, and finally
pushes the resulting packed array object on the operand stack.

The resulting object has a type of packedarraytype, a literal attribute, and read-
only access. In all other respects, its behavior is identical to that of an ordinary
array object.

The packed array is allocated in local or global VM according to the current VM
allocation mode. An invalidaccess error occurs if the packed array is in global
VM and any of any0 ... anyn–1 are in local VM (see section 3.7.2, “Local and Glo-
bal VM”).

Errors: invalidaccess, rangecheck, stackunderflow, typecheck, VMerror

See Also: aload

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 461

pathbbox – pathbbox llx lly urx ury

returns the bounding box of the current path in the current user coordinate sys-
tem. The results are four real numbers: lower-left x, lower-left y, upper-right x,
and upper-right y. These coordinates describe a rectangle, oriented with its sides
parallel to the x and y axes in user space, that completely encloses all elements of
the path. If the current path is empty, pathbbox executes the error
nocurrentpoint.

pathbbox first computes the bounding box of the current path in device space. It
then transforms these coordinates to user space by the inverse of CTM and com-
putes the bounding box of the resulting figure in user space. If the user coordi-
nate system is rotated (other than by multiples of 90 degrees) or skewed,
pathbbox may return a bounding box that is larger than expected.

If the path includes curve segments, the bounding box encloses the control
points of the curves as well as the curves themselves. To obtain a bounding box
that fits the path more tightly, one should first “flatten” the curve segments by
executing flattenpath.

In Level 2 implementations of the PostScript language, if the current path ends
with a moveto, the bounding box does not necessarily include it, unless the
moveto is the only element of the path. If an explicit bounding box has been
established by setbbox, pathbbox returns a result derived from that bounding
box, not from the actual path.

Errors: nocurrentpoint, stackoverflow

See Also: flattenpath, clippath, charpath, setbbox

PLRM 2nd Edition January 26, 1994 Operators

462 Chapter 8: Operators

pathforall move line curve close pathforall –

removes four operands from the stack, all of which must be procedures.
pathforall then enumerates the current path in order, executing one of the four
procedures for each element in the path. The four basic kinds of elements in a
path are moveto, lineto, curveto, and closepath. The relative variants rmoveto,
rlineto, and rcurveto are converted to the corresponding absolute forms; arc,
arcn, and arcto are converted to sequences of curveto. For each element in the
path, pathforall pushes the element’s coordinates on the operand stack and exe-
cutes one of the four procedures as follows:

moveto push x y; execute move
lineto push x y; execute line
curveto push x1 y1 x2 y2 x3 y3; execute curve
closepath execute close

The operands passed to the procedures are coordinates in user space. pathforall
transforms them from device space to user space using the inverse of the CTM.
Ordinarily, these coordinates will be the same as the ones originally entered by
moveto, lineto, and so forth. However, if the CTM has been changed since the
path was constructed, the coordinates reported by pathforall will be different
from those originally entered.

Among other uses, pathforall enables a path constructed in one user coordinate
system to be read out in another user coordinate system.

pathforall enumerates the current path existing at the time it begins execution.
If any of the procedures change the current path, such changes do not alter the
behavior of pathforall.

If charpath was used to construct any portion of the current path from a font
whose outlines are protected, pathforall is not allowed. Its execution will pro-
duce an invalidaccess error (see charpath).

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: moveto, lineto, curveto, closepath, charpath

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 463

pop any pop –

removes the top element from the operand stack and discards it.

Example

1 2 3 pop ⇒ 1 2
1 2 3 pop pop ⇒ 1

Errors: stackunderflow

See Also: clear, dup

print string print –

writes the characters of string to the standard output file (see section 3.8, “File
Input and Output”). The print operator provides the simplest means to send text
to an application or an interactive user. Note that print is a file operator that has
nothing to do with painting character shapes on the current page (see show) or
with sending the current page to a raster output device (see showpage).

Errors: invalidaccess, ioerror, stackunderflow, typecheck

See Also: write, flush, =, ==, printobject

PLRM 2nd Edition January 26, 1994 Operators

464 Chapter 8: Operators

printobject obj tag printobject –

writes a binary object sequence to the standard output file; see section 3.12.6,
“Structured Output.” The binary object sequence contains a top-level array
whose length is one; its single element is an encoding of obj. If obj is composite,
the binary object sequence also includes subsidiary array and string values for
the components of obj. The tag operand, which must be an integer in the range 0
to 255, is used to tag the top-level object; it appears as the second byte of the
object’s representation. Tag values 0 through 249 are available for general use;
tag values 250 through 255 are reserved for special purposes, such as reporting
errors.

The binary object sequence uses the number representation established by the
most recent execution of setobjectformat. The token type given as the first byte
of the binary object sequence reflects the number representation that was used.
If the object format parameter has been set to zero, printobject executes an
undefined error.

The object obj and its components must be of type null, integer, real, name,
boolean, string, array, or mark (see section 3.12, “Binary Encoding Details”).
Appearance of an object of any other type, including packed array, will result in
a typecheck error. If arrays are nested too deeply or are cyclical, a limitcheck error
occurs.

printobject always encodes a name object as a reference to a text name in the
string value portion of the binary object sequence, never as a system or user
name index.

As is the case for all operators that write to files, the output produced by
printobject may accumulate in a buffer instead of being transmitted immedi-
ately. To ensure immediate transmission, a flush is required. This is particularly
important in situations where the output produced by printobject is the
response to a query from the application.

Errors: invalidaccess, ioerror, limitcheck, rangecheck, stackunderflow,
typecheck, undefined

See Also: print, setobjectformat, writeobject

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 465

product – product string

is a read-only string object that is the name of the product in which the Post-
Script interpreter is running. The value of this string is typically a manufacturer
defined trademark; it has no direct connection with specific features of the Post-
Script language.

Errors: stackoverflow

See Also: languagelevel, revision, serialnumber, version

prompt – prompt –

is a procedure executed by executive whenever it is ready for the user to enter a
new statement. The standard definition of prompt is “(PS>) print flush” and is
defined in systemdict; it can be overridden by defining prompt in userdict or
some other dictionary higher on the dictionary stack. prompt is not defined in
products that do not support executive. See section 2.4.4, “Using the Interpreter
Interactively.”

Errors: (none)

See Also: executive

pstack any1 ... anyn pstack any1 ... anyn

writes text representations of every object on the stack to the standard output
file, but leaves the stack unchanged. pstack applies the == operator to each ele-
ment of the stack, starting with the topmost element. See the == operator for a
description of its effects.

Errors: (none)

See Also: stack, =, ==

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

466 Chapter 8: Operators

put array index any put –
dict key any put –

string index int put –

replaces a single element of the value of an array, dictionary, or string.

If the first operand is an array or string, put treats the second operand as an
index and stores the third operand at the position identified by the index,
counting from zero. index must be in the range 0 to n–1,where n is the length of
the array or string. If it is outside this range, put will execute a rangecheck error.

If the first operand is a dictionary, put uses the second operand as a key and the
third operand as a value, and it stores this key-value pair into dict. If key is
already present as a key in dict, put simply replaces its value by any. Otherwise,
put creates a new entry for key and associates any with it. In Level 1 implemen-
tations, if dict is already full, put executes the error dictfull.

If the value of array or dict is in global VM and any is a composite object whose
value is in local VM, an invalidaccess error occurs (see section 3.7.2, “Local and
Global VM”).

Example

/ar [5 17 3 8] def
ar 2 (abcd) put
ar ⇒ [5 17 (abcd) 8]

/d 5 dict def
d /abc 123 put
d {} forall ⇒ /abc 123

/st (abc) def
st 0 65 put % 65 is ASCII code for character “A”
st ⇒ (Abc)

Errors: dictfull, invalidaccess, rangecheck, stackunderflow, typecheck

See Also: get, putinterval

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 467

putinterval array1 index array2 putinterval –
array1 index packedarray2 putinterval –

string1 index string2 putinterval –

replaces a subsequence of the elements of the first operand by the entire con-
tents of the third operand. The subsequence that is replaced begins at the speci-
fied index in the first operand; its length is the same as the length of the third
operand.

The objects are copied from the third operand to the first, as if by a sequence of
individual gets and puts. In the case of arrays, if the copied elements are them-
selves composite objects, the values of those objects are shared between array2

and array1 (see section 3.3.1, “Simple and Composite Objects”).

putinterval requires index to be a valid index in array1 or string1 such that index
plus the length of array2 or string2 is not greater than the length of array1 or
string1.

If the value of array1 is in global VM and any of the elements copied from array2

or packedarray2 are composite objects whose values are in local VM, an
invalidaccess error occurs (see section 3.7.2, “Local and Global VM”).

Example

/ar [5 8 2 7 3] def
ar 1 [(a) (b) (c)] putinterval
ar ⇒ [5 (a) (b) (c) 3]

/st (abc) def
st 1 (de) putinterval
st ⇒ (ade)

Errors: invalidaccess, rangecheck, stackunderflow, typecheck

See Also: getinterval, put

PLRM 2nd Edition January 26, 1994 Operators

468 Chapter 8: Operators

quit – quit –

terminates operation of the interpreter. The precise action of quit depends on
the environment in which the PostScript interpreter is running. It may give con-
trol to an operating system command interpreter, halt or restart the machine,
and so on.

In an interpreter that supports multiple execution contexts (see section 7.1,
“Multiple Execution Contexts”), the quit operator causes termination of the cur-
rent context only. Termination is immediate, even if the context was created by
fork in the expectation of a subsequent join.

In a context that is under the control of a job server (see section 3.7.7, “Job Exe-
cution Environment”), the definition of the quit operator in systemdict is
masked by another definition of quit in userdict, which usually is searched
before systemdict. The default definition of quit in userdict is the same as stop,
which terminates the current job, but not the interpreter as a whole. The quit
operator in systemdict can be executed only by an unencapsulated job; in an
encapsulated job, it causes an invalidaccess error.

Errors: invalidaccess

See Also: stop, start

rand – rand int

returns a random integer in the range 0 to 231 − 1, produced by a pseudo-ran-
dom number generator. The random number generator’s state can be reset by
srand and interrogated by rrand.

Errors: stackoverflow

See Also: srand, rrand

rangecheck (error)

A numeric operand’s value is outside the range expected by an operator—for
example, an array or string index is out of bounds, or a negative number appears
where a non-negative number is required. rangecheck can also occur if a matrix
operand does not contain exactly six elements.

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 469

rcheck array rcheck bool
packedarray rcheck bool

dict rcheck bool
file rcheck bool

string rcheck bool

tests whether the operand’s access permits its value to be read explicitly by Post-
Script operators. rcheck returns true if the operand’s access is unlimited or read-
only, false otherwise.

Errors: stackunderflow, typecheck

See Also: executeonly, noaccess, readonly, wcheck

rcurveto dx1 dy1 dx2 dy2 dx3 dy3 rcurveto –

(relative curveto) adds a Bézier cubic section to the current path in the same
manner as curveto. However, the three number pairs are interpreted as displace-
ments relative to the current point (x0, y0) rather than as absolute coordinates.
That is, rcurveto constructs a curve from (x0, y0) to (x0+dx3, y0+dy3), using (x0+dx1,
y0+dy1) and (x0+dx2, y0+dy2) as Bézier control points. See the description of
curveto for complete information.

Errors: limitcheck, nocurrentpoint, stackunderflow, typecheck,
undefinedresult

See Also: curveto, rlineto, rmoveto

read file read int true (if not end-of-file)
false (if end-of-file)

reads the next character from the input file file, pushes it on the stack as an inte-
ger, and pushes true as an indication of success. If an end-of-file indication is
encountered before a character has been read, read closes the file and returns
false. If some other error indication is encountered (for example, parity or check-
sum error), read executes ioerror.

Errors: invalidaccess, ioerror, stackoverflow, stackunderflow, typecheck

See Also: readhexstring, readline, readstring, bytesavailable

PLRM 2nd Edition January 26, 1994 Operators

470 Chapter 8: Operators

readhexstring file string readhexstring substring bool

reads characters from file, expecting to encounter a sequence of hexadecimal dig-
its 0 through 9 and A through F (or a through f). readhexstring interprets each
successive pair of digits as a two-digit hexadecimal number representing an inte-
ger value in the range 0 to 255. It then stores these values into successive ele-
ments of string starting at index 0 until either the entire string has been filled or
an end-of-file indication is encountered in file. Finally, readhexstring returns the
substring of string that was filled and a boolean indicating the outcome (true nor-
mally, false if end-of-file was encountered before the string was filled).

readhexstring ignores any characters that are not valid hexadecimal digits, so
the data in file may be interspersed with spaces, newlines, etc., without changing
the interpretation of the data.

See section 3.8.4, “Filters,” for more information about ASCII-encoded, binary
data representations and how to deal with them.

Errors: invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

See Also: read, readline, readstring, filter

readline file string readline substring bool

reads a line of characters (terminated by a newline character) from file and stores
them into successive elements of string. readline then returns the substring of
string that was filled and a boolean indicating the outcome (true normally, false if
end-of-file was encountered before a newline character was read).

A “line of characters” is a sequential string of ASCII characters, including space,
tab, and non-printing “control” characters. A line terminates with a newline—a
carriage return character, a line-feed character, or both. See section 3.2, “Syntax,”
and section 3.8, “File Input and Output.”

The terminating newline character is not stored into string or included at the end
of the returned substring. If readline completely fills string before encountering a
newline character, it executes the error rangecheck.

Errors: invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

See Also: read, readhexstring, readonly

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 471

readonly array readonly array
packedarray readonly packedarray

dict readonly dict
file readonly file

string readonly string

reduces the access attribute of an array, packed array, dictionary, file, or string
object to read-only (see section 3.3.2, “Attributes of Objects”). Access can only
be reduced this way, never increased. When an object is read-only, its value can-
not be modified by PostScript operators (an invalidaccess error will result), but it
can still be read by operators or executed by the PostScript interpreter.

For an array, packed array, file, or string, readonly affects the access attribute
only of the object that it returns. If there are other objects that share the same
value, their access attributes are unaffected. However, in the case of a dictionary,
readonly affects the value of the object, so all dictionary objects sharing the same
dictionary are affected.

Errors: invalidaccess, stackunderflow, typecheck

See Also: executeonly, noaccess, rcheck, wcheck

readstring file string readstring substring bool

reads characters from file and stores them into successive elements of string until
either the entire string has been filled or an end-of-file indication is encountered
in file. readstring then returns the substring of string that was filled and a bool-
ean indicating the outcome (true normally, false if end-of-file was encountered
before the string was filled).

All character codes are treated the same—as integers in the range 0 to 255. There
are no special characters (in particular, the newline character is not treated spe-
cially). However, the communication channel may usurp certain control charac-
ters; see section 3.8, “File Input and Output.”

Errors: invalidaccess, ioerror, rangecheck, stackunderflow, typecheck

See Also: read, readhexstring, readline

PLRM 2nd Edition January 26, 1994 Operators

472 Chapter 8: Operators

realtime – realtime int

returns the value of a clock that counts in real time, independent of the execu-
tion of the PostScript interpreter. The clock’s starting value is arbitrary; it has no
defined meaning in terms of calendar time. The unit of time represented by the
realtime value is one millisecond. However, the rate at which it changes is
implementation dependent. As the time value becomes greater than the largest
integer allowed in a particular implementation, it “wraps” to the smallest (most
negative) integer.

Errors: stackoverflow

See Also: usertime

rectclip x y width height rectclip –
numarray rectclip –
numstring rectclip –

intersects the inside of the current clipping path with a rectangular path the
operands describe. In the first form, the operands are four numbers that describe
a single rectangle. In the other two forms, the operand is an array or an encoded
number string that describes an arbitrary number of rectangles (see section
3.12.5, “Encoded Number Strings,” and section 4.6.5, “Rectangles”). After com-
puting the new clipping path, rectclip resets the current path to empty, as if by
newpath.

In the first form, assuming width and height are positive, rectclip is equivalent to:

newpath
x y moveto
width 0 rlineto
0 height rlineto
width neg 0 rlineto
closepath
clip
newpath

Note that if the second or third form is used to specify multiple rectangles, the
rectangles are treated together as a single path and used for a single clip opera-
tion. The “inside” of this combined path is the union of all the rectangular sub-
paths, because the paths are all drawn in the same direction and the non-zero
winding number rule is used.

Errors: limitcheck, stackunderflow, typecheck

See Also: clip, rectfill, rectstroke

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 473

rectfill x y width height rectfill –
numarray rectfill –
numstring rectfill –

fills a path consisting of one or more rectangles the operands describe. In the
first form, the operands are four numbers that describe a single rectangle. In the
other two forms, the operand is an array or an encoded number string that
describes an arbitrary number of rectangles (see section 3.12.5, “Encoded Num-
ber Strings,” and section 4.6.5, “Rectangles”). rectfill neither reads nor alters the
current path in the graphics state.

In the first form, assuming width and height are positive, rectfill is equivalent to:

gsave
newpath
x y moveto
width 0 rlineto
0 height rlineto
width neg 0 rlineto
closepath
fill
grestore

Errors: limitcheck, stackunderflow, typecheck

See Also: fill, rectclip, rectstroke

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

474 Chapter 8: Operators

rectstroke x y width height rectstroke –
x y width height matrix rectstroke –

numarray rectstroke –
numarray matrix rectstroke –

numstring rectstroke –
numstring matrix rectstroke –

strokes a path consisting of one or more rectangles the operands describe. In the
first two forms, the operands are four numbers that describe a single rectangle.
In the remaining forms, the operand is an array or an encoded number string
that describes an arbitrary number of rectangles (see section 3.12.5, “Encoded
Number Strings,” and section 4.6.5, “Rectangles”). rectstroke neither reads nor
alters the current path in the graphics state.

If the matrix operand is present, rectstroke concatenates matrix to the CTM after
defining the path, but before stroking it. The matrix applies to the line width and
dash pattern, if any, but not to the path itself.

In the first two forms, assuming width and height are positive, rectstroke is equiv-
alent to:

gsave
newpath
x y moveto
width 0 rlineto
0 height rlineto
width neg 0 rlineto
closepath
matrix concat % If matrix operand is supplied
stroke
grestore

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: stroke, rectclip, rectfill

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 475

rectviewclip x y width height rectviewclip –
numarray rectviewclip –
numstring rectviewclip –

replaces the current view clip with a rectangular path the operands describe. In
the first form, the operands are four numbers that describe a single rectangle. In
the other two forms, the operand is an array or an encoded number string that
describes an arbitrary number of rectangles (see section 3.12.5, “Encoded Num-
ber Strings,” section 7.3.1, “View Clipping,” and section 4.6.5, “Rectangles”).
After computing the new view clipping path, rectviewclip resets the current path
to empty, as if by newpath.

Except for the manner in which the path is defined, rectviewclip behaves the
same as viewclip.

Note that if the second or third form is used to specify multiple rectangles, the
rectangles are treated together as a single path and used for a single viewclip
operation. The “inside” of this combined path is the union of all the rectangular
subpaths, because the paths are all drawn in the same direction and the non-
zero winding number rule is used.

Errors: limitcheck, stackunderflow, typecheck

See Also: rectclip, viewclip

DPS

PLRM 2nd Edition January 26, 1994 Operators

476 Chapter 8: Operators

renamefile old new renamefile –

changes the name of a file from old to new, where old and new are strings that
specify file names on the same storage device. If no such file exists, an
undefinedfilename error occurs. If the device does not allow this operation, an
invalidfileaccess error occurs. If an environment-dependent error is detected, an
ioerror occurs. Whether or not an error occurs if a file named new already exists
is environment dependent. See section 3.8.2, “Named Files.”

Errors: invalidfileaccess, ioerror, stackunderflow, typecheck,
undefinedfilename

See Also: file, deletefile, status

repeat int proc repeat –

executes proc int times, where int is a non-negative integer. The repeat operator
removes both operands from the stack before executing proc for the first time. If
proc executes the exit operator, repeat terminates prematurely. repeat leaves no
results of its own on the stack, but proc may do so.

Example

4 {(abc)} repeat ⇒ (abc)(abc)(abc)(abc)
1 2 3 4 3 {pop} repeat ⇒ 1 % Pops 3 values (down to the 1)
4 {} repeat ⇒ % Does nothing four times
mark 0 {(won’t happen)} repeat ⇒ mark

In the last example, a zero repeat count meant that the procedure is not exe-
cuted at all, hence the mark is still topmost on the stack.

Errors: rangecheck, stackunderflow, typecheck

See Also: for, loop, forall, exit

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 477

resetfile file resetfile –

discards buffered characters belonging to a file object. For an input file, resetfile
discards any characters that have been received from the source, but not yet con-
sumed. For an output file, it discards any characters that have been written to
the file, but not yet delivered to their destination.

resetfile may have other side effects that depend on the properties of the under-
lying file. For example, it may restart communication via a channel that was
blocked waiting for buffer space to become available. resetfile never waits for
characters to be received or transmitted.

Errors: stackunderflow, typecheck

See Also: file, closefile, flushfile

PLRM 2nd Edition January 26, 1994 Operators

478 Chapter 8: Operators

resourceforall template proc scratch category resourceforall –

enumerates the names of all instances of a specified resource category or a subset
selected by template. category is a name object that identifies a resource category,
such as Font (see section 3.9.2, “Resource Categories”). template is a string object
to be matched against names of resource instances. For each matching name,
resourceforall copies the name into the supplied scratch string, pushes a string
object that is the substring of scratch that was actually used, and calls proc.
resourceforall does not return any results of its own, but proc may do so.

The template is matched against the names of resource instances, treating them
as if they were strings. Within the template, all characters are treated literally
and are case sensitive, with the exception of the following:

* matches zero or more consecutive characters.

? matches exactly one character.

\ causes the next character of the template to be treated literally, even if it
is *, ?, or \.

Note that the scratch string is reused during every call to proc. If proc wishes to
save the string that is passed to it, it must make a copy or use cvn to convert the
string to a name. Use of strings instead of names allows resourceforall to func-
tion without creating new name objects, which would consume VM needlessly
during a large enumeration. It is prudent to provide a scratch string at least as
long as the implementation limit for names (see Appendix B).

It is possible for a resource instance to have a key which is not a name or string.
Such a key matches only the template (*). In this case, resourceforall passes the
key directly to proc instead of copying it into the scratch string. This case can
arise only for a resource instance defined in VM by a previous defineresource;
the keys for external resource instances are always names or strings.

Like resourcestatus, but unlike findresource, resourceforall never loads a
resource instance into VM.

resourceforall enumerates the resource instances in order of status (the status
value returned by resourcestatus); that is, it enumerates groups in this order:

1. Instances defined in VM by an explicit defineresource; not subject to auto-
matic removal.

2. Instances defined in VM by a previous execution of findresource; subject to
automatic removal.

3. Instances not currently defined in VM, but available from external storage.

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 479

Within each group, the order of enumeration is unpredictable. It is unrelated to
order of definition or to whether the definition is local or global. A given
resource instance is enumerated only once, even if it exists in more than one
group. If proc adds or removes resource instances, those instances may or may
not appear later in the same enumeration.

Like resourcestatus, resourceforall considers both local and global definitions if
the current VM allocation mode is local, but only global definitions if the cur-
rent VM allocation mode is global (see resourcestatus and defineresource).

If the specified resource category does not exist, an undefined error occurs. How-
ever, no error occurs if there are no instances whose names match the template.
Of course, the proc that is called can generate errors of its own.

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck, undefined

See Also: defineresource, undefineresource, findresource, resourcestatus

PLRM 2nd Edition January 26, 1994 Operators

480 Chapter 8: Operators

resourcestatus key category resourcestatus status size true (if resource exists)
false (if not)

returns status information about a named resource instance. category is a name
object that identifies a resource category, such as Font (see section 3.9.2,
“Resource Categories”). key is a name or string object that identifies the resource
instance. (Names and strings are interchangeable; keys of other types are permit-
ted but are not recommended.)

If the named resource instance exists, either defined in VM or available from
some external source, resourcestatus returns two integers and the value true;
otherwise, it returns false. Unlike findresource, resourcestatus never loads a
resource instance into VM.

status is an integer with the following meanings:

0 Defined in VM by an explicit defineresource; not subject to automatic
removal.

1 Defined in VM by a previous execution of findresource; subject to
automatic removal.

2 Not currently defined in VM, but available from external storage.

size is an integer giving the estimated VM consumption of the resource instance
in bytes. This information may not be available for certain resources; if the size is
unknown, –1 is returned. Usually, resourcestatus can obtain the size of a status 1
or 2 resource (derived from the %%VMusage comment in the resource file), but it
has no general way to determine the size of a status 0 resource. See section 3.9.4,
“Resources as Files,” for an explanation of how the size is determined. A size
value of 0 is returned for implicit resources, whose instances do not occupy VM.

If the current VM allocation mode is local, resourcestatus considers both local
and global resource definitions, in that order (see defineresource). However, if
the current VM allocation mode is global, only global resource definitions are
visible to resourcestatus. Resource instances in external storage are visible with-
out regard to the current VM allocation mode.

If the specified resource category does not exist, an undefined error occurs.

Errors: stackoverflow, stackunderflow, typecheck, undefined

See Also: defineresource, undefineresource, findresource, resourceforall

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 481

restore save restore –

resets the virtual memory (VM) to the state represented by the supplied save
object—in other words, the state at the time the corresponding save was exe-
cuted. See section 3.7, “Memory Management,” for a description of the VM and
the effects of save and restore.

If the current execution context supports job encapsulation and if save repre-
sents the outermost saved VM state for this context, then objects in both local
and global VM revert to their saved state. If the current context does not support
job encapsulation or if save is not the outermost saved VM state for this context,
then only objects in local VM revert to their saved state; objects in global VM are
undisturbed. Job encapsulation is described in section 3.7.7, “Job Execution
Environment.” Its relationship to multiple contexts is described in section 7.1,
“Multiple Execution Contexts.”

restore can reset the VM to the state represented by any save object that is still
valid, not necessarily the one produced by the most recent save. After restoring
the VM, restore invalidates its save operand along with any other save objects
created more recently than that one. That is, a VM snapshot can be used only
once; to restore the same environment repeatedly, it is necessary to do a new
save each time.

restore does not alter the contents of the operand, dictionary, or execution
stack, except to pop its save operand. If any of these stacks contains composite
objects whose values reside in local VM and are newer than the snapshot being
restored, restore executes the invalidrestore error. This restriction applies to save
objects and, in Level 1 implementations, to name objects.

restore does alter the graphics state stack: It performs the equivalent of a
grestoreall and then removes the graphics state created by save from the graph-
ics state stack. restore also resets several per-context parameters to their state at
the time of save. These include:

• Array packing mode (see setpacking).

• VM allocation mode (see setglobal).

• Object output format (see setobjectformat).

• View clipping path (see viewclip).

• All user interpreter parameters (see setuserparams).

Errors: invalidrestore, stackunderflow, typecheck

See Also: save, grestoreall, vmstatus, startjob

PLRM 2nd Edition January 26, 1994 Operators

482 Chapter 8: Operators

reversepath – reversepath –

replaces the current path with an equivalent one whose segments are defined in
the reverse order. Precisely, reversepath reverses the directions and order of seg-
ments within each subpath of the current path. However, it does not alter the
order of the subpaths in the path with respect to each other.

Errors: limitcheck

revision – revision int

is an integer designating the current revision level of the product in which the
PostScript interpreter is running. Each product has its own numbering system
for revisions, independent of those of any other product. This is distinct from
the value of version in systemdict, which is the revision level of the PostScript
interpreter, without regard to the product in which it is running.

Errors: stackoverflow

See Also: languagelevel, product, serialnumber, version

rlineto dx dy rlineto –

(relative lineto) appends a straight line segment to the current path in the same
manner as lineto. However, the number pair is interpreted as a displacement rel-
ative to the current point (x, y) rather than as an absolute coordinate. That is,
rlineto constructs a line from (x, y) to (x + dx, y + dy) and makes (x + dx, y + dy)
the new current point. If the current point is undefined because the current path
is empty, rlineto executes the error nocurrentpoint.

Errors: limitcheck, nocurrentpoint, stackunderflow, typecheck

See Also: lineto, rmoveto, rcurveto

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 483

rmoveto dx dy rmoveto –

(relative moveto) starts a new subpath of the current path in the same manner as
moveto. However, the number pair is interpreted as a displacement relative to
the current point (x, y) rather than as an absolute coordinate. That is, rmoveto
makes (x + dx, y + dy) the new current point, without connecting it to the previ-
ous point. If the current point is undefined because the current path is empty,
rmoveto executes the error nocurrentpoint.

Errors: limitcheck, nocurrentpoint, stackunderflow, typecheck

See Also: moveto, rlineto, rcurveto

roll anyn–1 ... any0 n j roll any (j–1) mod n ... any0 anyn–1 ... anyj mod n

performs a circular shift of the objects anyn–1 through any0 on the operand stack
by the amount j. Positive j indicates upward motion on the stack, whereas nega-
tive j indicates downward motion.

n must be a non-negative integer and j must be an integer. roll first removes
these operands from the stack; there must be at least n additional elements. roll
then performs a circular shift of these n elements by j positions.

If j is positive, each shift consists of removing an element from the top of the
stack and inserting it between element n − 1 and element n of the stack, moving
all intervening elements one level higher on the stack. If j is negative, each shift
consists of removing element n − 1 of the stack and pushing it on the top of the
stack, moving all intervening elements one level lower on the stack.

Example

(a)(b)(c) 3 –1 roll ⇒ (b)(c)(a)
(a)(b)(c) 3 1 roll ⇒ (c)(a)(b)
(a)(b)(c) 3 0 roll ⇒ (a)(b)(c)

Errors: rangecheck, stackunderflow, typecheck

See Also: exch, index, copy, pop

PLRM 2nd Edition January 26, 1994 Operators

484 Chapter 8: Operators

rootfont – rootfont font

returns the font that has been selected most recently by setfont or selectfont.
Normally, rootfont returns the same result as currentfont. If the current font is a
composite font and rootfont is invoked from a descendant font’s BuildGlyph or
BuildChar procedure or from cshow, rootfont returns the root composite font,
whereas currentfont would return the currently selected base font.

Errors: stackoverflow

See Also: setfont, selectfont, currentfont

rotate angle rotate –
angle matrix rotate matrix

With no matrix operand, rotate builds a temporary matrix

where θ is the operand angle in degrees, and concatenates this matrix with the
current transformation matrix (CTM). Precisely, rotate replaces the CTM by
R × CTM. The effect of this is to rotate the user coordinate system axes about
their origin by angle degrees (positive is counterclockwise) with respect to their
former orientation. The position of the user coordinate origin and the sizes of
the x and y units are unchanged.

If the matrix operand is supplied, rotate replaces the value of matrix by R and
pushes the modified matrix back on the operand stack (see section 4.3.3, “Matrix
Representation and Manipulation,” for a discussion of how matrices are repre-
sented as arrays). In this case, rotate does not affect the CTM.

Errors: rangecheck, stackunderflow, typecheck

See Also: scale, translate, concat

LEVEL 2

R
θcos θsin 0

θsin− θcos 0

0 0 1

=

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 485

round num1 round num2

returns the integer value nearest to num1. If num1 is equally close to its two near-
est integers, round returns the greater of the two. The type of the result is the
same as the type of the operand.

Example

3.2 round ⇒ 3.0
6.5 round ⇒ 7.0
–4.8 round ⇒ –5.0
–6.5 round ⇒ –6.0
99 round ⇒ 99

Errors: stackunderflow, typecheck

See Also: ceiling, floor, truncate, cvi

rrand – rrand int

returns an integer representing the current state of the random number genera-
tor used by rand. This may later be presented as an operand to srand to reset the
random number generator to the current position in the sequence of numbers
produced.

Errors: stackoverflow

See Also: rand, srand

PLRM 2nd Edition January 26, 1994 Operators

486 Chapter 8: Operators

run string run –

executes the contents of the file identified by string—in other words, interprets
the characters in that file as a PostScript language program. When run encoun-
ters end-of-file or terminates for some other reason (for example, stop), it closes
the file.

run is essentially a convenience operator for the sequence

(r) file cvx exec

except for its behavior upon abnormal termination. Also, the context of a run
cannot be left by executing exit; an attempt to do so produces the error
invalidexit. The run operator leaves no results on the operand stack, but the pro-
gram executed by run may alter the stacks arbitrarily.

Errors: ioerror, limitcheck, stackunderflow, typecheck, undefinedfilename

See Also: exec, file

save – save save

creates a snapshot of the current state of the virtual memory (VM) and returns a
save object representing that snapshot. Subsequently, this save object may be
presented to restore to reset the VM to this snapshot. See section 3.7, “Memory
Management,” for a description of the VM and of the effects of save and restore.
See the restore operator for a detailed description of what is saved in the snap-
shot.

save also saves the current graphics state by pushing a copy of it on the graphics
state stack in a manner similar to gsave. This saved graphics state is restored by
restore and grestoreall.

Example

/saveobj save def
...arbitrary computation...
saveobj restore % Restore saved VM state

Errors: limitcheck, stackoverflow

See Also: restore, gsave, grestoreall, vmstatus

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 487

scale sx sy scale –
sx sy matrix scale matrix

With no matrix operand, scale builds a temporary matrix

and concatenates this matrix with the current transformation matrix (CTM).
Precisely, scale replaces the CTM by S × CTM. The effect of this is to make the x
and y units in the user coordinate system the size of sx and sy units in the former
user coordinate system. The position of the user coordinate origin and the
orientation of the axes are unchanged.

If the matrix operand is supplied, scale replaces the value of matrix by S and
pushes the modified matrix back on the operand stack (see section 4.3, “Coordi-
nate Systems and Transformations,” for a discussion of how matrices are repre-
sented as arrays). In this case, scale does not affect the CTM.

Errors: rangecheck, stackunderflow, typecheck

See Also: rotate, translate, concat

S

sx 0 0

0 sy 0

0 0 1

=

PLRM 2nd Edition January 26, 1994 Operators

488 Chapter 8: Operators

scalefont font scale scalefont font′

applies the scale factor scale to font, producing a new font′ whose characters are
scaled by scale (in both x and y) when they are shown. scalefont first creates a
copy of font, then replaces the new font’s FontMatrix entry with the result of
scaling the existing FontMatrix by scale. It inserts two additional entries,
OrigFont and ScaleMatrix, whose purpose is internal to the implementation.
Finally, it returns the result as font′.

Showing characters from the transformed font produces the same results as
showing from the original font after having scaled user space by the factor scale
in both x and y by means of the scale operator. scalefont is essentially a conveni-
ence operator that enables the desired scale factor to be encapsulated in the font
description. Another operator, makefont, performs more general transforma-
tions than simple scaling. See the description of makefont for more information
on how the transformed font is derived. selectfont combines the effects of
findfont and scalefont.

The interpreter keeps track of font dictionaries recently created by scalefont.
Calling scalefont multiple times with the same font and scale will usually return
the same font′ rather than create a new one each time. However, it is usually
more efficient for a PostScript language program to apply scalefont only once for
each font that it needs and to keep track of the resulting font dictionaries on its
own.

See Chapter 5 for general information about fonts and section 4.3, “Coordinate
Systems and Transformations.”

The makefont, scalefont, and selectfont operators produce a font dictionary
derived from an original font dictionary, but with the FontMatrix entry altered.
The derived font dictionary is allocated in local or global VM according to
whether the original font dictionary is in local or global VM. This is indepen-
dent of the current VM allocation mode.

Example

/Helvetica findfont 12 scalefont setfont

This obtains the standard Helvetica font, which is defined with a 1-unit line
height, and scales it by a factor of 12 in both x and y dimensions. This produces
a 12-unit high font (i.e., a 12-point font in default user space) whose characters
have the same proportions as those in the original font.

Errors: invalidfont, stackunderflow, typecheck, undefined

See Also: makefont, setfont, findfont, selectfont

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 489

scheck any scheck bool

has the same semantics as gcheck. This operator is defined for compatibility with
existing Display PostScript applications.

Errors: stackunderflow

See Also: gcheck

search string seek search post match pre true (if found)
string false (if not found)

looks for the first occurrence of the string seek within string and returns results of
this search on the operand stack. The topmost result is a boolean that indicates if
the search succeeded.

If search finds a subsequence of string whose elements are equal to the elements
of seek, it splits string into three segments: pre, the portion of string preceding the
match; match, the portion of string that matches seek; and post, the remainder of
string. It then pushes the string objects post, match, and pre on the operand stack,
followed by the boolean true. All three of these strings are substrings sharing
intervals of the value of the original string.

If search does not find a match, it pushes the original string and the boolean
false.

Example

(abbc) (ab) search ⇒ (bc) (ab) () true
(abbc) (bb) search ⇒ (c) (bb) (a) true
(abbc) (bc) search ⇒ () (bc) (ab) true
(abbc) (B) search ⇒ (abbc) false

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: anchorsearch, token

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

490 Chapter 8: Operators

selectfont key scale selectfont –
key matrix selectfont –

obtains a font whose name is key, transforms it according to scale or matrix, and
establishes it as the current font dictionary in the graphics state. selectfont is
equivalent to one of the following, according to whether the second operand is a
number or a matrix:

key findfont scale scalefont setfont
key findfont matrix makefont setfont

If the font named by key is already defined in VM, selectfont obtains the font
dictionary directly and does not execute findfont. However, if the font is not
defined, selectfont invokes findfont in the normal way. In the latter case, it actu-
ally executes the name object findfont, so it uses the current definition of that
name in the environment of the dictionary stack. On the other hand, redefining
exch, scalefont, makefont, or setfont would not alter the behavior of selectfont.

selectfont can give rise to any of the errors possible for the component opera-
tions, including arbitrary errors from a user-defined findfont procedure.

Example

/Helvetica 10 selectfont
/Helvetica findfont 10 scalefont setfont

The two lines of the example have the same effect, but the first one is almost
always more efficient.

The makefont, scalefont, and selectfont operators produce a font dictionary
derived from an original font dictionary, but with the FontMatrix entry altered.
The derived font dictionary is allocated in local or global VM according to
whether the original font dictionary is in local or global VM. This is indepen-
dent of the current VM allocation mode.

Errors: invalidfont, rangecheck, stackunderflow, typecheck

See Also: findfont, makefont, scalefont, setfont

serialnumber – serialnumber int

returns an integer that purports to represent the specific machine on which the
PostScript interpreter is running. The precise significance of this number (includ-
ing any claim of its uniqueness) is product dependent.

Errors: stackoverflow

See Also: languagelevel, product, revision, version

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 491

setbbox llx lly urx ury setbbox –

establishes a bounding box for the current path, within which the coordinates of
all subsequent path construction operators must fall. The bounding box is
defined by two pairs of coordinates in user space: llx and lly specify the lower-left
corner, urx and ury the upper-right corner. It is a rectangle oriented with the user
space coordinate system axes.

The bounding box remains in effect for the lifetime of the current path—that is,
until the next newpath or operator that resets the path implicitly. Any attempt
to append a path element with a coordinate lying outside the bounding box will
give rise to a rangecheck error.

Note that arcs are converted to sequences of curveto operations. The coordinates
computed as control points for those curvetos must also fall within the bound-
ing box. This means that the figure of the arc must be entirely enclosed by the
bounding box. On the other hand, the bounds checking applies only to the path
itself, not to the result of rendering the path. For example, stroking the path
may place marks outside the bounding box. This does not cause an error.

Although the setbbox operator can be used when defining any path, its main
use is in defining a user path, where it is mandatory. That is, a user path proce-
dure passed to one of the user path rendering operators, such as ufill, must begin
with a setbbox optionally preceded by a ucache. The bounding box information
passed to setbbox enables the user path rendering operator to optimize execu-
tion. See section 4.6, “User Paths.”

If setbbox appears more than once during definition of a path, the path’s effec-
tive bounding box is successively enlarged to enclose the union of all specified
bounding boxes. This is not legal in a user path definition. However, this case
might arise if uappend is executed multiple times in building up a single current
path by concatenating several user paths.

If setbbox has established a bounding box, execution of pathbbox returns a
result derived from that bounding box instead of one derived from the actual
path. The upper-right coordinate values must be greater than or equal to the
lower-left values. Otherwise, a rangecheck error will occur.

Errors: rangecheck, stackunderflow, typecheck

See Also: pathbbox

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

492 Chapter 8: Operators

setblackgeneration proc setblackgeneration –

sets the black generation function parameter in the graphics state. The proc oper-
and must be a procedure that can be called with a number in the range 0.0 to 1.0
(inclusive) on the operand stack and that returns a number in the same range.

This procedure computes the value of the black component during conversion
from DeviceRGB color space to DeviceCMYK. For additional information, see
section 6.2.3, “Conversion from DeviceRGB to DeviceCMYK.”

setblackgeneration sets a graphics state parameter whose effect is device depen-
dent. It should not be used in a page description that is intended to be device
independent.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: stackunderflow, typecheck, undefined

See Also: setundercolorremoval

setcachedevice wx wy llx lly urx ury setcachedevice –

passes width and bounding box information to the PostScript interpreter’s font
machinery. setcachedevice may be executed only within the context of the
BuildGlyph or BuildChar procedure for a type 3 font. See section 5.7, “Type 3
Fonts.” BuildGlyph or BuildChar must invoke setcachedevice, setcachedevice2,
or setcharwidth before executing graphics operators to define and paint the char-
acter. setcachedevice requests the font machinery to transfer the results of those
operators both into the font cache, if possible, and onto the current page.

The operands to setcachedevice are all numbers interpreted in the character coor-
dinate system (see section 5.4, “Font Metric Information”). wx and wy comprise
the basic width vector for this character—in other words, the normal position of
the origin of the next character relative to origin of this one.

llx and lly are the coordinates of the lower-left corner and urx and ury are the coor-
dinates of the upper-right corner of the character bounding box. The character
bounding box is the smallest rectangle, oriented with the character coordinate
system axes, that completely encloses all marks placed on the page as a result of
executing the character’s description. For a character defined as a path, this may
be determined by means of the pathbbox operator. The font machinery needs
this information to make decisions about clipping and caching. The declared
bounding box must be correct—in other words, sufficiently large to enclose the
entire character. If any marks fall outside this bounding box, they will be clipped
off and not moved to the current page.

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 493

setcachedevice installs identical sets of metrics for writing modes 0 and 1, while
setcachedevice2 installs separate metrics.

After execution of setcachedevice and until the termination of the BuildGlyph or
BuildChar procedure, execution of color setting operators or image is not
allowed; see section 4.8, “Color Spaces.” Note that use of the imagemask opera-
tor is permitted.

Errors: stackunderflow, typecheck, undefined

See Also: setcachedevice2, setcharwidth, setcachelimit, cachestatus

setcachedevice2 w0x w0y llx lly urx ury w1x w1y vx vy setcachedevice2 –

passes two sets of character metrics to the font machinery. w0x and w0y are the
distances from the current point to the new current point when showing text in
writing mode 0. llx,lly and urx,ury are the distances from origin 0 to the lower-left
and upper-right corners of the character bounding box. w1x, w1y are the distances
from the current point to the new current point when showing text in writing
mode 1. vx and vy are the distances from origin 0 to origin 1. See section 5.4,
“Font Metric Information.”

Aside from its interpretation of the operands, setcachedevice2 works the same as
setcachedevice in all respects.

After execution of setcachedevice2 and until the termination of the BuildGlyph
or BuildChar procedure, execution of color setting operators or image is not
allowed; see section 4.8, “Color Spaces.” Note that use of the imagemask opera-
tor is permitted.

Errors: stackunderflow, typecheck, undefined

See Also: setcachedevice, setcharwidth, setcachelimit, cachestatus

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

494 Chapter 8: Operators

setcachelimit int setcachelimit –

establishes the maximum number of bytes the pixel array of a single cached
character may occupy. Any character larger than this (according to the character
bounding box information passed to setcachedevice) is not saved in the font
cache. Instead, its description is executed every time the character is encoun-
tered.

setcachelimit affects the decision whether to place new characters in the font
cache; it does not disturb any characters already in the cache. Making the limit
larger allows larger characters to be cached, but may decrease the total number
of different characters that can be held in the cache simultaneously. Changing
this parameter is appropriate only in very unusual situations.

The maximum limit for int is implementation dependent, representing the total
available size of the font cache (see cachestatus). As a practical matter, int should
not be larger than a small fraction of the total font cache size.

Modifications to the cache limit parameter obey save and restore. In a Display
PostScript system, which supports multiple contexts, this parameter is main-
tained separately for each context.

The parameter set by setcachelimit is the same as the MaxFontItem user parame-
ter set by setuserparams (see Appendix C).

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: cachestatus, setuserparams

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 495

setcacheparams mark size lower upper setcacheparams –

sets cache parameters as specified by the integer objects above the topmost mark
on the stack, then removes all operands and the mark object as if by
cleartomark.

The number of cache parameters is variable. In future versions of the PostScript
interpreter, there may be more than three cache parameters defined. If more
operands are supplied to setcacheparams than are needed, the topmost ones are
used and the remainder ignored. If fewer are supplied than are needed,
setcacheparams implicitly inserts default values between the mark and the first
supplied operand.

The upper operand specifies the maximum number of bytes the pixel array of a
single cached character may occupy, as determined from the information pre-
sented by the setcachedevice operator. This is the same parameter set by
setcachelimit.

The lower operand specifies the threshold at which characters may be stored in
compressed form rather than as full pixel arrays. If a character’s pixel array
requires more than lower bytes to represent, it may be compressed in the cache
and reconstituted from the compressed representation each time it is needed.
Some devices do not support compression of characters.

Setting lower to zero forces all characters to be compressed, permitting more
characters to be stored in the cache, but increasing the work required to print
them. Setting lower to a value greater than or equal to upper disables compression
altogether.

The size operand specifies the new size of the font cache in bytes (the bmax value
returned by cachestatus). If size is not specified, the font cache size is
unchanged. If size lies outside the range of font cache sizes permitted by the
implementation, the nearest permissible size is substituted with no error indica-
tion. Reducing the font cache size can cause some existing cached characters to
be discarded, increasing execution time when those characters are next shown.

The parameters set by setcacheparams are the same as the MaxFontCache sys-
tem parameter and the MinFontCompress and MaxFontItem user parameters, set
by setsystemparams and setuserparams, respectively (see Appendix C).

Errors: rangecheck, typecheck, unmatchedmark

See Also: currentcacheparams, setcachelimit, setsystemparams,
setuserparams

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

496 Chapter 8: Operators

setcharwidth wx wy setcharwidth –

is similar to setcachedevice, but it passes only width information to the Post-
Script interpreter’s font machinery and it declares that the character being
defined is not to be placed in the font cache.

setcharwidth is useful, for example, in defining characters that incorporate two
or more specific opaque colors, such as opaque black and opaque white. This is
unusual. Most characters have no inherent color, but are painted with the cur-
rent color within the character’s outline, leaving the area outside unpainted
(transparent).

Another use of setcharwidth is in defining characters that intentionally change
their behavior based on the environment in which they execute. Such characters
must not be cached, because that would subvert the intended variable behavior.

Errors: stackunderflow, typecheck, undefined

See Also: setcachedevice, setcachedevice2

setcmykcolor cyan magenta yellow black setcmykcolor –

sets the color space to DeviceCMYK, then sets the current color parameter in the
graphics state to a color described by the parameters cyan, magenta, yellow, and
black, each of which must be a number in the range 0.0 to 1.0. This establishes
the color subsequently used to paint shapes, such as lines, areas, and characters
on the current page (see section 4.8.2, “Device Color Spaces”). Color values set
by setcmykcolor are not affected by the black generation and undercolor
removal operations.

setcmykcolor does not give an error for a value outside the range 0 to 1. It substi-
tutes the nearest legal value.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: stackunderflow, typecheck, undefined

See Also: setcolorspace, setcolor, currentcmykcolor

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 497

setcolor comp1 comp2 ... compn setcolor –

sets the current color parameter in the graphics state to that described by the
color components comp1, comp2 ..., compn in the current color space (see section
4.8, “Color Spaces”).

The number of color components and the valid range of color component values
depends on the current color space. If the wrong number of components is spec-
ified, an error will occur, such as stackunderflow or typecheck. If a component
value is outside the valid range, the nearest valid value will be substituted with-
out error indication.

The initial value of the color parameter varies by color space. It is initialized by
the setcolorspace operator.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: stackunderflow, typecheck, undefined

See Also: currentcolor, setcolorspace

setcolorrendering dict setcolorrendering –

establishes dict as the current CIE based color rendering dictionary in the graph-
ics state. The default color rendering dictionary is device dependent (see section
6.1, “CIE Based Color to Device Color”). setcolorrendering sets a graphics state
parameter whose effect is device dependent. It should not be used in a page
description that is intended to be device independent.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: stackunderflow, typecheck, limitcheck, rangecheck, undefined

See Also: currentcolorrendering

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

498 Chapter 8: Operators

setcolorscreen redfreq redang redproc greenfreq greenang greenproc
bluefreq blueang blueproc grayfreq grayang grayproc setcolorscreen –

sets the halftone parameter in the graphics state. setcolorscreen specifies half-
tone screen definitions for all four primary color components of the output
device: red, green, blue, and gray or their complements: cyan, magenta, yellow,
and black. For each component, setcolorscreen expects frequency, angle, and
spot function operands, which it interprets the same as setscreen (see section
6.4, “Halftones”).

setcolorscreen sets a graphics state parameter whose effect is device dependent.
It should not be used in a page description that is intended to be device indepen-
dent.

Example

% 50 line dot screen with 75 degree cyan, 15 degree magenta
% 0 degree yellow, and 45 degree black angled screens,
% which are commonly used for color printing
/sfreq 50 def % 50 halftone cells per inch
/sproc {dup mul exch dup mul add 1 exch sub} def

% Dot-screen spot function
sfreq 75 /sproc load % 75 degree red (cyan) screen
sfreq 15 /sproc load % 15 degree green (magenta) screen
sfreq 0 /sproc load % 0 degree blue (yellow) screen
sfreq 45 /sproc load % 45 degree gray (black) screen
setcolorscreen

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: currentcolorscreen, setscreen, sethalftone

setcolorspace array setcolorspace –
name setcolorspace –

The first form sets the color space parameter in the graphics state to that
described by the specified array. The array must be in the form

[key param1 ... paramn]

where key is a name that identifies the color space family and the parameters
param1 ... paramn further describe the space as a whole.

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 499

The second form specifies a color space by giving just its name. This is allowed
only for those color spaces that require no parameters, namely DeviceGray,
DeviceRGB, DeviceCMYK, and Pattern. Specifying a color space by name is
equivalent to specifying it by an array containing just that name.

The setcolorspace operator also sets the current color parameter in the graphics
state to its initial value, which depends on the color space. Execution of this
operator is not permitted in certain circumstances; see section 4.8, “Color
Spaces.”

The details of the color space parameters, the definitions of the components of a
specific color in the space, and initial values of those components vary from one
color space to another. They are described in section 4.8, “Color Spaces.” The ini-
tial value of the color space parameter is /DeviceGray.

Errors: stackunderflow, typecheck, rangecheck, undefined

See Also: currentcolorspace, setcolor

setcolortransfer redproc greenproc blueproc grayproc setcolortransfer –

sets the transfer function parameter in the graphics state. setcolortransfer speci-
fies transfer functions for all four primary color components of the output
device: red, green, blue, and gray or their complements: cyan, magenta, yellow,
and black. Each operand must be a PostScript language procedure that may be
called with a number in the range 0.0 to 1.0 (inclusive) on the operand stack and
that will return a number in the same range.

These procedures adjust the values of device color components (see section 6.3,
“Transfer Functions”). Only those transfer functions corresponding to color
components supported by a device will have an effect on that device’s output.
For example, redproc, greenproc, and blueproc will have no effect on a black-and-
white device, while grayproc will have no effect on an RGB device.

setcolortransfer sets a graphics state parameter whose effect is device dependent.
It should not be used in a page description that is intended to be device indepen-
dent.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: stackunderflow, typecheck, undefined

See Also: currentcolortransfer, settransfer

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

500 Chapter 8: Operators

setdash array offset setdash –

sets the dash pattern parameter in the graphics state, controlling the dash
pattern used during subsequent executions of the stroke operator and operators
based on stroke, such as rectstroke and ustroke. If array is empty (i.e., its length
is zero), stroke produces a normal, unbroken line. If array is not empty, stroke
produces dashed lines whose pattern is given by the elements of array, all of
which must be non-negative numbers and not all zero.

stroke interprets the elements of array in sequence as distances along the path,
measured in user space. These distances alternately specify the length of a dash
and the length of a gap between dashes. stroke uses the contents of array cycli-
cally. When it reaches the end of the array, it starts again at the beginning.

Dashed lines wrap around curves and corners just as normal strokes do. The ends
of each dash are treated with the current line cap; corners within a dash are
treated with the current line join. stroke does not take any measures to coordi-
nate the dash pattern with features of the path. It simply dispenses dashes along
the path as specified by array.

The offset operand may be thought of as the “phase” of the dash pattern relative
to the start of the path. It is interpreted as a distance into the dash pattern (mea-
sured in user space) at which the pattern should be started. Before beginning to
stroke a path, stroke cycles through the elements of array, adding up distances
and alternating dashes and gaps as usual, but without generating any output.
When it has travelled the offset distance into the dash pattern, it starts stroking
the path from its beginning, using the dash pattern from the point that has been
reached.

Each subpath of a path is treated independently—in other words, the dash
pattern is restarted and offset applied to it at the beginning of each subpath.

Example

[] 0 setdash % Turn dashing off: solid lines

[3] 0 setdash % 3-unit on, 3-unit off, ...

[2] 1 setdash % 1 on, 2 off, 2 on, 2 off, ...

[2 1] 0 setdash % 2 on, 1 off, 2 on, 1 off, ...

[3 5] 6 setdash % 2 off, 3 on, 5 off, 3 on, 5 off, ...

[2 3] 11 setdash % 1 on, 3 off, 2 on, 3 off, 2 on, ...

Errors: limitcheck, stackunderflow, typecheck

See Also: currentdash, stroke

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 501

setdevparams string dict setdevparams –

attempts to set one or more parameters for the device identified by string accord-
ing to keys and new values contained in the dict operand. The string identifies a
storage or I/O device (see section 3.8.2, “Named Files”). The dictionary is a con-
tainer for key-value pairs; setdevparams reads the information from the diction-
ary but does not retain the dictionary itself. Device parameters whose keys are
not mentioned in dict are left unchanged.

Each parameter is identified by a key, which is always a name object. The value is
usually (but not necessarily) an integer. The names of I/O devices and the names
and semantics of their parameters are product-dependent. They are not docu-
mented in this manual, but rather in product-specific documentation.

Permission to alter device parameters is controlled by a password. The dictionary
must contain an entry named Password whose value is the system parameter
password (a string or integer). If the password is incorrect, setdevparams exe-
cutes an invalidaccess error and does not alter any parameters.

Some device parameters can be set permanently in non-volatile storage that sur-
vives restarts of the PostScript interpreter. This capability is implementation
dependent. No error occurs if parameters cannot be stored permanently. For
more details on device parameters, see Appendix C.

Various errors are possible. Details of error behavior are product dependent, but
the following behavior is typical:

• If a parameter name is not known to the implementation, an undefined error
occurs.

• If a parameter value is of the wrong type, a typecheck error occurs.

• If a parameter value is unreasonable—for instance, a negative integer for a
parameter that must be positive—a rangecheck error occurs.

• If a parameter value is reasonable but cannot be achieved by the
implementation, either the nearest achievable value is substituted or a
configurationerror occurs, depending on the device and the parameter.

Errors: configurationerror, invalidaccess, rangecheck, stackunderflow,
typecheck

See Also: currentdevparams, setsystemparams, setuserparams

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

502 Chapter 8: Operators

setfileposition file position setfileposition –

repositions an existing open file to a new position so the next read or write opera-
tion will commence at that position. The position operand is a non-negative inte-
ger interpreted as number of bytes from the beginning of the file. For an output
file, setfileposition first performs an implicit flushfile (see section 3.8, “File Input
and Output”).

The result of positioning beyond end-of-file for both reading and writing
depends on the behavior of the underlying file system. Typically, positioning
beyond the existing end-of-file will lengthen the file if it is open for writing and
the file’s access permits. The storage appended to the file has unspecified con-
tents. If lengthening the file is not permitted, an ioerror occurs. Possible causes
of an ioerror are: the file object is not valid, the underlying file is not position-
able, the specified position is invalid for the file, or a device-dependent error
condition is detected.

Errors: ioerror, rangecheck, stackunderflow, typecheck, undefinedfilename

See Also: fileposition, file

setflat num setflat –

sets the flatness parameter in the graphics state to num, which must be a positive
number. This controls the accuracy with which curved path segments are to be
rendered on the raster output device by operators such as stroke, fill, and clip.
Those operators render curves by approximating them with a series of straight
line segments. “Flatness” is an informal term for the error tolerance of this
approximation; it is the maximum distance of any point of the approximation
from the corresponding point on the true curve, measured in output device pix-
els.

The accompanying illustration is only for emphasis. If the flatness parameter is
large enough to cause visible straight line segments to appear, the result is unpre-
dictable. The purpose of setflat is to control the accuracy of curve rendering, not
to draw inscribed polygons.

The choice of flatness value is a trade-off between accuracy and execution effi-
ciency. Very small values (less than 1 device pixel) produce very accurate curves
at high cost, because enormous numbers of tiny line segments must be pro-
duced. Larger values produce cruder approximations with substantially less com-
putation. A default value of the flatness parameter is established by the device
setup routine for each raster output device. This value is based on characteristics
of that device and is the one suitable for most applications.

The acceptable range of values for num is 0.2 to 100. Values outside this range are
forced into range without error indication.

LEVEL 2

‘flatness’ error
tolerance

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 503

setflat sets a graphics state parameter whose effect is device dependent. It should
not be used in a page description that is intended to be device independent.

Errors: stackunderflow, typecheck

See Also: currentflat, flattenpath, stroke, fill

setfont font setfont –

establishes the font dictionary parameter in the graphics state. This specifies the
font to be used by subsequent character operators, such as show and
stringwidth. font must be a valid font dictionary previously returned by findfont,
scalefont, or makefont. See section 5.1, “Organization and Use of Fonts.”

Example

/Helvetica findfont % Obtain prototype Helvetica font
10 scalefont % Scale it to 10-unit size
setfont % Establish it as current font

Errors: invalidfont, stackunderflow, typecheck

See Also: currentfont, scalefont, makefont, findfont, selectfont

setglobal bool setglobal –

sets the VM allocation mode: true denotes global, false denotes local. This con-
trols the VM region in which the values of new composite objects are to be allo-
cated. It applies to objects created implicitly by the scanner and to those created
explicitly by PostScript operators. The semantics of local and global VM are
described in section 3.7, “Memory Management.”

Modifications to the VM allocation mode are subject to save and restore. In a
Display PostScript system, which supports multiple execution contexts, the VM
allocation mode is maintained separately for each context.

The standard error handlers in errordict execute false setglobal, reverting to local
VM allocation mode if an error occurs.

Errors: stackunderflow, typecheck

See Also: currentglobal

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

504 Chapter 8: Operators

setgray num setgray –

sets the color space to DeviceGray, then sets the current color parameter in the
graphics state to a gray shade corresponding to num. This must be a number
between 0 and 1, with 0 corresponding to black, 1 corresponding to white, and
intermediate values corresponding to intermediate shades of gray. setgray estab-
lishes the color subsequently used to paint shapes, such as lines, areas, and char-
acters, on the current page. See section 4.8.2, “Device Color Spaces,” for more
information on gray-scale values.

setgray does not give a rangecheck error for a value outside the range 0 to 1; it
substitutes the nearest legal value.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: stackunderflow, typecheck, undefined

See Also: currentgray, setcolorspace, setcolor

setgstate gstate setgstate –

replaces the current graphics state by the value of the gstate object. This is a
copying operation, so subsequent modifications to the value of gstate will not
affect the current graphics state or vice versa. Note that this is a wholesale
replacement of all components of the graphics state; in particular, the current
clipping path is replaced by the value in gstate, not intersected with it (see sec-
tion 4.2, “Graphics State”).

Errors: invalidaccess, stackunderflow, typecheck

See Also: gstate, currentgstate, gsave, grestore

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 505

sethalftone halftone sethalftone –

establishes halftone as the halftone parameter in the graphics state. This must be
a dictionary constructed according to the rules in section 6.4.3, “Halftone Dic-
tionaries.” Once established, the halftone dictionary should be treated as read-
only. If the halftone dictionary’s HalftoneType value is out of bounds or is not
supported by the PostScript interpreter, a rangecheck error occurs. If a required
entry is missing or its value is of the wrong type, a typecheck error occurs.

sethalftone sets a graphics state parameter whose effect is device dependent. It
should not be used in a page description that is intended to be device indepen-
dent.

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: currenthalftone, setscreen, setcolorscreen

sethalftonephase x y sethalftonephase –

sets the halftone phase parameters in the graphics state. x and y are integers spec-
ifying the new halftone phase, interpreted in device space. See section 7.3.3,
“Halftone Phase.”

sethalftonephase sets a graphics state parameter whose effect is device depen-
dent. It should not be used in a page description that is intended to be device
independent.

Errors: stackunderflow, typecheck

See Also: currenthalftonephase

LEVEL 2

DPS

PLRM 2nd Edition January 26, 1994 Operators

506 Chapter 8: Operators

sethsbcolor hue saturation brightness sethsbcolor –

sets the color space to DeviceRGB, then sets the current color parameter in the
graphics state to a color described by the parameters hue, saturation, and bright-
ness, each of which must be a number in the range 0 to 1. This establishes the
color subsequently used to paint shapes, such as lines, areas, and characters on
the current page. See section 4.8, “Color Spaces,” for an explanation of these
color parameters.

Note that the color value entered by sethsbcolor is immediately converted into
the RGB model and used with the DeviceRGB color space. HSB is not a color
space in its own right, merely a means for entering RGB color values in a differ-
ent coordinate system.

sethsbcolor does not give a rangecheck error for a value outside the range 0 to 1;
it substitutes the nearest legal value.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: stackunderflow, typecheck, undefined

See Also: currenthsbcolor, setrgbcolor, setcolorspace, setcolor

setlinecap int setlinecap –

sets the line cap parameter in the graphics state to int, which must be one of the
integers 0, 1, or 2. This establishes the shape to be put at the ends of open sub-
paths painted by the stroke operator (see section 4.5, “Painting”). The integers
select the following shapes:

0 Butt cap—the stroke is squared off at the endpoint of the path. There is
no projection beyond the end of the path.

1 Round cap—a semicircular arc with diameter equal to the line width is
drawn around the endpoint and filled in.

2 Projecting square cap—the stroke continues beyond the endpoint of the
path for a distance equal to half the line width and is squared off.

Errors: rangecheck, stackunderflow, typecheck

See Also: currentlinecap, setlinejoin, stroke

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 507

setlinejoin int setlinejoin –

sets the line join parameter in the graphics state to int, which must be one of the
integers 0, 1, or 2. This establishes the shape to be put at corners in paths
painted by the stroke operator (see section 4.5, “Painting”). The integers select
the following shapes:

0 Miter join—the outer edges of the strokes for the two segments are
extended until they meet at an angle, as in a picture frame. If the seg-
ments meet at too sharp an angle, a bevel join is used instead. This is
controlled by the miter limit parameter established by setmiterlimit.

1 Round join—a circular arc with diameter equal to the line width is
drawn around the point where the segments meet and is filled in, pro-
ducing a rounded corner. stroke draws a full circle at this point. If path
segments shorter than one-half the line width meet at sharp angles, an
unintentional “wrong side” of this circle may appear.

2 Bevel join—the meeting path segments are finished with butt end caps
(see setlinecap); then the resulting notch beyond the ends of the seg-
ments is filled with a triangle.

Join styles are significant only at points where consecutive segments of a path
connect at an angle. Segments that meet or intersect fortuitously receive no spe-
cial treatment. Curved lines are actually rendered as sequences of straight line
segments, and the current line join is applied to the “corners” between those
segments. However, for typical values of the flatness parameter (see setflat), the
corners are so shallow that the difference between join styles is not visible.

Errors: rangecheck, stackunderflow, typecheck

See Also: currentlinejoin, setlinecap, stroke, setmiterlimit

PLRM 2nd Edition January 26, 1994 Operators

508 Chapter 8: Operators

setlinewidth num setlinewidth –

sets the line width parameter in the graphics state to num. This controls the
thickness of lines rendered by subsequent execution of the stroke operator.
stroke paints all points whose perpendicular distance from the current path in
user space is less than or equal to one-half the absolute value of num. The effect
produced in device space depends on the current transformation matrix (CTM)
in effect at the time of the stroke. If the CTM specifies scaling by different factors
in the x and y dimensions, the thickness of stroked lines in device space will vary
according to their orientation.

A line width of zero is acceptable: It is interpreted as the thinnest line that can
be rendered at device resolution—in other words, one device pixel wide. Some
devices cannot reproduce one-pixel lines, and on high-resolution devices, such
lines are nearly invisible. Since the results of rendering such “zero-width” lines
are device dependent, their use is not recommended.

The actual line width achieved by stroke can differ from the requested width by
as much as two device pixels, depending on the positions of lines with respect to
the pixel grid. One can enable automatic stroke adjustment (by setstrokeadjust)
to assure uniform line width.

Errors: stackunderflow, typecheck

See Also: currentlinewidth, stroke, setstrokeadjust

setmatrix matrix setmatrix –

replaces the current transformation matrix (CTM) in the graphics state by the
value of matrix. This establishes an arbitrary transformation from user space to
device space without reference to the former CTM. Except in device setup proce-
dures, use of setmatrix should be very rare. PostScript language programs should
ordinarily modify the CTM (by use of the translate, scale, rotate, and concat
operators) rather than replace it.

Errors: rangecheck, stackunderflow, typecheck

See Also: currentmatrix, defaultmatrix, initmatrix, rotate, scale, translate,
concat

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 509

setmiterlimit num setmiterlimit –

sets the miter limit parameter in the graphics state to num, which must be a
number greater than or equal to 1. The miter limit controls the stroke operator’s
treatment of corners when miter joins have been specified (see setlinejoin).
When path segments connect at a sharp angle, a miter join results in a spike that
extends well beyond the connection point. The purpose of the miter limit is to
cut off such spikes when they become objectionably long.

At any given corner, the miter length is the distance from the point at which the
inner edges of the stroke intersect to the point at which the outside edges of the
strokes intersect—in other words, the diagonal length of the miter. This distance
increases as the angle between the segments decreases. If the ratio of the miter
length to the line width exceeds the miter limit parameter, stroke treats the cor-
ner with a bevel join instead of a miter join.

The ratio of miter length to line width is directly related to the angle ϕ between
the segments in user space by the formula:

Examples of miter limit values are: 1.415 cuts off miters (converts them to bev-
els) at angles less than 90 degrees, 2.0 cuts off miters at angles less than 60
degrees, and 10.0 cuts off miters at angles less than 11 degrees. The default value
of the miter limit is 10. Setting the miter limit to 1 cuts off miters at all angles so
that bevels are always produced even when miters are specified.

Errors: rangecheck, stackunderflow, typecheck

See Also: currentmiterlimit, stroke, setlinejoin

miter
length

line width

ϕ

miter�length
line�width

1
ϕ
2

()sin

=

PLRM 2nd Edition January 26, 1994 Operators

510 Chapter 8: Operators

setobjectformat int setobjectformat –

establishes the number representation to be used in binary object sequences
written by subsequent execution of printobject and writeobject. Output pro-
duced by those operators will have a token type that identifies the representa-
tion used. The int operand is one of the following (see section 3.12, “Binary
Encoding Details”):

0 Disable binary encodings (see below).

1 High-order byte first, IEEE standard real format.

2 Low-order byte first, IEEE standard real format.

3 High-order byte first, native real format.

4 Low-order byte first, native real format.

Note that any of the latter four values specifies the number representation only
for output. Incoming binary encoded numbers use a representation that is speci-
fied as part of each token (in the initial token type character).

The value 0 disables all binary encodings for both input and output. That is, the
PostScript language scanner treats all incoming characters as part of the ASCII
encoding, even if a token starts with a character code in the range 128 to 159.
The printobject and writeobject operators are disabled; executing them will
cause an undefined error. This mode is provided for compatibility with certain
existing PostScript language programs.

The initial value of this parameter is implementation dependent. A program
must execute setobjectformat to generate output with a predictable number rep-
resentation.

Modifications to the object format parameter obey save and restore. In a Display
PostScript system, which supports multiple contexts, this parameter is main-
tained seperately for each context.

Errors: rangecheck, stackunderflow, typecheck

See Also: currentobjectformat, printobject, writeobject

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 511

setoverprint bool setoverprint –

sets the overprint parameter in the graphics state. This rendering parameter is
used when the device is producing separations. It specifies whether painting on
one separation causes the corresponding areas of other separations to be erased
(false) or left unchanged (true). See section 4.8.4, “Special Color Spaces.”

setoverprint sets a graphics state parameter whose effect is device dependent. It
should not be used in a program that is intended to be device independent.

Errors: stackunderflow, typecheck

See Also: currentoverprint, setcolorspace

setpacking bool setpacking –

sets the array packing mode to the specified boolean value. This determines the
type of executable arrays subsequently created by the PostScript language scan-
ner. The value true selects packed arrays; false selects ordinary arrays.

The packing mode affects only the creation of procedures by the scanner when it
encounters program text bracketed by { and } during interpretation of an execut-
able file or string object, or during execution of the token operator. It does not
affect the creation of literal arrays by the [and] operators or by the array
operator.

Modifications to the array packing mode parameter obey save and restore. In a
Display PostScript system, which supports multiple contexts, this parameter is
maintained seperately for each context.

Example

systemdict /setpacking known
{/savepacking currentpacking def
 true setpacking
} if
...Arbitrary procedure definitions...
systemdict /setpacking known {savepacking setpacking} if

This illustrates how to use packed arrays in a way that is compatible with Level 1
and Level 2 interpreters. If the packed array facility is available, the procedures
represented by “arbitrary procedure definitions” are defined as packed arrays;
otherwise, they are defined as ordinary arrays. This example is careful to preserve
the array packing mode in effect before its execution.

Errors: stackunderflow, typecheck

See Also: currentpacking, packedarray

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

512 Chapter 8: Operators

setpagedevice dict setpagedevice –

installs a new raster output device in the graphics state based on a combination
of the information in the current device and the information found in the dic-
tionary operand. The dictionary is a container for communicating requests as
property-value pairs, which are logically passed by value and copied by the
setpagedevice machinery into internal storage. The interpretation of those
parameters is described in section 4.11, “Device Setup.”

Calls to setpagedevice are cumulative: information established in a previous call
to setpagedevice will persist unless overridden explicitly in a subsequent call.
Therefore, there are no required keys in any particular call. This behavior applies
not only to the top-level dictionary, but recursively to the sub-dictionaries
Policies, InputAttributes, and OutputAttributes.

The result of executing setpagedevice is to instantiate a device, perform the
equivalent of initgraphics and erasepage, and install the device as an implicit
part of the graphics state. The effects of setpagedevice are subject to save and
restore, gsave and grestore, and setgstate.

setpagedevice can be used by system administrators to establish a default state
of the device by executing it as part of an unencapsulated job (see section 3.7.7,
“Job Execution Environment”). This default state persists until the next restart of
the PostScript interpreter. Some PostScript interpreter implementations store
some of the device values in persistent storage when setpagedevice is executed
as part of an unencapsulated job, making those parameters persist through inter-
preter restart.

setpagedevice reinitializes everything in the graphics state, including
parameters not affected by initgraphics. Device-dependent rendering
parameters, such as halftone, transfer functions, flatness, and color rendering,
are reset to built-in default values or to ones provided in the Install procedure of
the page device dictionary.

When the device in the current graphics state is not a page device, such as after
nulldevice has been executed, or when an interactive display device is active,
setpagedevice creates a new device from scratch before merging in the
parameters from dict. The properties of that device are specific to each
implementation.

Errors: configurationerror, typecheck, rangecheck, stackunderflow,
limitcheck, invalidaccess

See Also: currentpagedevice, nulldevice, gsave, grestore

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 513

setpattern pattern setpattern –
comp1 ... compn pattern setpattern –

establishes the specified pattern as the current color in the graphics state. Subse-
quent painting operations (except image and colorimage) use the pattern to tile
the areas of the page that are to be painted. The pattern operand is a pattern dic-
tionary constructed as specified in the section 4.9, “Patterns,” and instantiated
by makepattern. setpattern is a convenience operator that sets the current color
space to Pattern, then sets the current “color” to a specific pattern.

Normally, setpattern establishes a Pattern color space whose underlying color
space parameter is the color space in effect prior to execution of setpattern.
However, if the current color space is already a Pattern color space, setpattern
leaves it unchanged.

setpattern then invokes setcolor with the operands given to setpattern. The
behavior depends on the PaintType entry of the pattern dictionary:

• If pattern defines a colored pattern (PaintType is 1), the color of the pattern is
part of the pattern itself; there are no underlying color components. There-
fore, the comp1 ... compn operands of setpattern should not be specified.

• If pattern defines an uncolored pattern (PaintType is 2), the pattern itself has
no color; the color must be specified separately by the operands comp1 ...
compn, interpreted as components of the underlying color space of the
Pattern color space. If the Pattern color space does not have an underlying
color space parameter, a rangecheck error occurs.

setpattern is equivalent to:

currentcolorspace 0 get /Pattern ne
 { [/Pattern currentcolorspace] setcolorspace} if
setcolor

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: rangecheck, stackunderflow, typecheck, undefined

See Also: findresource, makepattern, setcolor, setcolorspace

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

514 Chapter 8: Operators

setrgbcolor red green blue setrgbcolor –

sets the color space to DeviceRGB, then sets the current color parameter in the
graphics state to a color described by the parameters red, green, and blue, each of
which must be a number in the range 0 to 1. This establishes the color subse-
quently used to paint shapes, such as lines, areas, and characters, on the current
page. See section 4.8, “Color Spaces,” for an explanation of these color
parameters.

setrgbcolor does not give a rangecheck for a value outside the range 0 to 1; it
substitutes the nearest legal value.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: stackunderflow, typecheck, undefined

See Also: currentrgbcolor, setgray, sethsbcolor, setcolorspace, setcolor

setscreen frequency angle proc setscreen –
frequency angle halftone setscreen –

sets the halftone parameter in the graphics state. The frequency operand is a
number that specifies the screen frequency, measured in halftone cells per inch
in device space. The angle operand specifies the number of degrees by which the
halftone screen is to be rotated with respect to the device coordinate system. The
proc operand is a PostScript procedure defining the spot function, which deter-
mines the order in which pixels within a halftone cell are whitened to produce
any desired shade of gray. See section 6.4, “Halftones,” for complete information
about halftone screens.

A rangecheck occurs if proc returns a result outside the range –1 to 1. A
limitcheck occurs if the size of the screen cell exceeds implementation limits.

setscreen sets the screens for all four color components (red, green, blue, and
gray) to the same value. setcolorscreen sets the screens individually. If the top-
most operand is a halftone dictionary instead of a procedure, setscreen performs
the equivalent of sethalftone with the following exceptions. If the halftone dic-
tionary is of type 1, the frequency and angle operands will be copied into the half-
tone dictionary overriding the values of the dictionary’s Frequency and Angle
keys. If the dictionary is read-only, setscreen makes a copy of it before copying
the values. If the halftone dictionary is a type other than 1, the frequency and
angle operands are ignored.

setscreen sets a graphics state parameter whose effect is device dependent. It
should not be used in a page description that is intended to be device indepen-
dent. Execution of this operator is not permitted in certain circumstances; see
section 4.8, “Color Spaces.”

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 515

Errors: limitcheck, rangecheck, stackunderflow, typecheck

See Also: currentscreen, sethalftone

setshared bool setshared –

has the same semantics as setglobal. This operator is defined for compatibility
with existing Display PostScript applications.

Errors: stackunderflow, typecheck

See Also: setglobal

setstrokeadjust bool setstrokeadjust –

sets the stroke adjust parameter in the graphics state to bool. If bool is true, auto-
matic stroke adjustment will be performed during subsequent execution of
stroke and related operators, including strokepath (see section 6.5, “Scan Con-
version Details”). If bool is false, stroke adjustment will not be performed.

The initial value of the stroke adjustment parameter is device dependent; typi-
cally it is true for displays and false for printers. It is set to false when a font’s
BuildChar or BuildGlyph procedure is called, but the procedure can change it. It
is not altered by initgraphics.

Errors: stackunderflow, typecheck

See Also: currentstrokeadjust, stroke

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

516 Chapter 8: Operators

setsystemparams dict setsystemparams –

attempts to set one or more system parameters whose keys and new values are
contained in the dict operand. The dictionary is merely a container for key-value
pairs; setsystemparams reads the information from the dictionary, but does not
retain the dictionary itself. System parameters whose keys are not mentioned in
dict are left unchanged.

Each parameter is identified by a key, which is always a name object. The value is
usually (but not necessarily) an integer. If the named system parameter does not
exist in the implementation, it is ignored. If the specified value is the correct
type, but is not achievable by the implementation, the nearest achievable value
is substituted without error indication.

The names of system parameters and details of their semantics are given in
Appendix C. Some user parameters have default values that can be specified as
system parameters with the same names.

Permission to alter system parameters is controlled by a password. The diction-
ary must contain an entry named Password whose value is the system parameter
password (a string or integer). If the password is incorrect, setsystemparams exe-
cutes an invalidaccess error and does not alter any parameters.

Some system parameters can be set permanently in non-volatile storage that sur-
vives restarts of the PostScript interpreter. This capability is implementation
dependent. No error occurs if parameters cannot be stored permanently.

 Example

<< /MaxFontCache 500000
 /MaxFontItem 7500
 /Password (xxxx)
 >> setsystemparams

This attempts to set the MaxFontCache system parameter to 500000 and to set
the default value of the MaxFontItem user parameter to 7500.

Errors: invalidaccess, stackunderflow, typecheck

See Also: currentsystemparams, setuserparams, setdevparams

settransfer proc settransfer –

sets the transfer function parameter in the graphics state. The proc operand must
be a procedure that can be called with a number in the range 0 to 1 (inclusive)
on the operand stack and will return a number in the same range. This proce-
dure adjusts the values of the gray color component. See section 6.3, “Transfer
Functions,” for a complete explanation.

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 517

settransfer actually sets the transfer functions for all four color components (red,
green, blue, and gray) to the same value. setcolortransfer sets the transfer func-
tions individually.

settransfer sets a graphics state parameter whose effect is device dependent. It
should not be used in a page description that is intended to be device indepen-
dent.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: stackunderflow, typecheck

See Also: currenttransfer, setcolortransfer, sethalftone

setucacheparams mark blimit setucacheparams –

sets user path cache parameters as specified by the integer objects above the top-
most mark on the stack, then removes all operands and the mark object as if by
cleartomark. The number of cache parameters is variable and may increase in
future versions of the PostScript interpreter. If more operands are supplied to
setucacheparams than are needed, the topmost ones are used and the remainder
ignored. If too few are supplied, setucacheparams implicitly inserts default val-
ues between the mark and the first supplied operand.

blimit specifies the maximum number of bytes that can be occupied by the
reduced representation of a single path in the user path cache. Any reduced path
larger than this is not saved in the cache. Changing blimit does not disturb any
paths that are already in the cache. A blimit value that is too large is automati-
cally reduced to the maximum permissible value without error indication.

Modifications to the cache limit parameter obey save and restore. In a Display
PostScript system, which supports multiple contexts, this parameter is main-
tained separately for each context.

The parameter that setucacheparams sets is the same as the MaxUPathItem user
parameter set by setuserparams (see Appendix C).

Errors: rangecheck, typecheck, unmatchedmark

See Also: ucachestatus, setuserparams

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

518 Chapter 8: Operators

setundercolorremoval proc setundercolorremoval –

sets the undercolor removal function parameter in the graphics state. The proc
operand must be a procedure that may be called with a number in the range 0.0
to 1.0 (inclusive) on the operand stack and that will return a number in the
range –1.0 (to increase the color components) to +1.0 (to decrease the color com-
ponents).

This procedure computes the amount to subtract from the cyan, magenta, and
yellow components during conversion of color values from DeviceRGB color
space to DeviceCMYK. See section 6.2.3, “Conversion from DeviceRGB to
DeviceCMYK.”

setundercolorremoval sets a graphics state parameter whose effect is device
dependent. It should not be used in a page description that is intended to be
device independent.

Execution of this operator is not permitted in certain circumstances; see section
4.8, “Color Spaces.”

Errors: stackunderflow, typecheck, undefined

See Also: currentundercolorremoval, setblackgeneration

setuserparams dict setuserparams –

attempts to set one or more user parameters whose keys and new values are con-
tained in the dict operand. The dictionary is merely a container for key-value
pairs; setuserparams reads the information from the dictionary, but does not
retain the dictionary itself. User parameters whose keys are not mentioned in dict
are left unchanged.

Each parameter is identified by a key, which is always a name object. The value is
usually (but not necessarily) an integer. If the named user parameter does not
exist in the implementation, it is ignored. If the specified value is the correct
type, but is not achievable by the implementation, the nearest achievable value
is substituted without error indication.

The names of user parameters and details of their semantics are given in Appen-
dix C. Some user parameters have default values that are system parameters with
the same names. These defaults can be set by setsystemparams.

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 519

User parameters, unlike system parameters, can be set without supplying a pass-
word. Alterations to user parameters are subject to save and restore. In a Display
PostScript system, which supports multiple execution contexts, user parameters
are maintained separately for each context.

Example

 << /MaxFontItem 7500 >> setuserparams

This attempts to set the MaxFontItem user parameter to 7500.

Errors: invalidaccess, stackunderflow, typecheck

See Also: currentuserparams, setsystemparams, setdevparams

setvmthreshold int setvmthreshold –

sets the allocation threshold used to trigger garbage collections. If the specified
value is less than the implementation-dependent minimum value, the threshold
is set to that minimum value. If the specified value is greater than the
implementation-dependent maximum value, the threshold is set to that maxi-
mum value. If the value specified is –1, then the threshold is set to the
implementation-dependent default value. All other negative values result in a
rangecheck error.

Modifications to the allocation threshhold parameter obey save and restore. In a
Display PostScript system, which supports multiple contexts, this parameter is
maintained seperately for each context.

The parameter specified by setvmthreshold is the same as the VMThreshold user
parameter set by setuserparams (see Appendix C).

Errors: rangecheck

See Also: setuserparams

shareddict – shareddict dict

is the same dictionary as globaldict. The name shareddict is defined for compat-
ibility with existing Display PostScript applications.

Errors: stackoverflow

See Also: globaldict

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

520 Chapter 8: Operators

SharedFontDirectory – SharedFontDirectory dict

is the same dictionary as GlobalFontDirectory. The name SharedFontDirectory is
defined for compatibility with existing Display PostScript applications.

Errors: stackoverflow

See Also: GlobalFontDirectory

show string show –

paints the characters identified by the elements of string on the current page
starting at the current point, using the font face, size, and orientation specified
by the most recent setfont or selectfont. The spacing from each character of the
string to the next is determined by the character’s width, which is an (x, y) dis-
placement that is part of the character’s definition. When it is finished, show
adjusts the current point in the graphics state by the sum of the widths of all the
characters shown. show requires that the current point initially be defined (for
example, by a moveto); otherwise, it executes the error nocurrentpoint.

If a character code would index beyond the end of the font’s Encoding, or the
character mapping algorithm goes out of bounds in other ways, a rangecheck
error occurs.

See Chapter 5 for complete information about the definition, manipulation, and
rendition of fonts.

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheck,
stackunderflow, typecheck

See Also: ashow, awidthshow, widthshow, kshow, cshow, xshow, yshow,
xyshow, charpath, moveto, setfont

showpage – showpage –

transmits the current page to the raster output device, causing any marks
painted on the current page to appear. showpage then executes the equivalent
of erasepage (usually) and initgraphics (always) in preparation for composing
the next page.

If the device is a page device that was installed by setpagedevice (a Level 2 fea-
ture), the detailed behavior of showpage is determined by parameters of the
device dictionary (see section 4.11, “Device Setup”).

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 521

The main actions are as follows:

1. showpage executes the EndPage procedure in the device dictionary. It passes
two operands to EndPage, a page count and a reason indicator, which are
described in section 4.11.6, “BeginPage and EndPage.” The EndPage proce-
dure is expected to return a boolean result. The default EndPage procedure
always returns true.

2. If the result from EndPage is true, showpage transmits the page to the output
device and executes the equivalent of erasepage. If the result is false,
showpage does not transmit the page or execute an erasepage.

3. showpage executes the equivalent of initgraphics.

4. showpage executes the BeginPage procedure in the device dictionary, pass-
ing it a page-count operand.

For a device that produces physical output, such as printed paper, showpage
optionally produces multiple copies of each page as part of transmitting it to the
output device (step 2, above). The number of copies is specified in one of two
ways. If the device dictionary contains a NumCopies entry whose value is a non-
negative integer, that is the number of copies. Otherwise, showpage looks up
the value of #copies in the environment of the dictionary stack. The default
value of #copies is 1, defined in userdict. The #copies method for specifying
number of copies is available in Level 1 implementations.

The behavior of showpage is further modified by the Collate, Duplex, and per-
haps other entries in the device dictionary.

Whether or not the device is a page device, the precise manner in which the cur-
rent page is transmitted is device dependent. For certain devices, such as dis-
plays, no action is required because the current page is visible while it is being
composed.

Example

/#copies 5 def
showpage

This prints five copies of the current page, then erases the current page and ini-
tializes the graphics state.

Errors: (none)

See Also: copypage, erasepage, setpagedevice

PLRM 2nd Edition January 26, 1994 Operators

522 Chapter 8: Operators

sin angle sin real

returns the sine of angle, which is interpreted as an angle in degrees. The result is
a real.

Errors: stackunderflow, typecheck

See Also: cos, atan

sqrt num sqrt real

returns the square root of num, which must be a non-negative number. The
result is a real.

Errors: rangecheck, stackunderflow, typecheck

See Also: exp

srand int srand –

initializes the random number generator with the seed int, which may be any
integer value. Executing srand with a particular value causes subsequent invoca-
tions of rand to generate a reproducible sequence of results.

Errors: stackunderflow, typecheck

See Also: rand, rrand

stack any1 ... anyn stack any1 ... anyn

writes text representations of every object on the stack to the standard output
file, but leaves the stack unchanged. stack applies the = operator to each element
of the stack, starting with the topmost element. See the = operator for a descrip-
tion of its effects.

Errors: (none)

See Also: pstack, =, ==, count

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 523

stackoverflow (error)

The operand stack has grown too large. Too many objects have been pushed on
the stack and not popped off. See Appendix B for the limit on the size of the
operand stack.

Before invoking this error, the interpreter creates an array containing all ele-
ments of the operand stack (stored as if by astore), resets the operand stack to
empty, and pushes the array on the operand stack.

stackunderflow (error)

An attempt has been made to remove an object from the operand stack when it
is empty. This usually occurs because some operator did not have all of its
required operands on the stack.

StandardEncoding – StandardEncoding array

pushes the standard encoding vector on the operand stack. This is a 256-element
literal array object, indexed by character codes, whose values are the character
names for those codes. See section 5.3, “Character Encoding,” for an explanation
of encoding vectors. StandardEncoding is not an operator; it is a name in
systemdict associated with the array object.

StandardEncoding is the Adobe standard encoding vector used by most Roman
text fonts, but not by special fonts, such as Symbol. A new Roman text font hav-
ing no unusual encoding requirements should specify its Encoding entry to be
the value of StandardEncoding rather than define its own private array. The con-
tents of the standard encoding vector are tabulated in Appendix E.

Errors: stackoverflow

See Also: ISOLatin1Encoding, findencoding

PLRM 2nd Edition January 26, 1994 Operators

524 Chapter 8: Operators

start – start –

is executed by the PostScript interpreter when it starts up. After setting up the
VM (restoring it from a file, if appropriate), the interpreter executes the name
start in the context of the default dictionary stack (systemdict, globaldict, and
userdict). The procedure associated with the name start is expected to provide
whatever top-level control is required—for example, for receiving page descrip-
tions, interacting with a user, or recovering from errors. The precise definition of
start depends on the environment in which the PostScript interpreter is operat-
ing. It is not of any interest to ordinary PostScript language programs and the
effect of executing it explicitly is undefined.

Errors: (none)

See Also: quit

startjob bool password startjob bool

conditionally starts a new job whose execution may alter the initial VM for sub-
sequent jobs. The bool operand specifies whether the new job’s side effects are to
be persistent. The semantics of job execution are described in section 3.7.7, “Job
Execution Environment.”

The behavior of startjob depends on whether all three of the following condi-
tions are true:

• The current execution context supports job encapsulation—in other words, is
under the control of a job server.

• The password is correct—in other words, matches the StartJobPassword sys-
tem parameter.

• The current level of save nesting is not any deeper than it was at the time the
current job started.

If all three conditions are satisfied, startjob performs the following actions:

1. Ends the current job—in other words, resets the stacks and, if the current job
was encapsulated, executes a restore.

2. Begins a new job. If the bool operand is true, the usual save at the beginning
of the job is omitted, enabling the new job to make persistent alterations to
the initial VM. If the bool operand is false, the usual save is performed, encap-
sulating the new job.

3. Returns true on the operand stack.

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 525

If any of the three conditions is not satisfied, startjob pushes false on the oper-
and stack. It has no other effect.

The password is a string that authorizes switching between encapsulated and
unencapsulated jobs. If password is an integer, it is first converted to a string, as if
by cvs. It is compared to the StartJobPassword system parameter, which is estab-
lished by means of the setsystemparams operator (see Appendix C).

Errors: invalidaccess, stackunderflow, typecheck

See Also: exitserver, setsystemparams, save, restore

status file status bool
string status pages bytes referenced created true (if found)

false (if not found)

If the operand is a file object, status returns true if it is still valid (i.e., is associ-
ated with an open file), false otherwise.

If the operand is a string, status treats it as a file name according to the conven-
tions described in section 3.8.2, “Named Files.” If there is a file by that name,
status pushes four integers of status information followed by the value true; oth-
erwise, it pushes false. The four integer values are:

pages Storage space occupied by the file, in implementation dependent
units.

bytes Length of file in characters.

referenced Date and time when the file was last referenced for reading or writ-
ing. The interpretation of the value is according to the conventions
of the underlying operating system. The only assumption that a pro-
gram can make is that larger values indicate later times.

created Date and time when the information in the file was created.

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: file, closefile, filenameforall

PLRM 2nd Edition January 26, 1994 Operators

526 Chapter 8: Operators

statusdict – statusdict dict

pushes a product-dependent dictionary on the operand stack. statusdict is not
an operator; it is a name associated with the dictionary in systemdict. The
statusdict dictionary is in local VM and is writable.

statusdict contains product-dependent operators and other data whose names
and values vary from product to product, and sometimes from one version of a
product to another. Information in statusdict is associated with unique features
of a product that cannot be accessed in any standard way. The contents of
statusdict are not documented here, but in product-specific documentation.

In Level 1 implementations, statusdict includes operators to select print-engine
features, to set communication parameters, and to control other aspects of the
interpreter’s operating environment. In Level 2, most of these functions have
been subsumed by standard operators, such as setpagedevice, setdevparams,
and setsystemparams.

statusdict is not necessarily defined in all products. Any reference to statusdict
in a PostScript language program impairs the portability of that program.

Errors: stackoverflow, undefined

stop – stop –

terminates execution of the innermost, dynamically enclosing instance of a
stopped context, without regard to lexical relationship. A stopped context is a
procedure or other executable object invoked by the stopped operator. stop pops
the execution stack down to the level of the stopped operator. The interpreter
then pushes the boolean true on the operand stack and resumes execution at the
next object in normal sequence after the stopped. It thus appears that stopped
returned the value true, whereas it normally returns false.

stop does not affect the operand or dictionary stacks. Any objects pushed on
those stacks during the execution of the stopped context remain after the con-
text is terminated.

If stop is executed when there is no enclosing stopped context, the interpreter
prints an error message and executes the built-in operator quit. This never occurs
during execution of ordinary user programs.

Errors: (none)

See Also: stopped, exit

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 527

stopped any stopped bool

executes any, which is typically, but not necessarily, a procedure, executable file,
or executable string object. If any runs to completion normally, stopped returns
false on the operand stack. If any terminates prematurely as a result of executing
stop, stopped returns true on the operand stack. Regardless of the outcome, the
interpreter resumes execution at the next object in normal sequence after
stopped.

This mechanism provides an effective way for a PostScript language program to
“catch” errors or other premature terminations, retain control, and perhaps per-
form its own error recovery. See section 3.10, “Errors.”

Example

 { ... } stopped {handleerror} if

If execution of the procedure {...} causes an error, the default error-reporting pro-
cedure is invoked (by handleerror). In any event, normal execution continues at
the token following the if.

Errors: stackunderflow

See Also: stop

store key value store –

searches for key in each dictionary on the dictionary stack, starting with the top-
most (current) dictionary. If key is found in some dictionary, store replaces its
value by the value operand. If key is not found in any dictionary on the diction-
ary stack, store creates a new entry with key and value in the current dictionary.

If the chosen dictionary is in global VM and value is a composite object whose
value is in local VM, an invalidaccess error occurs (see section 3.7.2, “Local and
Global VM”).

Example

/abc 123 store
/abc where { } {currentdict} ifelse /abc 123 put

The two lines of the example have the same effect.

Errors: dictfull, invalidaccess, limitcheck, stackunderflow

See Also: def, put, where, load

PLRM 2nd Edition January 26, 1994 Operators

528 Chapter 8: Operators

string int string string

creates a string of length int, each of whose elements is initialized with the inte-
ger 0, and pushes this string on the operand stack. The int operand must be a
non-negative integer not greater than the maximum allowable string length (see
Appendix B). The string is allocated in local or global VM according to the cur-
rent VM allocation mode; see section 3.7.2, “Local and Global VM.”

Errors: limitcheck, rangecheck, stackunderflow, typecheck, VMerror

See Also: length, type

stringwidth string stringwidth wx wy

calculates the change in the current point that would occur if string were given as
the operand to show with the current font. wx and wy are computed by adding
together the width vectors of all the individual characters in string and convert-
ing the result to user space. They form a distance vector in x and y describing the
width of the entire string in user space. See section 5.4, “Font Metric Informa-
tion,” for a discussion about character widths.

To obtain the character widths, stringwidth may execute the descriptions of one
or more of the characters in the current font and may cause the results to be
placed in the font cache. However, stringwidth prevents the graphics operators
that are executed from painting anything into the current page.

Note that the “width” of a string is defined as movement of the current point. It
has nothing to do with the dimensions of the character outlines (see charpath
and pathbbox).

Errors: invalidaccess, invalidfont, rangecheck, stackunderflow, typecheck

See Also: show, setfont

stroke – stroke –

paints a line following the current path and using the current color. This line is
centered on the path, has sides parallel to the path segments, and has a width
(thickness) given by the current line width parameter in the graphics state (see
setlinewidth). stroke paints the joints between connected path segments with
the current line join (see setlinejoin) and the ends of open subpaths with the
current line cap (see setlinecap). The line is either solid or broken according to
the dash pattern established by setdash. Uniform stroke width can be assured by
enabling automatic stroke adjustment (see setstrokeadjust).

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 529

The parameters in the graphics state controlling line rendition (line width, line
join, and so on) are consulted at the time stroke is executed. Their values during
the time the path is being constructed are irrelevant.

A degenerate subpath is a subpath consisting of a single point closed path or two
or more points at the same coordinates. If a subpath is degenerate, stroke paints
it only if round line caps have been specified, producing a filled circle centered at
that point. If butt or projecting square line caps have been specified, stroke pro-
duces no output, because the orientation of the caps would be indeterminate. If
a subpath consists of a single point non-closed path, no output is produced.

stroke implicitly performs a newpath after it has finished painting the current
path. To preserve the current path across a stroke operation, use the sequence

gsave stroke grestore

Errors: limitcheck

See Also: setlinewidth, setlinejoin, setmiterlimit, setlinecap, setdash,
setstrokeadjust, ustroke

strokepath – strokepath –

replaces the current path with one enclosing the shape that would result if the
stroke operator were applied to the current path. The path resulting from
strokepath is suitable as the implicit operand to fill, clip, or pathbbox. In gen-
eral, this path is not suitable for stroke, as it may contain interior segments or
disconnected subpaths produced by strokepath’s stroke to outline conversion
process.

Errors: limitcheck

See Also: fill, clip, stroke, pathbbox, charpath

sub num1 num2 sub difference

returns the result of subtracting num2 from num1. If both operands are integers
and the result is within integer range, the result is an integer. Otherwise, the
result is a real.

Errors: stackunderflow, typecheck, undefinedresult

See Also: add, div, mul, idiv, mod

PLRM 2nd Edition January 26, 1994 Operators

530 Chapter 8: Operators

syntaxerror (error)

The scanner has encountered program text that does not conform to the Post-
Script language syntax rules (see section 3.2, “Syntax”). This can occur either
during interpretation of an executable file or string object, or during explicit
invocation of the token operator.

Because the syntax of the PostScript language is simple, the set of possible causes
for a syntaxerror is very small:

• An opening string or procedure bracket, (, <, <~, or {, is not matched by a cor-
responding closing bracket before the end of the file or string being inter-
preted.

• A closing string or procedure bracket,), >, ~>, or }, appears for which there is
no previous matching opening bracket.

• A character other than a hexadecimal digit or white space character appears
within a hexadecimal string literal bracketed by <...>.

• An encoding violation occurs in an ASCII base-85 string literal bracketed by
<~...~>.

• A binary token or binary object sequence has incorrect structure (see section
3.12, “Binary Encoding Details”).

Erroneous tokens, such as malformed numbers, do not produce a syntaxerror;
such tokens are instead treated as name objects (often producing an undefined
error when executed). Tokens that exceed implementation limits, such as names
that are too long or numbers whose values are too large, produce a limitcheck
(see Appendix B).

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 531

systemdict – systemdict dict

pushes the dictionary object systemdict on the operand stack (see section 3.7.5,
“Standard and User-Defined Dictionaries”). systemdict is not an operator; it is a
name in systemdict associated with the dictionary object.

Errors: stackoverflow

See Also: errordict, globaldict, userdict

timeout (error)

A time limit has been exceeded; that is, a PostScript language program has exe-
cuted for too long or has waited too long for some external event to occur.

Execution of timeout is sandwiched between execution of two objects being
interpreted in normal sequence. Unlike most other errors, occurrence of a
timeout does not cause the object being executed to be pushed on the operand
stack nor does it disturb the operand stack in any way.

The PostScript language does not define any standard causes for timeout errors.
However, a PostScript interpreter running in a particular environment may pro-
vide a set of timeout facilities appropriate for that environment.

PLRM 2nd Edition January 26, 1994 Operators

532 Chapter 8: Operators

token file token any true (if found)
false (if not found)

string token post any true (if found)
false (if not found)

reads characters from file or string, interpreting them according to the PostScript
language syntax rules (see section 3.2, “Syntax”), until it has scanned and con-
structed an entire object.

In the file case, token normally pushes the scanned object followed by true. If
token reaches end-of-file before encountering any characters besides white
space, it closes file and returns false.

In the string case, token normally pushes post (the substring of string beyond the
portion consumed by token), the scanned object, and true. If token reaches the
end of string before encountering any characters besides white space, it simply
returns false.

In either case, the any result is an ordinary object. It may be simple—an integer,
real, or name—or composite—a string bracketed by (...) or a procedure bracketed
by {...}. The object returned by token is the same as the object that would be
encountered by the interpreter if the file or string were executed directly. How-
ever, token scans just a single object and it always pushes that object on the
operand stack rather than executing it.

token consumes all characters of the token and sometimes the terminating char-
acter as well. If the token is a name or a number followed by a white-space char-
acter, token consumes the white-space character (only the first one if there are
several). If the token is terminated by a special character that is part of the
token—one of), >,], or }—token consumes that character, but no following
ones. If the token is terminated by a special character that is part of the next
token—one of /, (, <, [, or {—token does not consume that character, but leaves it
in the input sequence. If the token is a binary token or a binary object sequence,
token consumes no additional characters.

Example

(15(St1) {1 2 add}) token ⇒ ((St1) {1 2 add}) 15 true
((St1) {1 2 add}) token ⇒ ({1 2 add}) (St1) true
({1 2 add}) token ⇒ () {1 2 add} true
() token ⇒ false

Errors: invalidaccess, ioerror, limitcheck, stackoverflow, stackunderflow,
syntaxerror, typecheck, undefinedresult, VMerror

See Also: search, anchorsearch, read

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 533

transform x y transform x’ y’
x y matrix transform x’ y’

With no matrix operand, transform transforms the user space coordinate (x, y) by
CTM to produce the corresponding device space coordinate (x’, y’). If the matrix
operand is supplied, transform transforms (x, y) by matrix rather than by CTM.

Errors: rangecheck, stackunderflow, typecheck

See Also: itransform, dtransform, idtransform

translate tx ty translate –
tx ty matrix translate matrix

With no matrix operand, translate builds a temporary matrix

and concatenates this matrix with the current transformation matrix (CTM).
Precisely, translate replaces the CTM by T × CTM. The effect of this is to move
the origin of the user coordinate system by tx units in the x direction and ty units
in the y direction relative to the former user coordinate system. The sizes of the x
and y units and the orientation of the axes are unchanged.

If the matrix operand is supplied, translate replaces the value of matrix by T and
pushes the modified matrix back on the operand stack (see section 4.3, “Coordi-
nate Systems and Transformations,” for a discussion of how matrices are repre-
sented as arrays). In this case, translate does not affect the CTM.

Errors: rangecheck, stackunderflow, typecheck

See Also: rotate, scale, concat, setmatrix

true – true true

pushes a boolean object whose value is true on the operand stack. true is not an
operator; it is a name in systemdict associated with the boolean value true.

Errors: stackoverflow

See Also: false, and, or, not, xor

T
1 0 0
0 1 0
tx ty 1

=

PLRM 2nd Edition January 26, 1994 Operators

534 Chapter 8: Operators

truncate num1 truncate num2

truncates num1 toward zero by removing its fractional part. The type of the result
is the same as the type of the operand.

Example

3.2 truncate ⇒ 3.0
–4.8 truncate ⇒ –4.0
99 truncate ⇒ 99

Errors: stackunderflow, typecheck

See Also: ceiling, floor, round, cvi

type any type name

returns a name object that identifies the type of the object any. The possible
names that type can return are as follows:

arraytype marktype
booleantype nametype
conditiontype nulltype
dicttype operatortype
filetype packedarraytype
fonttype realtype
gstatetype savetype
integertype stringtype
locktype

The name fonttype identifies an object of type fontID. It has nothing to do with a
font dictionary, which is identified by dicttype the same as any other dictionary.

The returned name has the executable attribute. This makes it convenient to per-
form type-dependent processing of an object simply by executing the name
returned by type in the context of a dictionary that defines all the type names to
have procedure values (this is how == works).

The set of types is subject to enlargement in future revisions of the language. A
program that examines the types of arbitrary objects should be prepared to
behave reasonably if type returns a name that is not in this list.

Errors: stackunderflow

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 535

typecheck (error)

Some operand’s type is different from what an operator expects. This is probably
the most frequent error encountered. It is often the result of faulty stack manip-
ulation, such as operands supplied in the wrong order or procedures leaving
results on the stack when they are not supposed to.

Certain operators require dictionaries or other composite objects as operands,
constructed according to specific rules (for example, pattern dictionaries or user
paths). A typecheck error can occur if the contents of such objects are of incor-
rect type or are otherwise malformed.

uappend userpath uappend –

interprets a user path definition and appends the result to the current path in
the graphics state. If userpath is an ordinary user path (in other words, an array or
packed array whose length is at least 5), uappend is equivalent to:

systemdict begin % Ensure standard operator meanings
cvx exec % Interpret userpath
end

If userpath is an encoded user path, uappend interprets it and performs the
encoded operations. It does not matter whether the userpath object is literal or
executable; see section 4.6, “User Paths.”

Note that uappend uses the standard definitions of all operator names men-
tioned in the user path, unaffected by any name redefinition that may have
occurred.

A ucache appearing in userpath may or may not have an effect, depending on the
environment in which uappend is executed. If the current path is initially
empty and no path construction operators are executed after uappend, a subse-
quent painting operator may access the user path cache. Otherwise, it definitely
will not. This is particularly useful in the case of clip and viewclip.

uappend performs a temporary adjustment to the current transformation matrix
as part of its execution. This adjustment consists of rounding the tx and ty com-
ponents of the CTM to the nearest integer values. The reason for this is discussed
in section 4.6.4, “User Path Operators.”

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: upath, ucache

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

536 Chapter 8: Operators

ucache – ucache –

notifies the PostScript interpreter that the enclosing user path is to be retained in
the cache if it is not already there. If present, this operator must appear as the
first element of a user path definition (before the mandatory setbbox); see sec-
tion 4.6.3, “User Path Cache.”

The ucache operator has no effect of its own when executed; if executed outside
a user path definition, it does nothing. It is useful only with a user path painting
operator, such as ufill or ustroke, that takes the user path as an operand. If the
user path is not already in the cache, the painting operator performs the path
construction operations specified in the user path and places the results (referred
to as the reduced path) in the cache. If the user path is already present in the
cache, the painting operator does not interpret the user path, but rather obtains
the reduced path from the cache.

Errors: (none)

See Also: uappend, upath

ucachestatus – ucachestatus mark bsize bmax rsize rmax blimit

reports the current consumption and limit for two user path cache resources:
bytes of reduced path storage (bsize and bmax) and total number of cached
reduced paths (rsize and rmax). It also reports the limit on the number of bytes
occupied by a single reduced path (blimit)—reduced paths that are larger than
this are not cached. All ucachestatus results except blimit are for information
only. A PostScript language program can change blimit (see setucacheparams).

The number of values pushed on the operand stack is variable. Future versions of
the PostScript interpreter may push additional values between mark and bsize.
The purpose of the mark is to delimit the values returned by ucachestatus. This
enables a program to determine how many values were returned (by
counttomark) and to discard any unused ones (by cleartomark).

The bsize, bmax, and blimit parameters reported by ucachestatus are the same as
the CurUPathCache and MaxUPathCache system parameters and MaxUPathItem
user parameter reported by currentsystemparams and currentuserparams,
respectively.

Errors: stackoverflow

See Also: setucacheparams, setsystemparams, setuserparams

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 537

ueofill userpath ueofill –

is similar to ufill, but does eofill instead of fill.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: eofill, ufill

ufill userpath ufill –

interprets a user path definition and fills the resulting path as if by fill. The entire
operation is effectively enclosed by gsave and grestore, so ufill has no lasting
effect on the graphics state; see section 4.6, “User Paths.” ufill is equivalent to:

gsave newpath uappend fill grestore

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: fill, uappend, ueofill

undef dict key undef –

removes key and its associated value from the dictionary dict. dict does not need
to be on the dictionary stack. No error occurs if key is not present in dict.

If the value of dict is in local VM, the effect of undef can be undone by a subse-
quent restore. That is, if key was present in dict at the time of the matching save,
restore will reinstate key and its former value. But if dict is in global VM, the
effect of undef is permanent.

Errors: invalidaccess, stackunderflow, typecheck

See Also: def, put, undefinefont

LEVEL 2

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

538 Chapter 8: Operators

undefined (error)

A name used as a dictionary key in some context cannot be found. This occurs if
a name is looked up explicitly in a specified dictionary (get) or in the current
dictionary stack (load) and is not found. It also occurs if an executable name is
encountered by the interpreter and is not found in any dictionary on the dic-
tionary stack.

A few PostScript operators are disabled in certain contexts—for example, it is ille-
gal to execute image, or operators that specify colors or set color-related
parameters in the graphics state, after a setcachedevice or setcachedevice2 in a
BuildChar or BuildGlyph procedure. Attempting to execute such disabled opera-
tors results in an undefined error.

See Also: known, where, load, exec, get

undefinedfilename (error)

A file identified by a name string operand of file, run, deletefile, or renamefile
cannot be found or cannot be opened. The undefinedfilename error also occurs
if the special file %statementedit or %lineedit is opened when the standard input
file has reached end-of-file.

undefinedresource (error)

A named resource instance sought by findresource cannot be found; that is, no
such instance exists either in VM or in external storage. This error arises only in
the case of findresource with a defined resource category. If the category itself is
not defined, resource operators execute the undefined error.

See Also: findresource

undefinedresult (error)

A numeric computation would produce a meaningless result or one that cannot
be represented as a number. Possible causes include numeric overflow or under-
flow, division by zero, or inverse transformation of a non-invertible matrix. A
large number of graphics and font operators can generate an undefinedresult
error if the CTM is not invertible (scaled by zero, for instance). See Appendix B
for the limits of the values representable as integers and reals.

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 539

undefinefont key undefinefont –

removes key and its associated value (a font dictionary) from the font directory,
reversing the effect of a previous definefont. undefinefont is a special case of the
undefineresource operator applied to the Font category. For details, see
undefineresource and section 3.9, “Named Resources.”

Errors: stackunderflow, typecheck

See Also: definefont, undefineresource

undefineresource key category undefineresource –

removes the named resource instance identified by key from the specified
category. This undoes the effect of a previous defineresource. If no such resource
instance exists in VM, undefineresource does nothing; no error occurs. However,
the resource category must exist, or else an undefined error occurs.

Local and global resource definitions are maintained separately; the precise
effect of undefineresource depends on the current VM allocation mode:

1. Local—undefineresource removes a local definition if there is one. If there is
a global definition with the same key, undefineresource does not disturb it;
the global definition, formerly obscured by the local one, now reappears.

2. Global—undefineresource removes a local definition, a global definition, or
both.

Depending on the resource category, undefineresource may have other side
effects (see section 3.9.2, “Resource Categories”). However, it does not alter the
resource instance in any way. If the instance is still accessible (say, stored directly
in some dictionary or defined as a resource under another name), it can still be
used in whatever ways are appropriate. The object becomes a candidate for gar-
bage collection only if it is no longer accessible.

The effect of undefineresource is subject to normal VM semantics. In particular,
removal of a local resource instance can be undone by a subsequent non-nested
restore. In this case, the resource instance is not a candidate for garbage collec-
tion.

undefineresource removes the resource instance definition from VM only. If the
resource instance also exists in external storage, it can still be found by
findresource, resourcestatus, and resourceforall.

Errors: stackunderflow, typecheck, undefined

See Also: defineresource, findresource, resourcestatus, resourceforall

LEVEL 2

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

540 Chapter 8: Operators

undefineuserobject index undefineuserobject –

breaks the association between the non-negative integer index and an object
established by some previous execution of defineuserobject. It does so simply by
replacing the specified UserObjects array element by the null object. This is
equivalent to:

userdict /UserObjects get
exch null put

undefineuserobject does not take any other actions such as shrinking the
UserObjects array. If index is not a valid index for the existing UserObjects array,
a rangecheck error occurs. See section 3.7.6, “User Objects.”

There is no need to execute undefineuserobject prior to executing a
defineuserobject that reuses the same index. The purpose of undefineuserobject
is to eliminate references to objects that are no longer needed. This may enable
the garbage collector to reclaim such objects.

Errors: rangecheck, stackunderflow, typecheck

See Also: defineuserobject, UserObjects

unmatchedmark (error)

A mark object is sought on the operand stack by the], >>, cleartomark,
counttomark, fork, setcacheparams, or setucacheparams operator, but none is
present.

unregistered (error)

An operator object has been executed for which the interpreter has no built-in
action. This represents an internal malfunction in the PostScript interpreter and
should not occur.

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 541

upath bool upath userpath

creates a new user path object that is equivalent to the current path in the
graphics state. upath creates a new executable array object of the appropriate
length and fills it with the operands and operators needed to describe the cur-
rent path. upath produces only an ordinary user path array, not an encoded user
path. It does not disturb the current path in the graphics state.

The bool operand specifies whether the resulting user path is to include ucache as
its first element.

Since the current path’s coordinates are maintained in device space, upath trans-
forms them to user space using the inverse of the CTM while constructing the
user path. Applying uappend to the resulting user path will reproduce the same
current path in the graphics state, but only if the same CTM is in effect at that
time.

upath is equivalent to:

[
exch {/ucache cvx} if
pathbbox /setbbox cvx
{/moveto cvx} {/lineto cvx} {/curveto cvx} {/closepath cvx} pathforall
] cvx

If charpath was used to construct any portion of the current path from a font
whose outlines are protected, upath is not allowed. Its execution will produce an
invalidaccess error (see charpath).

Errors: invalidaccess, stackoverflow, typecheck, VMerror

See Also: uappend, ucache, pathforall

userdict – userdict dict

pushes the dictionary object userdict on the operand stack (see section 3.7.5,
“Standard and User-Defined Dictionaries”). userdict is not an operator; it is a
name in systemdict associated with the dictionary object.

Errors: stackoverflow

See Also: systemdict, globaldict, errordict

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

542 Chapter 8: Operators

UserObjects – UserObjects array

returns the current UserObjects array defined in userdict. UserObjects is not an
operator; it is simply a name associated with an array in userdict. This array is
created and managed by the operators defineuserobject, undefineuserobject,
and execuserobject. It defines a mapping from small integers (used as array indi-
ces) to arbitrary objects (the elements of the array). See section 3.7.6, “User
Objects.”

The UserObjects entry in userdict is present only if defineuserobject has been
executed at least once by the current execution context or a context that shares
the same local VM. The length of the array depends on the index operands of all
previous executions of defineuserobject.

Note that defineuserobject, undefineuserobject, and execuserobject operate on
the value of UserObjects in userdict, without regard to the dictionaries currently
on the dictionary stack. Defining UserObjects in some other dictionary on the
dictionary stack changes the value returned by executing the name object
UserObjects, but does not alter the behavior of the user object operators.

Although UserObjects is an ordinary array object, it should be manipulated only
by the user object operators. Improper direct alteration of UserObjects can sub-
sequently cause the user object operators to malfunction.

Errors: stackoverflow, undefined

See Also: defineuserobject, undefineuserobject, execuserobject

usertime – usertime int

returns the value of a clock that increments by 1 for every millisecond of execu-
tion by the PostScript interpreter. The value has no defined meaning in terms of
calendar time or time of day; its only use is interval timing. The accuracy and
stability of the clock depends on the environment in which the PostScript inter-
preter is running. As the time value becomes greater than the largest integer
allowed in the implementation, it wraps to the smallest (most negative) integer.

In a Display PostScript system that supports multiple execution contexts, the
value returned by usertime reports execution time on behalf of the current con-
text only. A context that executes usertime can subsequently execute with
reduced efficiency, because in order to perform user time accounting, the Post-
Script interpreter must perform an operating system call whenever it switches
control to and from that context. Therefore, one should not execute usertime
gratuitously.

Errors: stackoverflow

See Also: realtime

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 543

ustroke userpath ustroke –
userpath matrix ustroke –

interprets a user path definition and strokes the resulting path as if by stroke.
The entire operation is effectively enclosed by gsave and grestore, so ustroke
has no lasting effect on the graphics state (see section 4.6, “User Paths”).

In the first form (with no matrix operand), ustroke is equivalent to:

gsave newpath uappend stroke grestore

In the second form, ustroke concatenates matrix to the CTM after interpreting
userpath, but before executing stroke. The matrix applies to the line width and
the dash pattern, if any, but not to the path itself. This form of ustroke is equiv-
alent to:

gsave
newpath
exch uappend % Interpret userpath
concat % Concat matrix to CTM
stroke
grestore

The main use of the second form of ustroke is to compensate for variations in
line width and dash pattern that occur if the CTM has been scaled by different
amounts in x and y. This is accomplished by defining matrix to be the inverse of
the unequal scaling transformation.

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: stroke, uappend

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

544 Chapter 8: Operators

ustrokepath userpath ustrokepath –
userpath matrix ustrokepath –

replaces the current path with one enclosing the shape that would result if the
ustroke operator were applied to the same operands. The path resulting from
ustrokepath is suitable as the implicit operand to a subsequent fill, clip, or
pathbbox. In general, this path is not suitable for stroke, as it may contain inte-
rior segments or disconnected subpaths produced by ustrokepath’s stroke to out-
line conversion process.

In the first form, ustrokepath is equivalent to:

newpath uappend strokepath

In the second form, ustrokepath is equivalent to:

newpath
exch uappend % Interpret userpath
matrix currentmatrix % Save CTM
exch concat % Concat matrix to CTM
strokepath % Compute outline of stroke
setmatrix % Restore original CTM

Errors: invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

See Also: ustroke, strokepath

version – version string

returns a string that identifies the version of the PostScript interpreter being
used. This identification does not include information about the language fea-
tures or the hardware or operating system environment in which the PostScript
interpreter is running.

Errors: stackoverflow

See Also: languagelevel, product, revision, serialnumber

viewclip – viewclip –

replaces the current view clipping path by a copy of the current path in the
graphics state; see section 7.3.1, “View Clipping.” The inside of the current path
is determined by the normal non-zero winding number rule. viewclip implicitly
closes any open subpaths of the view clipping path. After setting the view clip,
viewclip resets the current path to empty, as if by newpath.

LEVEL 2

DPS

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 545

viewclip is similar to clip in that it causes subsequent painting operations to
affect only those areas of the current page that lie inside the new view clipping
path. However, it differs from clip in three important respects:

• The view clipping path is independent of the current clipping path, which is
unaffected. A subsequent clippath returns the current clipping path, uninflu-
enced by the additional clipping imposed by the view clip.

• viewclip entirely replaces the current view clipping path, whereas clip com-
putes the intersection of the current and new clipping paths.

• viewclip performs an implicit newpath at the end of its execution, whereas
clip leaves the current path unchanged.

The view clipping path is independent of the graphics state; it is maintained sep-
arately for each execution context. Modifications to the view clipping path obey
save and restore.

The view clipping path can be described by a user path (see section 4.4, “Path
Construction”). This is accomplished by:

newpath userpath uappend viewclip

If userpath specifies ucache, this operation may take advantage of information in
the user path cache.

Errors: limitcheck

See Also: initviewclip, viewclippath, clip

viewclippath – viewclippath –

replaces the current path by a copy of the current view clipping path. If no view
clipping path exists, it replaces the current path by one that exactly corresponds
to the bounding rectangle of the imageable area of the output device.

Example

initviewclip viewclippath pathbbox

If the current device is a window device, this returns the bounding box of the
window.

Errors: (none)

See Also: viewclip, initviewclip, clippath

DPS

PLRM 2nd Edition January 26, 1994 Operators

546 Chapter 8: Operators

VMerror (error)

An error has occurred in the virtual memory (VM) machinery. The most likely
problems are:

• An attempt to create a new composite object (string, array, dictionary, or
packed array) would exhaust VM resources. Either the program’s
requirements exceed available capacity or, more likely, the program has failed
to use the save/restore facility appropriately (see section 3.7, “Memory Man-
agement”).

• The interpreter has attempted to perform an operation that should be impos-
sible due to access restrictions (for example, store into systemdict, which is
read-only). This represents an internal error in the interpreter.

The default handler for this error, unlike those for all other errors, does not snap-
shot the stacks.

vmreclaim int vmreclaim –

controls the garbage collection machinery as specified by int:

–2 Disable automatic collection in both local and global VM.

–1 Disable automatic collection in local VM.

0 Enable automatic collection.

1 Perform immediate collection in local VM.

2 Perform immediate collection in local and global VM. This can take a
long time, because it must consult the local VMs of all execution
contexts.

Garbage collection causes the memory occupied by the values of inaccessible
objects to be reclaimed and made available for reuse. It does not have any effects
that are visible to the PostScript language program. There is normally no need to
execute the vmreclaim operator, because garbage collection is invoked automati-
cally when necessary. However, there are a few situations in which this operator
may be useful:

• In an interactive application that is temporarily idle, the idle time can be put
to good use by invoking an immediate garbage collection. This defers the
need to perform an automatic collection subsequently. In a context that is
under the control of a job server, described in section 3.7.7, “Job Execution
Environment,” garbage collection is invoked automatically between jobs.

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 547

• When monitoring the VM consumption of a program, one must invoke gar-
bage collection before executing vmstatus to obtain meaningful results.

• When measuring the execution time of a program, one must disable auto-
matic garbage collection to obtain repeatable results.

The negative values that disable garbage collection apply only to the current
execution context; that is, they do not prevent collection from occurring during
execution of other contexts. Note that disabling garbage collection for too long
may eventually cause a program to run out of memory and fail with a VMerror.

Executing vmreclaim with an operand of 0, –1, or –2 has the same effect as set-
ting the VMReclaim user parameter to the same value by means of
setuserparams (see Appendix C).

Errors: rangecheck, stackunderflow, typecheck

See Also: setvmthreshold, setuserparams

vmstatus – vmstatus level used maximum

returns three integers describing the state of the PostScript interpreter’s virtual
memory (VM). level is the current depth of save nesting—in other words, the
number of saves that haven’t been matched by a restore. used and maximum
measure VM resources in units of 8-bit bytes; used is the number of bytes cur-
rently in use and maximum is the maximum available capacity.

VM consumption is monitored separately for local and global VM. The used and
maximum values apply to either local or global VM according to the current VM
allocation mode (see setglobal).

The used value is meaningful only immediately after a garbage collection has
taken place (see vmreclaim). At other times, it may be too large because it
includes memory occupied by objects that have become inaccessible, but have
not yet been reclaimed.

The maximum value is an estimate of the maximum size to which the current VM
(local or global) could grow, assuming that all other uses of available memory
remain constant. Because that assumption is never valid in practice, there is
some uncertainty about the maximum value. Also, in some environments (work-
stations, for instance), the PostScript interpreter can obtain more memory from
the operating system. In this case, memory is essentially inexhaustible and the
maximum value is meaningless—it is an extremely large number.

Errors: stackoverflow

See Also: setuserparams

PLRM 2nd Edition January 26, 1994 Operators

548 Chapter 8: Operators

wait lock condition wait –

releases lock, waits for condition to be notified by some other execution context,
and finally reacquires lock. The lock must originally have been acquired by the
current context, which means that wait can be invoked only within the execu-
tion of a monitor that references the same lock (see section 7.1, “Multiple Execu-
tion Contexts”).

If lock is initially held by some other context or is not held by any context, wait
executes an invalidcontext error. On the other hand, during the wait for
condition, the lock can be acquired by some other context. After condition is noti-
fied, wait will wait an arbitrary length of time to reacquire lock.

If the current context has previously executed a save not yet matched by a
restore, wait executes invalidcontext unless both lock and condition are in glo-
bal VM. The latter case is permitted under the assumption that the wait is syn-
chronizing with some context whose local VM is different from that of the
current context.

Errors: invalidcontext, stackunderflow, typecheck

See Also: condition, lock, monitor, notify

wcheck array wcheck bool
 packedarray wcheck false

dict wcheck bool
file wcheck bool

string wcheck bool

tests whether the operand’s access permits its value to be written explicitly by
PostScript operators. wcheck returns true if the operand’s access is unlimited,
false otherwise.

Errors: stackunderflow, typecheck

See Also: rcheck, readonly, executeonly, noaccess

DPS

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 549

where key where dict true (if found)
false (if not found)

determines which dictionary on the dictionary stack, if any, contains an entry
whose key is key. where searches for key in each dictionary on the dictionary
stack, starting with the topmost (current) dictionary. If key is found in some dic-
tionary, where returns that dictionary object and the boolean true. If key is not
found in any dictionary on the dictionary stack, where simply returns false.

Errors: invalidaccess, stackoverflow, stackunderflow, typecheck

See Also: known, load, get

widthshow cx cy char string widthshow –

paints the characters of string in a manner similar to show. But while doing so,
widthshow adjusts the width of each occurrence of the character char by adding
cx to its x width and cy to its y width, thus modifying the spacing between it and
the next character. char is an integer used as a character code. This operator
enables fitting a string of text to a specific width by adjusting the width of all
occurrences of some specific character, such as the space character.

For a base font, char is simply an integer in the range 0 to 255 compared to suc-
cessive elements of string. For a composite font, char is compared to an integer
computed from the font mapping algorithm. The font number, f, and character
code, c, that are selected by the font mapping algorithm are combined into a sin-
gle integer according to the FMapType of the immediate parent of the selected
base font. For FMapType values of 4 and 5, the integer value is (f × 128) + c; for
all other FMapType values, it is (f × 256) + c. See section 5.9.1, “Character Map-
ping.”

Example

/Helvetica findfont 12 scalefont setfont
14 60 moveto (Normal spacing) show
14 46 moveto 6 0 8#040 (Wide word spacing) widthshow

Errors: invalidaccess, invalidfont, nocurrentpoint, stackunderflow,
typecheck, rangecheck

See Also: show, ashow, awidthshow, kshow, xshow, yshow, xyshow,
stringwidth

Normal spacing
Wide word spacing

PLRM 2nd Edition January 26, 1994 Operators

550 Chapter 8: Operators

write file int write –

appends a single character to the output file file. The int operand should be an
integer in the range 0 to 255 representing a character code (values outside this
range are reduced modulo 256). If file is not a valid output file or some error is
encountered, write executes ioerror.

As is the case for all operators that write to files, the output produced by write
may accumulate in a buffer instead of being transmitted immediately. To ensure
immediate transmission, a flushfile is required.

Errors: invalidaccess, ioerror, stackunderflow, typecheck

See Also: read, writehexstring, writestring, file

writehexstring file string writehexstring –

writes all of the characters of string to file as hexadecimal digits. For each element
of string (an integer in the range 0 to 255), writehexstring appends a two-digit
hexadecimal number composed of the characters 0 through 9 and a through f.

 (%stdout)(w) file (abz) writehexstring

writes the six characters 61627a to the standard output file.

See section 3.8.4, “Filters,” for more information about ASCII-encoded, binary
data representation and how to deal with them.

As is the case for all operators that write to files, the output produced by
writehexstring may accumulate in a buffer instead of being transmitted immedi-
ately. To ensure immediate transmission, a flushfile is required.

Errors: invalidaccess, ioerror, stackunderflow, typecheck

See Also: readhexstring, write, writestring, file, filter

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 551

writeobject file obj tag writeobject –

writes a binary object sequence to file. Except for taking an explicit file operand,
writeobject is identical to printobject in all respects.

As is the case for all operators that write to files, the output produced by
writeobject may accumulate in a buffer instead of being transmitted immedi-
ately. To ensure immediate transmission, a flushfile is required.

Errors: invalidaccess, ioerror, limitcheck, rangecheck, stackunderflow,
typecheck, undefined

See Also: printobject, setobjectformat

writestring file string writestring –

writes the characters of string to the output file file. writestring does not append a
newline character or interpret the value of string, which can contain arbitrary
binary data. However, the communication channel may usurp certain control
characters or impose other restrictions; see section 3.8, “File Input and Output.”

As is the case for all operators that write to files, the output produced by
writestring may accumulate in a buffer instead of being transmitted immedi-
ately. To ensure immediate transmission, a flushfile is required.

Errors: invalidaccess, ioerror, stackunderflow, typecheck

See Also: readstring, write, writehexstring, file, filter

wtranslation – wtranslation x y

returns the translation from the window origin to the PostScript interpreter’s
device space origin; see section 7.3, “Graphics and Window Systems.” The inte-
gers x and y are the amounts that need to be added to a window system coordi-
nate to produce the device space coordinate for the same position. That
coordinate may in turn be transformed to user space by the itransform operator.

Window system and device space coordinates always correspond in resolution
and orientation; they differ only in the positions of their origins. The translation
from one origin to the other may change as windows are moved and resized. The
precise behavior is window system specific.

Errors: stackoverflow

LEVEL 2

DPS

PLRM 2nd Edition January 26, 1994 Operators

552 Chapter 8: Operators

xcheck any xcheck bool

tests whether the operand has the executable or literal attribute, returning true if
it is executable or false if it is literal. This has nothing to do with the object’s
access attribute—for example, execute-only. See section 3.3.2, “Attributes of
Objects.”

Errors: stackunderflow

See Also: cvx, cvlit

xor bool1 bool2 xor bool3
int1 int2 xor int3

If the operands are booleans, xor pushes their logical “exclusive or.” If the oper-
ands are integers, xor pushes the bitwise “exclusive or” of their binary represen-
tations.

true true xor ⇒ false % A complete truth table
true false xor ⇒ true
false true xor ⇒ true
false false xor ⇒ false

7 3 xor ⇒ 4
12 3 xor ⇒ 15

Errors: stackunderflow, typecheck

See Also: or, and, not

xshow string numarray xshow –
string numstring xshow –

is similar to xyshow. However, for each character shown, xshow extracts only
one number from numarray or numstring. It uses that number as the x displace-
ment and the value zero as the y displacement. In all other respects, xshow
behaves the same as xyshow.

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheck,
stackunderflow, typecheck

See Also: xyshow, show

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

8.2 Operator Details 553

xyshow string numarray xyshow –
string numstring xyshow –

paints successive characters of string in a manner similar to show. After painting
each character, it extracts two successive numbers from the array numarray or the
encoded number string numstring. These two numbers, interpreted in user space,
determine the position of the origin of the next character relative to the origin
of the character just shown. The first number is the x displacement and the sec-
ond number is the y displacement. In other words, the two numbers override the
character’s normal width.

If numarray or numstring is exhausted before all the characters of string have been
shown, a rangecheck error will occur. See section 5.1.4, “Character Positioning,”
for further information about xyshow. See section 3.12.5, “Encoded Number
Strings,” for an explanation of the numstring operand.

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheck,
stackunderflow, typecheck

See Also: xshow, yshow, show

yield – yield –

suspends the current execution context until all other contexts have had a
chance to execute; see section 7.1, “Multiple Execution Contexts.” This should
not be used as a synchronization primitive, because there is no way to predict
how much execution the other contexts will be able to accomplish. The purpose
of yield is to break up long-running computations that might lock out other
contexts.

Errors: (none)

yshow string numarray yshow –
string numstring yshow –

is similar to xyshow. However, for each character shown, yshow extracts only
one number from numarray or numstring. It uses that number as the y displace-
ment and the value zero as the x displacement. In all other respects, it behaves
the same as xyshow.

Errors: invalidaccess, invalidfont, nocurrentpoint, rangecheck,
stackunderflow, typecheck

See Also: xyshow, show

LEVEL 2

DPS

LEVEL 2

PLRM 2nd Edition January 26, 1994 Operators

554 Chapter 8: Operators

PLRM 2nd Edition January 21, 1994 Changes to Language and Implementation

555

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

APPENDIX A

Changes to Language and
Implementation

Since its introduction in 1985, the PostScript language has undergone a
number of changes. Also, Adobe implementations of the PostScript
interpreter have changed. This appendix summarizes these changes.

A.1 Language Extensions

The PostScript language has been extended several times to meet the
needs of new imaging technologies and system environments. These
extensions include functionality for CMYK color specification, compos-
ite fonts, file system support, and the Display PostScript system. All of
the extensions have been consolidated and many new features have
been added to create PostScript Level 2. The following sections list the
PostScript language operators introduced by each of these extensions
and, when possible, indicate which implementations support them.

A.1.1 PostScript Level 2 Operators

The following Level 2 operators, along with the Level 1 operators docu-
mented in the original PostScript Language Reference Manual, are present
in all Level 2 implementations of the PostScript language:

Example A.0
Table A.0
Figure A.0

<<
>>
arct
colorimage
cshow
currentblackgeneration
currentcacheparams
currentcmykcolor
currentcolor
currentcolorrendering
currentcolorscreen

currentcolorspace
currentcolortransfer
currentdevparams
currentglobal
currentgstate
currenthalftone
currentobjectformat
currentoverprint
currentpacking
currentpagedevice
currentshared

PLRM 2nd Edition January 21, 1994 Changes to Language and Implementation

556 Appendix A: Changes to Language and Implementation

currentstrokeadjust
currentsystemparams
currentundercolorremoval
currentuserparams
defineresource
defineuserobject
deletefile
execform
execuserobject
filenameforall
fileposition
filter
findencoding
findresource
gcheck
globaldict
GlobalFontDirectory
glyphshow
gstate
ineofill
infill
instroke
inueofill
inufill
inustroke
ISOLatin1Encoding
languagelevel
makepattern
packedarray
printobject
product
realtime
rectclip
rectfill
rectstroke
renamefile
resourceforall
resourcestatus
revision
rootfont
scheck
selectfont
serialnumber
setbbox
setblackgeneration
setcachedevice2

setcacheparams
setcmykcolor
setcolor
setcolorrendering
setcolorscreen
setcolorspace
setcolortransfer
setdevparams
setfileposition
setglobal
setgstate
sethalftone
setobjectformat
setoverprint
setpacking
setpagedevice
setpattern
setshared
setstrokeadjust
setsystemparams
setucacheparams
setundercolorremoval
setuserparams
setvmthreshold
shareddict
SharedFontDirectory
startjob
uappend
ucache
ucachestatus
ueofill
ufill
undef
undefinefont
undefineresource
undefineuserobject
upath
UserObjects
ustroke
ustrokepath
vmreclaim
writeobject
xshow
xyshow
yshow

PLRM 2nd Edition January 21, 1994 Changes to Language and Implementation

A.1 Language Extensions 557

A.1.2 Display PostScript Operators

The following operators are present only in implementations of the
Display PostScript system:

condition lock
currentcontext monitor
currenthalftonephase notify
defineusername rectviewclip
detach sethalftonephase
deviceinfo viewclip
eoviewclip viewclippath
fork wait
initviewclip wtranslation
join yield

A.1.3 Display PostScript Extensions

The following operators are from the PostScript language extensions for
the Display PostScript system. These operators, along with the Level 1
operators, are present in all Display PostScript system implementations.
Nearly all of them have been incorporated into the Level 2 operator set;
the only exceptions are the operators listed in section A.1.2, “Display
PostScript Operators.”

arct
condition
currentcontext
currentgstate
currenthalftone
currenthalftonephase
currentobjectformat
currentshared
currentstrokeadjust
defineusername
defineuserobject
detach
deviceinfo
eoviewclip
execuserobject
fork
gstate
ineofill
infill
initviewclip

instroke
inueofill
inufill
inustroke
join
lock
monitor
notify
printobject
rectclip
rectfill
rectstroke
rectviewclip
scheck
selectfont
setbbox
setgstate
sethalftone
sethalftonephase
setobjectformat

PLRM 2nd Edition January 21, 1994 Changes to Language and Implementation

558 Appendix A: Changes to Language and Implementation

A.1.4 CMYK Color Extensions

The following Level 2 operators are from the PostScript language color
extensions. They are present in certain Level 1 products, principally
color printers, and in all implementations of the Display PostScript
system.

colorimage setblackgeneration
currentblackgeneration setcmykcolor
currentcmykcolor setcolorscreen
currentcolorscreen setcolortransfer
currentcolortransfer setundercolorremoval
currentundercolorremoval

A.1.5 Composite Font Extensions

The following Level 2 operators are from the PostScript language com-
posite font extensions. They are present in certain Level 1 printer prod-
ucts and Display PostScript system implementations.

cshow
findencoding
rootfont
setcachedevice2

upath
UserObjects
ustroke
ustrokepath
viewclip
viewclippath
vmreclaim
wait
writeobject
wtranslation
xshow
xyshow
yield
yshow

setshared
setstrokeadjust
setucacheparams
setvmthreshold
shareddict
SharedFontDirectory
uappend
ucache
ucachestatus
ueofill
ufill
undef
undefinefont
undefineuserobject

PLRM 2nd Edition January 21, 1994 Changes to Language and Implementation

A.1 Language Extensions 559

A.1.6 File System Operators

The following Level 2 operators are present in those Level 1 printer
products that have disks or cartridges and in all implementations of the
Display PostScript system:

deletefile
filenameforall
fileposition
renamefile
setfileposition

A.1.7 Version 25.0 Language Additions

The following Level 2 features and operators are present in all Level 1
implementations version 25.0 and greater:

// syntax for immediately evaluated names
packedarray object type

currentcacheparams
currentpacking
packedarray
setcacheparams
setpacking

A.1.8 Miscellaneous Language Additions

The following Level 2 operators are present in some Level 1 products
that are not identifiable by specific versions or functions. (When
product and revision are not present in systemdict, they are present in
statusdict instead.)

ISOLatin1Encoding
product
realtime
revision
serialnumber

PLRM 2nd Edition January 21, 1994 Changes to Language and Implementation

560 Appendix A: Changes to Language and Implementation

A.2 Language Changes Affecting Existing Operators

This section summarizes significant changes to the Level 1 operators
documented in the original PostScript Language Reference Manual. All
changes are upward-compatible. For Level 2, many existing operators
have been extended to provide new functionality, to interact properly
with other new language features, or to eliminate former restrictions on
their use.

This list is not exhaustive. Many of these changes have appeared as part
of extensions introduced prior to Level 2. For complete information,
consult the individual operator descriptions in Chapter 8.

The dictionary stack has three permanent entries instead of two. The
additional dictionary is globaldict, lying between systemdict and
userdict.

Several of the basic polymorphic operators, such as length, get, put,
getinterval, and putinterval, can deal with the newly introduced
packed array object type.

The $error dictionary contains some additional entries to control error
handling.

banddevice, framedevice, and renderbands no longer exist. These
device-dependent setup operators were defined only in some imple-
mentations and were never appropriate for use by a page description.

charpath no longer protects the character outlines of most fonts.
pathforall is permitted after charpath for normally constructed Type 1
and Type 3 fonts.

copy, when applied to dictionaries, leaves the destination dictionary’s
access unchanged instead of copying it from the source dictionary.

currentscreen can return a halftone dictionary if the current halftone
was specified by sethalftone instead of setscreen. setscreen permits its
operand to be a halftone dictionary.

definefont, findfont, and other font-related operators have been
extended in various ways to support composite fonts, font dictionaries
in local or global VM, accessing characters by name (glyphshow,
BuildGlyph), and extended unique IDs (XUIDs). Fonts are now treated as
a special category of a general facility for named resources; definefont is
a special case of defineresource.

PLRM 2nd Edition January 21, 1994 Changes to Language and Implementation

A.2 Language Changes Affecting Existing Operators 561

The dictfull error is no longer possible. The operand to dict now speci-
fies only the initial capacity; dictionaries expand their capacity auto-
matically when necessary. maxlength returns a dictionary’s current
capacity.

The syntax of name and access string operands to file has been
expanded.

fill, stroke, show, and all other operators that paint with the current
color can make use of the new color spaces. These color spaces allow
CIE-based color specification, color mapping, separations, and painting
with a repeating pattern.

image and imagemask can accept their parameters in the form of an
image dictionary. This single-operand form of image can handle mono-
chrome or color image data according to any color space and can
invoke various image processing options. Additionally, the data source
for an image can be a file or string as well as a procedure.

makefont and scalefont allocate the derived font dictionary in local or
global VM according to whether the original font dictionary was in
local or global VM.

save and restore do not affect the values of objects in global VM except
when executed at the outermost level in an encapsulated job.

setcacheparams takes an optional size operand.

setgray, setrgbcolor, and sethsbcolor set the current color space to
DeviceGray, DeviceRGB, and DeviceRGB, respectively.

show and related operators decode their string operand in a special way
if the current font is composite.

The behavior of showpage and copypage can be substantially altered
by specifying optional parameters to setpagedevice.

status accepts a string operand and returns status information for a
named file.

stroke optionally performs adjustments to ensure uniform line width.

PLRM 2nd Edition January 21, 1994 Changes to Language and Implementation

562 Appendix A: Changes to Language and Implementation

A.3 Implementation and Documentation Changes

This section describes major changes, other than introduction of new
language features, that have appeared in implementations of the Post-
Script language from Adobe Systems. All such changes are included in
Level 2 implementations. Many of them are included in some Level 1
implementations as well; when possible, those implementations are
identified by specific version numbers (value returned by the version
operator). There are two classes of changes:

• Correction of serious bugs. Only those bugs that have a significant
impact on programming are listed here.

• Intentional changes to the language specification. In some cases, the
original specification was incorrect, incomplete, or subject to misin-
terpretation. Only significant changes are described here; minor
changes, such as corrections to operators’ error lists, are omitted.

Level 1 and Level 2 implementations of the PostScript language scanner
differ in several minor ways.

• If the source of text is a string instead of a file, an occurrence of a
string literal enclosed in (...) is treated specially in Level 1. The scan-
ner returns a substring of the original string instead of allocating a
new string, and it does not recognize \ escape sequences within the
string literal. In Level 2, the scanner operates in a consistent way for
all sources of text.

• Occurrences of \ outside string literals are sometimes treated as self-
delimiting special characters in Level 1. They are regular characters
in Level 2.

• Tokens that are syntactically legal numbers but exceed implementa-
tion limits are treated as name objects in Level 1 but generate a
limitcheck in Level 2.

The convention for uniform handling of end-of-line, described in sec-
tion 3.8.1, “Basic File Operators,” was introduced in version 40.0. In
earlier versions, the sequence CR LF is treated as two end-of-line charac-
ters, and the readline operator recognizes only LF as its end-of-line ter-
minator.

Implementations prior to version 38.0 perform conversions between
the RGB and HSB color models incorrectly.

PLRM 2nd Edition January 21, 1994 Changes to Language and Implementation

A.3 Implementation and Documentation Changes 563

Implementations prior to version 38.0 have a bug which causes names
longer than about 40 characters to be garbled.

In version 23.0, applying bind to a read-only procedure can cause an
invalidaccess error. This is most likely to occur as a result of applying
bind to the same procedure twice.

In Level 1 implementations, charpath correctly updates the current
point by the width of the string, but it doesn’t actually append a
moveto element to the current path.

cleardictstack, present in all of Adobe’s PostScript implementations, is
now documented.

In all implementations, cvrs behaves as documented in this manual;
the former specification was incorrect.

eexec, present in all of Adobe’s PostScript implementations, is now doc-
umented.

executive, present in most of Adobe’s PostScript implementations, is
now documented.

In version 23.0, idiv permits real operands, though this behavior isn’t
documented. Later implementations permit only integer operands.

In implementations prior to version 47.0, execution of imagemask
when an inverted transfer function is in effect produces incorrect out-
put. The polarity of the mask is inverted instead of the polarity of the
data.

In Level 1 implementations, the conditions that give rise to an
invalidrestore error are more restrictive than they should be. If a pro-
gram executes put followed by get of some composite object and leaves
the resulting object on the stack during restore, an invalidrestore error
occurs, even if the object’s value existed prior to the corresponding
save.

In most Level 1 implementations, executing exit within the procedure
given to kshow causes a malfunction.

The length operator permits its operand to be a name object. This isn’t
mentioned in the original specification of length, but it has always
been implemented this way. Additionally, version 23.0 permits simple
operands and returns 1; later implementations do not permit this.

PLRM 2nd Edition January 21, 1994 Changes to Language and Implementation

564 Appendix A: Changes to Language and Implementation

In Level 1 implementations, the pathbbox operator computes a bound-
ing box that encloses all points in the current path. In Level 2, if the
path ends with a moveto, the trailing endpoint is not included in the
computation.

In Level 1 implementations, the definitions of prompt, pstack, and
start are in userdict instead of systemdict.

statusdict and internaldict are now documented, but most of their con-
tents remain implementation-dependent.

In implementations prior to version 41.0, each execution of strokepath
causes a small amount of path storage to be permanently lost. This
makes strokepath essentially useless in those implementations.

PLRM 2nd Edition January 27, 1994 Implementation Limits

565

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

APPENDIX B

Implementation Limits

The PostScript language does not restrict the sizes or quantities of
things described in the language, such as numbers, arrays, stacks, paths,
and so on. However, a PostScript interpreter running on a particular
processor in a particular operating environment does have such limits.
The interpreter cannot execute PostScript language programs that
exceed these limits. If it attempts to perform some operation that would
exceed one of the limits, it executes the error limitcheck (or VMerror if
it exhausts virtual memory resources).

All limits are sufficiently large that most PostScript language page
descriptions should never come close to exceeding any of them,
because the PostScript interpreter has been designed to handle very
complex page descriptions. On the other hand, a program that is not a
page description might encounter some of these limits because the
interpreter has not been designed with unlimited general programming
in mind. There is no formal distinction in the PostScript language
between a page description and a general program. However, a Post-
Script interpreter residing in a printer is deliberately optimized for its
intended use: to produce raster output according to a fully specified
graphical description generated by some external application program.

Occurrence of a limitcheck error during execution of a page description
is often an indication of an error in the PostScript language program,
such as unbounded recursion on one of the stacks. Occurrence of a
VMerror is often an indication that the program is not using save and
restore properly.

Example B.0
Table B.0
Figure B.0

PLRM 2nd Edition January 27, 1994 Implementation Limits

566 Appendix B: Implementation Limits

B.1 Typical Limits

This section describes limits that are typical of PostScript interpreter
implementations from Adobe Systems. These limits fall into two main
classes:

• Architectural limits. The hardware on which the PostScript interpreter
executes imposes certain constraints. For example, an integer is usu-
ally represented in 32 bits, limiting the range of integers that are
allowed. Additionally, the design of the software imposes other con-
straints, such as a limit of 65535 elements in an array or string.

• Memory limits. The amount of memory available to the PostScript
interpreter limits the number of memory-consuming objects that the
interpreter can hold simultaneously. Memory management is dis-
cussed below.

Table B.1 describes the architectural limits for most PostScript interpret-
ers running on 32-bit machines. These limits are likely to remain con-
stant across a wide variety of implementations.

Table B.1 Architectural limits

Quantity Limit Explanation

integer 2147483647 Largest integer value. This value is 231 – 1 and its representation is 16#7FFFFFFF.
In most situations, an integer that would exceed this limit is converted into a
real automatically.

–2147483648 Smallest integer value. It is –231 and its representation is 16#80000000.

real ±1038 Largest and smallest real values (approximately).

±10–38 Non-zero real values closest to zero (approximately). Values closer than these are
converted to zero automatically.

8 Significant decimal digits of precision (approximately).

array 65535 Maximum length of an array, in elements.

dictionary 65535 Maximum capacity of a dictionary, in key-value pairs.

string 65535 Maximum length of a string, in characters.

name 127 Maximum length of a name, in characters.

filename 100 Maximum length of a file name, including the %device% prefix.

save level 15 Maximum number of active saves that have not yet been matched by a
corresponding restore.

gsave level 31 Maximum number of active gsaves. Each save also performs a gsave implicitly.

PLRM 2nd Edition January 27, 1994 Implementation Limits

B.1 Typical Limits 567

Memory limits cannot be characterized so precisely, because the
amount of available memory and the ways in which it is allocated vary
from one product to another. Nevertheless, it’s useful to give some gen-
eral information about memory limits that a complex page description
is likely to encounter.

The PostScript interpreter requires memory for a variety of purposes,
including:

• VM for the values of composite objects.

• Stacks and other objects visible to a PostScript language program.

• Paths in the graphics state.

• Frame buffer or other internal representation of the raster memory
for the current page.

• Font cache, user path cache, form cache, pattern cache, and other
internal data structures that save the results of expensive computa-
tions in order to avoid redundant work.

Level 1 and Level 2 implementations have somewhat different conven-
tions for dividing available memory among these uses. In Level 1, there
is usually a static allocation for each purpose—so much memory for
stacks, so much for paths, and so on. If a PostScript language program
exceeds these static allocations, a limitcheck error occurs. Installing
more memory in a Level 1 product, if possible at all, usually increases
the limit on available VM but seldom affects any of the other limits.

In Level 2 implementations, the allocation of memory is much more
flexible. Memory is automatically reallocated from one use to another
when necessary. When more memory is needed for a particular pur-
pose, it can be taken away from memory allocated for other purposes if
that memory is currently unused or if its use is non-essential (a cache,
for instance). Installing more memory in a Level 2 product causes most
implementation limits to increase.

Of course, the added flexibility in Level 2 implementations results in a
decrease in predictability. If a PostScript language program consumes an
unusually large amount of memory for a particular purpose, it may
decrease other implementation limits so that they become less than the
corresponding limits in a Level 1 implementation.

PLRM 2nd Edition January 27, 1994 Implementation Limits

568 Appendix B: Implementation Limits

In general, it is unwise for applications to generate page descriptions
that operate near the implementation limits for resources. Such page
descriptions cannot reasonably be included as components of larger
page descriptions, because the combined resource requirements might
exceed implementation limits.

Table B.2 gives memory limits that are typical of Level 1 implementa-
tions. These are the smallest limits that are likely to be encountered in
any product. Many products have larger limits for some resources. Level
2 implementations have no fixed limits. However, a program can estab-
lish certain artificial limits by means described in Appendix C.

Table B.2 Typical memory limits in Level 1

Quantity Limit Explanation

userdict 200 Capacity of userdict. Note that userdict starts out with a few things already
defined in it.

FontDirectory 100 Capacity of FontDirectory, determining the maximum number of fonts that may
be defined simultaneously.

operand stack 500 Maximum depth of the operand stack—number of elements that may be pushed
on and not yet popped off. This also defines a limit on the number of elements
contained in all unfinished procedure definitions being processed by the Post-
Script language scanner, since the scanner uses the operand stack to accumulate
them.

dictionary stack 20 Maximum depth of the dictionary stack.

execution stack 250 Maximum depth of the execution stack. Each procedure, file, or string whose
execution has been suspended occupies one element of this stack. Also, control
operators, such as for, repeat, and stopped, push a few additional elements on
the stack to control their execution.

interpreter level 10 Maximum number of recursive invocations of the PostScript interpreter. Graph-
ics operators that call PostScript language procedures, such as pathforall, show,
and image, invoke the interpreter recursively.

path 1500 Maximum number of points specified in all active path descriptions, including
the current path, clip path, and paths saved by save and gsave.

dash 11 Maximum number of elements in a dash pattern—the maximum length of the
array operand of the setdash operator.

VM 240000 Maximum size of virtual memory in bytes. Typically, this limit is influenced by
the size of the imageable area for the current page, which requires memory in
proportion to its area. Thus, installing a larger size page reduces the VM limit.
The current and maximum size of the VM are reported by the vmstatus operator.

PLRM 2nd Edition January 27, 1994 Implementation Limits

B.2 Virtual Memory Use 569

file 6 Maximum number of open files, including the standard input and output files.
This limit is substantially larger in implementations that support named files.

image 3300 Maximum width of an image’s source data in samples per scan line. (Most imple-
mentations have a larger limit, but it varies from product to product.)

There are other implementation limits on uses of memory that are not
directly under the control of a PostScript language program and are dif-
ficult to quantify. For example:

• Rendering extremely complex paths requires a substantial amount of
memory, particularly when the clip operator is executed.

• Halftone screens occupy an amount of memory that depends on
screen angle, frequency, and device resolution. Screens saved by
gsave may occupy additional memory.

• High-resolution devices, such as typesetters, represent the current
page as a display list on disk instead of as a full pixel array in mem-
ory. If disk space is exhausted, a limitcheck occurs.

B.2 Virtual Memory Use

It is impossible to predict accurately how much VM a program will con-
sume, but it is possible to make a rough estimate. VM is occupied pri-
marily by the values of composite objects. Simple objects do not
consume VM, nor do composite objects that share the values of other
objects. Some typical memory requirements are as follows:

• Array values are created and VM consumed when a program exe-
cutes the array,], and matrix operators. An array value occupies 8
bytes per element.

• When the PostScript language scanner encounters a procedure
delimited by {...}, it creates either an array or a packed array, accord-
ing to the current packing mode (see setpacking). An array value
occupies 8 bytes per element. A packed array value occupies 1 to 9
bytes per element depending on each element’s type and value; a
typical average is 2.5 bytes per element.

• String values are created and VM consumed when a program exe-
cutes the string operator and when the scanner encounters string lit-
erals delimited by (...), <...>, and <~...~>. A string value occupies 1
byte per element.

PLRM 2nd Edition January 27, 1994 Implementation Limits

570 Appendix B: Implementation Limits

• Dictionary values are created by the dict and >> operators and by
certain other operators that return collections of parameters as dic-
tionaries. VM consumption is based on the dictionary’s capacity (its
maxlength), regardless of how full it currently is. A dictionary value
occupies about 20 bytes per key-value pair.

• Name objects consume VM at the time the scanner first encounters
each distinct name. Computed names (generated by cvn, for
instance) consume VM on their first use as names. Repeated occur-
rences of a particular name require no additional storage. Each dis-
tinct name occupies about 40 bytes plus the length of the name in
characters.

• The save/restore machinery consumes VM in proportion to the
magnitude of the changes that must be undone by restore, but inde-
pendently of the total size of VM. restore reclaims all local VM
resources consumed since the corresponding save.

• Loading a Type 1 font program typically consumes 20,000 to 30,000
bytes of VM, depending on the size of the character set and the com-
plexity of the characters. VM consumption of a font remains essen-
tially constant, regardless of the number of ways in which its
characters are scaled, rotated, or otherwise transformed.

PLRM 2nd Edition January 27, 1994 Interpreter Parameters

571

Example A.0
Example B.0
Example C.0
Example D.0
Example E.0
Example F.0
Example G.0
Example H.0
Example I.0
Example J.0

APPENDIX C

Interpreter Parameters

The facilities described in this section are available only in Level 2
implementations, with the exception of a few special-purpose operators
that are explicitly described as Level 1 operators.

There are various parameters to control the operation and behavior of
the PostScript interpreter. Most of these parameters have to do with
allocation of memory and other resources for specific purposes. For
example, there are parameters to control the maximum amount of
memory to be used for VM, font cache, and halftone screens. Some
input/output and storage devices have parameters that control the
behavior of each device individually.

A product is initially configured with interpreter parameter values that
are appropriate for most applications. However, with suitable authoriza-
tion, a PostScript language program can alter the interpreter parameters
to favor certain applications or to adapt the product to special
requirements.

 The interpreter parameters are divided into three categories:

• User parameters can be altered at will, within reasonable limits, by
any PostScript language program without special authorization. The
setuserparams and currentuserparams operators manipulate user
parameters. Alterations to user parameters are subject to save and
restore.

• System parameters can be altered only by a program that presents a
valid password. The setsystemparams and currentsystemparams
operators manipulate system parameters. Alterations to system
parameters have a permanent, system-wide effect, which may persist
through restarts of the PostScript interpreter.

Example C.0
Table C.0
Figure C.0

PLRM 2nd Edition January 27, 1994 Interpreter Parameters

572 Appendix C: Interpreter Parameters

• Device parameters are similar to system parameters, but they apply
to individual input/output or storage devices. The setdevparams and
currentdevparams operators manipulate device parameters.

The operators that manipulate interpreter parameters are described in
Chapter 8; the semantics of the individual parameters are described
below. The operators are a standard feature of Level 2 implementations.
However, the set of interpreter parameters that exist in any given
product is implementation dependent. The parameters described in this
section are typical of current PostScript products from Adobe. Not all
products support all parameters; some products may support additional
parameters. The set of parameters a given product supports is subject to
change.

Most of the user parameters establish temporary policies on matters
such as whether to insert new items into caches. It is reasonable for a
user or a spooler program acting on the user’s behalf to alter user
parameters when submitting jobs with unusual requirements.

The system parameters, on the other hand, permanently alter the over-
all configuration of the product. A user application should never
attempt to alter system or device parameters. Only system management
software should do that.

C.1 Defined User and System Parameters

Each user or system parameter is identified by a key, which is always a
name object. The value of a parameter is usually—but not necessarily—
an integer. The following tables summarize the user and system param-
eters that are commonly defined. These parameters are described in
more detail in section C.3, “Parameter Details.”

Table C.1 User parameters

Key Value Semantics

MaxFontItem integer Maximum bytes occupied by the pixel array of a single character in the font
cache.

MinFontCompress integer Threshold at which a cached character is stored in compressed form instead of as
a full pixel array.

MaxUPathItem integer Maximum bytes occupied by a single cached user path.

MaxFormItem integer Maximum bytes occupied by a single cached form.

MaxPatternItem integer Maximum bytes occupied by a single cached pattern.

MaxScreenItem integer Maximum bytes occupied by a single halftone screen.

PLRM 2nd Edition January 27, 1994 Interpreter Parameters

C.1 Defined User and System Parameters 573

MaxOpStack integer Maximum elements in operand stack.

MaxDictStack integer Maximum elements in dictionary stack.

MaxExecStack integer Maximum elements in execution stack.

MaxLocalVM integer Maximum bytes occupied by values in local VM.

VMReclaim integer 0 enables automatic garbage collection.
–1 disables it for local VM.
–2 disables it for both local and global VM.

VMThreshold integer Frequency of automatic garbage collection, which is triggered whenever this
many bytes have been allocated since the previous collection.

Table C.2 System parameters

Key Value Semantics

SystemParamsPasswordstring (Write-only) Password authorizing use of the setsystemparams and setdevparams
operators.

StartJobPassword string (Write-only) Password authorizing use of the startjob operator.

BuildTime integer (Read-only) Time stamp identifying a specific build of the PostScript interpreter.

ByteOrder boolean (Read-only) Native (preferred) order of multiple-byte numbers in binary encoded
tokens: false indicates high-order byte first; true indicates low-order byte first.

RealFormat string (Read-only) Native (preferred) representation for real numbers in binary encoded
tokens. This is either IEEE or the name of some specific machine architecture. The
interpreter will always accept IEEE-format reals, but it may process native-format
reals more efficiently (see section 3.12.4, “Number Representations”).

MaxFontCache integer Maximum bytes occupied by the font cache.

CurFontCache integer (Read-only) Bytes currently occupied by the font cache.

MaxOutlineCache integer Maximum bytes occupied by cached character outlines (CharStrings) for fonts
whose definitions are kept on disk instead of in VM.

CurOutlineCache integer (Read-only) Bytes currently occupied by CharStrings.

MaxUPathCache integer Maximum bytes occupied by the user path cache.

CurUPathCache integer (Read-only) Bytes currently occupied by the user path cache.

MaxFormCache integer Maximum bytes occupied by the form cache.

CurFormCache integer (Read-only) Bytes currently occupied by the form cache.

MaxPatternCache integer Maximum bytes occupied by the pattern cache.

CurPatternCache integer (Read-only) Bytes currently occupied by the pattern cache.

MaxScreenStorage integer Maximum bytes occupied by all active halftone screens, including ones created
by setscreen and saved by gsave.

CurScreenStorage integer (Read-only) Bytes currently occupied by all active halftone screens.

PLRM 2nd Edition January 27, 1994 Interpreter Parameters

574 Appendix C: Interpreter Parameters

MaxDisplayList integer Maximum bytes occupied by display lists, excluding those held in caches.

CurDisplayList integer (Read-only) Bytes currently occupied by display lists.

A program alters user or system parameters by executing the
setuserparams or setsystemparams operator, passing it a dictionary
containing the names and new values of the parameters that are to be
changed. The dictionary may contain additional information; in partic-
ular, there can be an entry named Password, described below.

C.2 General Properties of User and System Parameters

The detailed semantics of user and system parameters are implementa-
tion dependent. For example, limits on the sizes of caches are specified
in bytes. The effects of such limits depend on how cached items are rep-
resented internally. Still, there are some guidelines that apply to inter-
preter parameters generally.

The setuserparams operator sets user parameters; currentuserparams
reads their current values. Alterations to user parameters are subject to
save and restore—that is, restore resets all user parameters to their val-
ues at the time of the most recent save. In a Display PostScript system,
which supports multiple execution contexts, user parameters are main-
tained separately for each context.

Usually, altering user parameters by setuserparams does not affect the
behavior of PostScript language programs, only their performance. For
example, increasing the MinFontCompress parameter allows larger
characters to be stored as full pixel arrays. This increases the speed at
which those characters can be shown, but at the cost of using font
cache storage less efficiently.

In a few cases, however, user parameters affect implementation limits.
For example, the MaxScreenItem parameter imposes an implementa-
tion limit on the size of a halftone screen. These implementation limits
are noted in the descriptions in section C.3, “Parameter Details.”

In general, reducing the limit on the size of an individual cached item
will not disturb any items that are already in the cache, even if they are
larger than the new limit.

PLRM 2nd Edition January 27, 1994 Interpreter Parameters

C.2 General Properties of User and System Parameters 575

User parameters have default values that are implementation depen-
dent. In some implementations, these default values are system
parameters that can be altered with setsystemparams. The default value
of a particular user parameter is a system parameter with the same
name.

The setsystemparams operator sets system parameters; currentsystem-
params reads their current values. Permission to alter system
parameters is controlled by a password. The dictionary passed to
setsystemparams must contain an entry named Password whose value
is equal to the system parameter password (a string or integer). If the
password is incorrect or absent, the operation will not be allowed.

Some system parameters can be set permanently—that is, in non-vola-
tile storage that survives restarts of the PostScript interpreter. This capa-
bility is implementation dependent. No error occurs if parameters
cannot be stored permanently. In some implementations, permanent
parameter changes do not take effect until the next restart of the Post-
Script interpreter.

In general, the cache size parameters (for example, MaxFontCache) are
simply limits. They do not represent memory dedicated to a specific
use. Caches compete with each other for available memory. The main
purpose of the limits is to prevent excessive memory from being
devoted to one use, to the exclusion of other uses. Under some circum-
stances, memory in use by a cache may be unavailable for satisfying the
needs of a PostScript language program—for instance, to allocate new
objects in VM or to enlarge a stack.

Usually, reducing the size of a cache causes cached items to be discarded
to make current consumption less than the new maximum. Sometimes,
for implementation reasons, this operation must be deferred. Conse-
quently, the current consumption for a cache may exceed the maxi-
mum temporarily.

Certain system parameters are read-only—that is, they are returned by
currentsystemparams, but attempting to change one by setsystem-
params has no effect. The read-only parameters report information
such as current memory consumption. Certain other parameters,
namely SystemParamsPassword and StartJobPassword, are write-only.
They can be set by setsystemparams, but are not returned by
currentsystemparams.

PLRM 2nd Edition January 27, 1994 Interpreter Parameters

576 Appendix C: Interpreter Parameters

C.3 Parameter Details

The following sections explain each parameter.

C.3.1 Passwords

The password that controls changing system parameters is itself a sys-
tem parameter, SystemParamsPassword, which can be changed by
setsystemparams. There is another password, StartJobPassword, that
controls the ability to execute the startjob operator to alter initial VM
(see section 3.7.7, “Job Execution Environment”). These two passwords
are separate so the system manager can be permissive about granting
access to startjob without compromising control over setsystem-
params.

A password is a string object subject to an implementation limit on its
length (see Appendix B). If an integer appears where a password is
expected, the integer is automatically converted to a string, as if by cvs.
All characters of a password are significant, and password comparison is
case-sensitive.

If a password is set to the empty (zero-length) string, password checking
is disabled. If SystemParamsPassword has been set to the empty string,
then setsystemparams is always allowed, regardless of the value of
Password passed to it. Similarly, if StartJobPassword has been set to the
empty string, then startjob is always allowed. When a PostScript inter-
preter is initially installed, both passwords are empty strings.

To change SystemParamsPassword, execute:

<<
/Password (oldpassword)
/SystemParamsPassword (newpassword)
>> setsystemparams

C.3.2 Font Cache

Two user parameters specify policies for inserting new items into the
font cache. These parameters, MaxFontItem and MinFontCompress,
control the behavior of the setcachedevice operator.

If a cached character would be larger than the MaxFontItem parameter,
as determined from the bounding box passed to setcachedevice, the
character will not be cached; otherwise, it will be (space permitting). If a

PLRM 2nd Edition January 27, 1994 Interpreter Parameters

C.3 Parameter Details 577

character that is cached would be larger than the MinFontCompress
parameter, it is stored in a space-efficient compressed representation. If
it is smaller, it is stored in a time-efficient, full-pixel-array representa-
tion. Compressed characters consume much less space in the font cache
than do full pixel arrays (by factors of up to 40), but require more com-
putation to reconstitute when they are needed. The MinFontCompress
parameter controls the trade-off between time and space.

There are three convenience operators that control the same font cache
parameters: setcachelimit, setcacheparams, and currentcacheparams.
setcachelimit exists in all Level 1 implementations; setcacheparams
and currentcacheparams exist in most, but not all. The Level 1
cachestatus operator returns some implementation-dependent infor-
mation in addition to what is available from currentsystemparams.

The MaxFontCache system parameter specifies an overall limit on the
size of the font cache, including both the device pixel arrays themselves
and other overhead, such as cached metrics.

C.3.3 Other Caches

User paths, forms, and patterns all use caches that are controlled in sim-
ilar ways.

The user parameters MaxUPathItem, MaxFormItem, and MaxPattern-
Item specify limits on the sizes of individual items to be inserted into
the respective caches. The system parameters MaxUPathCache,
MaxFormCache, and MaxPatternCache specify overall limits on the
sizes of the caches.

Two convenience operators, setucacheparams and ucachestatus, also
deal with the user path cache parameters. These operators exist for
compatibility with some existing Display PostScript applications.

C.3.4 Halftone Screens

Storage for halftone screens is managed somewhat differently than stor-
age for caches. The halftone machinery must have enough storage to
hold an expanded internal representation of the screen in use. It can
use any excess storage to hold a cache of screens that are not in use.

The MaxScreenItem user parameter specifies the maximum number of
bytes a single halftone screen can occupy. This is not a simple function
of the size of a halftone cell; it is influenced by frequency, angle, device

PLRM 2nd Edition January 27, 1994 Interpreter Parameters

578 Appendix C: Interpreter Parameters

resolution, and quantization of raster memory. The MaxScreenItem
parameter imposes an implementation limit on the size of screens that
can be used.

Use of the AccurateScreens feature of halftone dictionaries substantially
increases the storage requirement for a screen. Highest accuracy is
achieved only when sufficient memory is available. As a rule of thumb,
MaxScreenItem should be at least R × D × 5, where R is the device reso-
lution in pixels per inch and D is the diagonal length of the imageable
area of device space in inches.

The MaxScreenStorage system parameter specifies an overall limit on
the amount of storage for all active screens. A screen is active if it is the
current screen or if it was created by setscreen and has been saved on
the graphics state stack or in a gstate object. A screen created by
sethalftone is active only if it is the current screen.

C.3.5 VM and Stacks

The MaxLocalVM user parameter imposes a limit on the total amount
of local VM in use. Attempting to create a new composite object in local
VM will fail (with a VMerror) if the VM would exceed its limit. There is
no corresponding limit for global VM. The method for sharing global
VM among multiple execution contexts does not provide a way to
attribute VM consumption to a particular context.

Three other user parameters, MaxOpStack, MaxDictStack, and Max-
ExecStack, impose limits on the number of elements that can be pushed
onto the operand, dictionary, and execution stacks, respectively.
Attempting to exceed one of these limits will result in a stackoverflow,
dictstackoverflow, or execstackoverflow, respectively.

Normally, there are no limits on VM or stack allocation; that is, the
default values of these user parameters are extremely large numbers.
VM and stacks can grow without limit, subject only to the total amount
of memory that exists in the machine on which the PostScript inter-
preter is running. As VM and stack consumption increases, less memory
is available for the font cache and other uses. This can degrade perfor-
mance. The main use of the VM and stack limit parameters is to test the
behavior of applications in limited memory.

PLRM 2nd Edition January 27, 1994 Interpreter Parameters

C.4 Device Parameters 579

Two user parameters, VMReclaim and VMThreshold, control the be-
havior of the garbage collector. Normally, garbage collection is triggered
periodically and automatically to reclaim inaccessible objects in VM. It
is sometimes useful to disable garbage collection temporarily—say, in
order to obtain repeatable timing measurements.

Like all user parameters, the VM and stack parameters are maintained
separately for each context in a Display PostScript system. In particular,
if VM is shared among multiple contexts, the effects of a particular con-
text’s VM parameters apply only while that context is executing.

The vmstatus, vmreclaim, and setvmthreshold operators manipulate
some of the VM parameters. vmreclaim can also be used to trigger
immediate garbage collection.

C.4 Device Parameters

Each PostScript interpreter supports a collection of input/output and
storage devices, such as communication channels, disks, and cartridges.
The standard file operators, described in section 3.8, “File Input and
Output,” access these devices as files. Some devices have device-depen-
dent parameters. The setdevparams and currentdevparams operators
access these parameters.

A device is identified by a string of the form %device, or %device%,
which is a prefix of the %device%file syntax for named files in storage
devices (see section 3.8.2, “Named Files”). The available devices can be
enumerated by invoking the resourceforall operator for the IODevice
category (see section 3.9, “Named Resources”).

setdevparams is very similar to setsystemparams; the same restrictions
apply. The names and values of parameters for specific devices are
device and product dependent. They are not documented in this man-
ual, but in product-specific documentation.

PLRM 2nd Edition January 27, 1994 Interpreter Parameters

580 Appendix C: Interpreter Parameters

PLRM 2nd Edition January 21, 1994 Compatibility Strategies

581

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

APPENDIX D

Compatibility Strategies

As discussed in section 1.2, “Evolution of the PostScript Language,” the
PostScript language has undergone several significant extensions in
order to adapt to new technology and to incorporate new functionality
and flexibility. While the PostScript language is designed to be a univer-
sal standard for device-independent page description, the reality is that
there are different PostScript language implementations that have dif-
ferent sets of features. This appendix presents guidelines for taking
advantage of language extensions while maintaining compatibility
with all PostScript interpreters.

D.1 The Level Approach

PostScript implementations are organized into levels, of which two have
been defined.

• Level 1 interpreters implement all Level 1 features. Those features are
documented in the first edition of the PostScript Language Reference
Manual. In the present manual (second edition), Level 1 consists of
all features except the ones designated Level 2 or Display PostScript
features.

• Level 2 interpreters implement all Level 1 and Level 2 features. The
Level 2 features include CMYK color extensions, composite font
extensions, most of the Display PostScript extensions (to the extent
to which they apply to all raster devices), and many new features.

Level 2 is upwardly compatible with Level 1. Applications that work
with Level 1 interpreters, using language features as documented in the
first PostScript Language Reference Manual, will also work with Level 2
interpreters.

Example D.0
Table D.0
Figure D.0

PLRM 2nd Edition January 21, 1994 Compatibility Strategies

582 Appendix D: Compatibility Strategies

Level 2, however, is not backwardly compatible with Level 1. PostScript
language programs that use Level 2 operators and features do not auto-
matically work on Level 1 interpreters. For applications to take advan-
tage of Level 2 features while remaining compatible with Level 1
interpreters, one or more of the strategies described in section D.3,
“Compatibility Techniques,” must be adopted.

In addition to the two standard language levels, there are several lan-
guage extensions. An extension is a collection of language features that
are not a standard part of the language level (Level 1 or Level 2) sup-
ported by an implementation. For example, if a Level 1 implementation
includes the CMYK color features, those features are an extension, since
CMYK color is not part of Level 1. On the other hand, all Level 2 imple-
mentations include CMYK color features, since CMYK color is part of
Level 2.

Extensions exist because the PostScript language must evolve to support
new technologies and new applications. When an extension is intro-
duced, it is based on an existing language level. Extensions that prove
to be of general utility are candidates for inclusion in the next higher
standard language level. Many Level 2 features originated as extensions
to Level 1. Appendix A describes how these extensions are organized.

The advantages of the level approach are clear. Organizing features into
a small number of levels simplifies the choices that application software
developers must make. In contrast, organizing them as independent
extensions implemented in arbitrary combinations leads to an expo-
nential increase in choices. An application using features at a given
level is guaranteed to work with PostScript interpreter implementations
at that level and higher. PostScript Level 2 is a well-defined standard of
functionality for software developers to support.

Although the level approach simplifies application programming, it’s
sometimes necessary for applications to depend on specific extensions
for functional reasons. The following sections emphasize techniques for
Level 1 and Level 2 compatibility, but many of them are applicable
when dealing with extensions as well.

D.2 When To Provide Compatibility

An application must know what PostScript language operators are avail-
able to it. Essentially, there are two different scenarios:

PLRM 2nd Edition January 21, 1994 Compatibility Strategies

D.2 When To Provide Compatibility 583

• The application is outputting to a specific PostScript interpreter, in
which case it knows what the target interpreter is.

• The application is printing through a spooler or saving to a file, in
which case it does not know what the target interpreter is.

In the first case, the application can generate the PostScript language
program appropriate for the target interpreter. The application simply
needs to determine whether the interpreter is a Level 1 or Level 2
implementation before generating the PostScript language page descrip-
tion. There are two ways to do this:

• Consult a PPD file.

• Query the interpreter directly.

A PostScript printer description (PPD) file is a text file that can be read by
an application to obtain information about a specific printer product.
In the PPD file, the *LanguageLevel entry specifies the PostScript lan-
guage level the product supports. (If the entry is absent, the product
supports Level 1.) For information on PPD files, refer to the PostScript
Printer Description Files Specification available from the Adobe Systems
Developers’ Association.

If there is a bi-directional communication channel between the applica-
tion driver and the PostScript interpreter, the driver can determine the
interpreter’s capabilities by sending it a query job. The following pro-
gram queries the interpreter’s implementation level:

%!PS-Adobe-3.0 Query
%%?BeginQuery: Level
/languagelevel where

{pop languagelevel}
{1}

ifelse = flush
%%?EndQuery: 1

This query job returns a text line consisting of a single integer number:
the implementation level of the interpreter. Section G.8, “Query Con-
ventions,” presents guidelines for constructing query jobs.

Checking for the existence of language extensions that are not part of a
particular level is very similar. For example, some Level 1 implementa-
tions have the CMYK color extension. If the application wants to use
the CMYK color operators, it needs to find out whether the target inter-

PLRM 2nd Edition January 21, 1994 Compatibility Strategies

584 Appendix D: Compatibility Strategies

preter supports them. This, too, can be tested either by consulting the
product’s PPD file or by sending a query job to the interpreter. For
example:

%!PS-Adobe-3.0 Query
%%?BeginQuery: Color
/setcmykcolor where

{pop true}
{false}

ifelse = flush
%%?EndQuery: false

This returns either true or false, indicating whether the setcmykcolor
operator is available.

If an application is producing output not targeted to a particular inter-
preter, the strategy is entirely different. The application has three
options:

1. Generate a Level 1-only page description. The resulting program uses
only Level 1 features and can be sent to any interpreter.

2. Generate a Level 2-only page description. The resulting program uses
both Level 1 and Level 2 features and will execute correctly only
when sent to a Level 2 interpreter implementation.

3. Generate a page description that utilizes Level 2 features but pro-
vides for Level 1 compatibility. The resulting program can be sent to
any interpreter.

Option 1 is the simplest method for producing fully portable output. It
is entirely adequate for many applications. However, it sacrifices any
improvements in performance or programming convenience available
through use of Level 2 features.

Option 2 allows the application to take advantage of Level 2 features,
but at the cost of incompatibility with a Level 1 interpreter. This
approach makes the most sense when an application must use Level 2
features to perform functions that are simply unavailable in Level 1,
such as device-independent CIE-based color specification. Especially in
this case, the application should include the appropriate document
structuring comments (see Appendix G), so a print manager or spooler
can know that it must direct the page description to a Level 2 inter-
preter.

PLRM 2nd Edition January 21, 1994 Compatibility Strategies

D.3 Compatibility Techniques 585

Option 3 is the most desirable, because the resulting page description is
portable yet takes advantage of Level 2 features when they are available.
The idea behind this strategy is for the application to provide PostScript
language emulations of the Level 2 features the page description actu-
ally uses. When the program is executed, it determines whether the
interpreter supports the features and installs the emulations only if nec-
essary (see section D.4, “Installing Emulations”). This strategy may not
be the simplest or most efficient, but it takes best advantage of the fea-
tures available in different interpreters.

D.3 Compatibility Techniques

It is not possible to emulate every Level 2 feature in terms of Level 1
operators, but many features can be at least partially emulated. For
example, the array form of the user path operators can be emulated eas-
ily, but the encoded user path form can be emulated only with great diffi-
culty and probably with unacceptable cost in performance. The
application must determine an appropriate trade-off between the bene-
fit of using a feature and the cost of providing emulation for that
feature.

The following sections outline three main compatibility techniques:
complete emulation, partial emulation, and emulation in the applica-
tion driver.

D.3.1 Complete Emulation

Some Level 2 features are sufficiently simple that they can be com-
pletely emulated in terms of Level 1 features. For instance, the Level 2
operator selectfont is defined as:

key scale selectfont
key matrix selectfont

selectfont obtains a font whose name is key, transforms it according to
scale or matrix, and establishes it as the current font dictionary in the
graphics state. This is equivalent to executing findfont, scalefont (or
makefont), and setfont. But selectfont is more than just a convenience
operator: Its implementation is more efficient as well. Using selectfont
can significantly improve the performance of programs that switch
fonts frequently.

PLRM 2nd Edition January 21, 1994 Compatibility Strategies

586 Appendix D: Compatibility Strategies

The selectfont operator can be completely emulated in terms of Level 1
features as follows:

/selectfont {
exch findfont exch
dup type /arraytype eq {makefont}{scalefont} ifelse setfont

} bind def

A program can then invoke this emulation if the selectfont operator is
unavailable. Section D.4, “Installing Emulations,” describes the recom-
mended method for accomplishing this.

Note that this emulation of selectfont does not have the performance
gain that the real selectfont operator has. It is possible to write a Post-
Script language emulation of selectfont that caches scaled font diction-
aries, although this is tricky and probably not worthwhile.

D.3.2 Partial Emulation

Not all forms of certain operators can be emulated efficiently. For exam-
ple, the rectfill operator is defined as follows:

x y width height rectfill
numarray rectfill
numstring rectfill

It is straightforward to emulate the first form of rectfill, and, with a lit-
tle more work, the numarray form as well. However, it is difficult to effi-
ciently emulate the numstring form in terms of Level 1 features. For this
reason, Adobe recommends that applications avoid using the numstring
form when compatibility with Level 1 interpreters is required.

Note that an application can choose to emulate only the form of an
operator it actually uses. This eliminates unnecessary overhead in the
emulation procedure.

Example D.1 defines a procedure named *RF that is a partial emulation
of the rectfill operator.

PLRM 2nd Edition January 21, 1994 Compatibility Strategies

D.3 Compatibility Techniques 587

Example D.1

/BuildRectPath {
dup type dup /integertype eq exch /realtype eq or { %ifelse

4 –2 roll moveto % Operands are: x y width height
dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto closepath

}{ %else
dup length 4 sub 0 exch 4 exch % Operand is: numarray
{ %for

1 index exch 4 getinterval aload pop
BuildRectPath

} for
pop

} ifelse
} bind def

/*RF {
gsave newpath BuildRectPath fill grestore

} bind def

The reason for naming this emulation *RF and not rectfill is explained in
section D.4, “Installing Emulations.”

This emulation, in addition to omitting the numstring case altogether,
doesn’t emulate the numarray case precisely. rectfill draws all rectangles
counterclockwise in user space, whereas *RF draws a rectangle clockwise
if its height or width is negative. This affects the “insideness” computa-
tion if the rectangles overlap.

D.3.3 Emulation in the Driver

When emulation of a Level 2 feature is found to be too costly, the alter-
native is not to use that feature at all but to redesign the application’s
PostScript driver to obtain the same effect in a more efficient way. This
often requires the application to do more work, such as keeping track of
information that a Level 2 interpreter would maintain automatically.

For example, instead of using selectfont, a driver can keep track of
scaled font dictionaries it has referenced recently. When it detects that a
given font dictionary is needed multiple times, it can generate Post-
Script language commands to save the dictionary on first use and refer
to the saved dictionary on later uses. This achieves approximately the
same performance benefits as using selectfont, but at the cost of addi-
tional complexity in the driver.

PLRM 2nd Edition January 21, 1994 Compatibility Strategies

588 Appendix D: Compatibility Strategies

Adobe has developed a prototype driver implementing this strategy.
This software is available in C language source form from the Adobe
Systems Developers’ Association.

D.4 Installing Emulations

When defining a PostScript language emulation of some operator, it is
important not to give the emulation the same name as the real operator
unless it is a complete emulation. This is because another page descrip-
tion included in the same job (an encapsulated file, for instance) may
require a particular form of an operator that is not emulated; when it
encounters the emulation, an error results. Note that in Example D.1
on page 587, the emulation of rectfill is not complete and is not named
rectfill.

Emulation of operators should be done conditionally, based on whether
the operator already exists. For example, it does not make sense to
define a procedure named selectfont if the real selectfont operator
already exists. Conditional emulation can be performed in one of two
ways:

• Use the languagelevel operator to determine whether to install emu-
lations of all required Level 2 operators as a group.

• Use the where operator to determine whether to install emulations
of Level 2 operators individually. This is appropriate for those opera-
tors that are available as extensions to Level 1 in some products (see
Appendix A).

Example D.2 uses the first method to provide conditional emulation of
the Level 2 selectfont and rectfill operators. This example makes use of
the *RF procedure defined in Example D.1 on page 587.

Example D.2

/*SF { % Complete selectfont emulation
exch findfont exch
dup type /arraytype eq {makefont}{scalefont} ifelse setfont

} bind def

/languagelevel where % Determine language level
{pop languagelevel} {1} ifelse % of implementation

2 lt { % ifelse
/SF /*SF load def % Level 1 interpreter present, so
/RF /*RF load def % use emulations defined above

PLRM 2nd Edition January 21, 1994 Compatibility Strategies

D.4 Installing Emulations 589

} { % else
/SF /selectfont load def % Level 2 interpreter present, so
/RF /rectfill load def % use existing operators

} ifelse

The examples together define procedures named *SF and *RF to emulate
selectfont and rectfill, respectively. Then, based on the results of the
languagelevel operator, Example D.2 binds either the emulations or the
real Level 2 operators to short names—SF and RF—that can be used later
in the page description.

This approach has three noteworthy features.

• An existing operator will always be used in preference to an
emulation.

• An emulation is never given the same name as an operator. Thus,
embedded programs will not be fooled into believing that an opera-
tor is defined when it isn’t.

• The script of the page description can invoke operations using short
names, such as SF and RF, without regard for whether those opera-
tions are performed by operators or by emulations.

Although testing for desired PostScript language operators with the
where operator is appropriate, testing for application-defined proce-
dures this way is not. This can lead to trouble in the future if an opera-
tor of the same name happens to come into existence. The correct way
to test for application-defined procedures is to look them up in the
application’s own dictionary with the known operator rather than
using the where operator.

PLRM 2nd Edition January 21, 1994 Compatibility Strategies

590 Appendix D: Compatibility Strategies

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

591

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

APPENDIX E

Standard Character Sets
and Encoding Vectors

This appendix describes the characters sets and encoding vectors of font
programs found in a typical PostScript printer or Display PostScript sys-
tem. While there is not a standard set of fonts that is required by the
PostScript language, most PostScript products include software for 13
standard fonts from the Times*, Helvetica*, Courier, and Symbol fami-
lies. Samples of the complete character sets for these fonts appear in the
following sections.

The appendix then documents the entire character set for Adobe’s stan-
dard text fonts, expert fonts, and the Symbol font. For each character
set, every character is shown along with its full name and octal charac-
ter code (unencoded characters are indicated by —). This is followed by
detailed tables of the encoding vectors normally associated with a font
program using that character set. These encoding vectors include
StandardEncoding, ISOLatin1Encoding, Expert, ExpertSubset and
Symbol.

The StandardEncoding and ISOLatin1Encoding encoding vectors are
names in systemdict associated with their encoding array objects. The
Expert, ExpertSubset, and Symbol encoding vectors are defined in the
font program itself. The ExpertSubset encoding vector is used by some
Adobe font programs, such as AGaramondExpert-Bold, that do not con-
tain the entire expert character set. For more information on encoding
vectors, see section 5.3, “Character Encoding.”

5!

Example E.0
Table E.0
Figure E.0

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

592 Appendix E: Standard Character Sets and Encoding Vectors

E.1 Times Family

In 1931 The Times of London commissioned Monotype corporation,
under the direction of Stanley Morison, to design a newspaper typeface.
Times New Roman® was the result. The Linotype version shown here is
called Times Roman. It continues to be popular for both newspaper and
business applications, such as reports and correspondence.

Times-Roman A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

Times-Italic A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

Times-Bold A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

Times-BoldItalic A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

E.2 Helvetica Family 593

E.2 Helvetica Family

One of the most popular typefaces of all time, Helvetica was designed
by Max Miedinger in 1957 for the Hass foundry in Switzerland. The
name is derived from Helvetia, the Swiss name for Switzerland.
Helvetica’s range of styles allows a variety of uses, including headlines,
packaging, posters, and short text blocks, such as captions.

Helvetica A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

Helvetica-Oblique A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

Helvetica-Bold A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

Helvetica-BoldOblique A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

594 Appendix E: Standard Character Sets and Encoding Vectors

E.3 Courier Family

Courier was originally designed as a typewriter face for IBM in 1952 by
Howard Kettler. Courier is a monospaced, or fixed-pitch, font suitable
for use in tabular material, program listings, or word processing.

Courier A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

Courier-Oblique A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

Courier-Bold A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

Courier-BoldOblique A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z & 0 1 2 3 4 5 6 7 8 9

Æ Á Â Ä À Å Ã Ç Ð É Ê Ë È Í Î Ï Ì Ł Ñ Œ Ó Ô Ö Ò Õ Ø Š Þ Ú

Û Ü Ù Ÿ Ý Ž æ á â ä à å ã ç é ê ë è ð fi fl í î ï ì ı µ ł ñ œ ó ô ö ò õ ø š þ ß

ú û ü ù ÿ ý ž £ ¥ ƒ $ ¢ ¤ ™ © ® @ ª º † ‡ § ¶ * ! ¡ ? ¿ . , ; : ‘ ’ “ ” ‚ „ … ' "

‹ › « » () [] { } | / \ - – — _ ˛ ¸ ´ ˆ ¨ ` ˚ ˜ ¯ ˘ ˙ ˇ ˝ •

% ‰ ¼ ¾ ½ = − + × ~ < ± > ÷ ¬ ° ^ ⁄ · ¦ ¹ ² ³

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

E.4 Symbol 595

E.4 Symbol

Sample Uses

αβχδεφγηικλµνοπθρστυωξψζϕϖϑς

ΑΒΧ∆ΕΦΓΗΙΚΛΜΝΟΠΘΡΣΤΥΩΞΨΖϒ
= ≠ ≡ ≈ ≅ < > ≤ ≥ ∧ ∨ ∴ − + ± × ÷ ¬ • ⋅
∀ ∃ ƒ ∂ ∋ ∩ ∪ ⊃ ⊂ ⊇ ⊆ ⊄ ∈ ∉ ∅ ⊗ ⊕ ∞ ∝
↔ ← → ↑ ↓ ⇔ ⇐ ⇒ ⇑ ⇓ ° ′ ″ ↵ ℵ ℑ ℜ ℘
… 〈 ◊ ∑ ∏ 〉 ∠ ⊥ ∇ ♣ ♦ ♥ ♠
! # % ∗ & 0 1 2 3 4 5 6 7 8 9 . , ; : _ ∼ | / ⁄ √

∫ ⌠ { } [] ()

⌡

ε = min
x > 0

 (x | (1 + x) ≠ 1)

w (ξ′ − ξ″) = ∑
i = 1

m

 | Ci ∩ { ξ′ } | ⋅ | Ci ∩ { ξ″ } | if ξ′, ξ″ ∈ L and ξ′ ≠ ξ″

∪n
i = 1

 Zi (t) ⊆ M

Zi (t) ∩ Zj (t) = ∅ (i ≠ j)

proposition true if and only if

(∀u) s (p) S ∩ T′p = ∅
(∃u) s (p) S ∩ Tp ≠ ∅
(∀u) s (~ p) S ∩ Tp = ∅
(∃u) s (~ p) S ∩ T′p ≠ ∅
∼((∀u) s (p)) S ∩ T′p ≠ ∅
∼((∃u) s (p)) S ∩ Tp = ∅

kp
k ⁄ 2
 t

– 1
 Ik (at) ⇔

s + √s2 − 4λµ

2λ

 –k

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

596 Appendix E: Standard Character Sets and Encoding Vectors

E.5 Standard Roman Character Set

Code (octal) Code (octal) Code (octal)
Char Name Std ISO Char Name Std ISO Char Name Std ISO

A A 101 101
Æ AE 341 306
Á Aacute — 301
Â Acircumflex — 302
Ä Adieresis — 304
À Agrave — 300
Å Aring — 305
Ã Atilde — 303
B B 102 102
C C 103 103
Ç Ccedilla — 307
D D 104 104
E E 105 105
É Eacute — 311
Ê Ecircumflex — 312
Ë Edieresis — 313
È Egrave — 310
Ð Eth — 320
F F 106 106
G G 107 107
H H 110 110
I I 111 111
Í Iacute — 315
Î Icircumflex — 316
Ï Idieresis — 317
Ì Igrave — 314
J J 112 112

K K 113 113
L L 114 114
Ł Lslash 350 —

M M 115 115
N N 116 116
Ñ Ntilde — 321
O O 117 117
Œ OE 352 —
Ó Oacute — 323
Ô Ocircumflex — 324
Ö Odieresis — 326
Ò Ograve — 322

Ø Oslash 351 330
Õ Otilde — 325
P P 120 120
Q Q 121 121
R R 122 122
S S 123 123
Š Scaron — —
T T 124 124
Þ Thorn — 336
U U 125 125
Ú Uacute — 332
Û Ucircumflex — 333
Ü Udieresis — 334
Ù Ugrave — 331
V V 126 126

W W 127 127
X X 130 130
Y Y 131 131
Ý Yacute — 335
Ÿ Ydieresis — —
Z Z 132 132
Ž Zcaron — —
a a 141 141
á aacute — 341
â acircumflex — 342
´ acute 302 222
´ acute 302 264
ä adieresis — 344
æ ae 361 346
à agrave — 340

& ampersand 046 046
å aring — 345
^ asciicircum 136 136
~ asciitilde 176 176
* asterisk 052 052

@ at 100 100
ã atilde — 343
b b 142 142
\ backslash 134 134

| bar 174 174
{ braceleft 173 173
} braceright 175 175
[bracketleft 133 133
] bracketright 135 135
˘ breve 306 226
¦ brokenbar — 246
• bullet 267 —
c c 143 143
ˇ caron 317 237
ç ccedilla — 347
¸ cedilla 313 270
¢ cent 242 242
ˆ circumflex 303 223
: colon 072 072
, comma 054 054

© copyright — 251
¤ currency 250 244
d d 144 144
† dagger 262 —
‡ daggerdbl 263 —
° degree — 260
¨ dieresis 310 250
÷ divide — 367
$ dollar 044 044
˙ dotaccent 307 227
ı dotlessi 365 220
e e 145 145
é eacute — 351
ê ecircumflex — 352
ë edieresis — 353
è egrave — 350
8 eight 070 070

… ellipsis 274 —
— emdash 320 —
– endash 261 —
= equal 075 075
ð eth — 360
! exclam 041 041

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

E.5 Standard Roman Character Set 597

Code (octal) Code (octal) Code (octal)
Char Name Std ISO Char Name Std ISO Char Name Std ISO

¡ exclamdown 241 241
f f 146 146
fi fi 256 —
5 five 065 065
fl fl 257 —
ƒ florin 246 —
4 four 064 064
⁄ fraction 244 —

g g 147 147
ß germandbls 373 337
` grave 301 221
> greater 076 076
« guillemotleft 253 253
» guillemotright 273 273
‹ guilsinglleft 254 —
› guilsinglright 255 —

h h 150 150
˝ hungarumlaut 315 235
- hyphen 055 255
i i 151 151
í iacute — 355
î icircumflex — 356
ï idieresis — 357
ì igrave — 354
j j 152 152
k k 153 153
l l 154 154
< less 074 074
¬ logicalnot — 254
ł lslash 370 —

m m 155 155
¯ macron 305 257
− minus — 055
µ mu — 265
× multiply — 327
n n 156 156
9 nine 071 071
ñ ntilde — 361
numbersign 043 043

o o 157 157
ó oacute — 363
ô ocircumflex — 364
ö odieresis — 366

œ oe 372 —
˛ ogonek 316 236
ò ograve — 362
1 one 061 061
½ onehalf — 275
¼ onequarter — 274
¹ onesuperior — 271
ª ordfeminine 343 252
º ordmasculine 353 272
ø oslash 371 370
õ otilde — 365
p p 160 160
¶ paragraph 266 266
(parenleft 050 050
) parenright 051 051

% percent 045 045
. period 056 056
· periodcentered 264 267

‰ perthousand 275 —
+ plus 053 053
± plusminus — 261
q q 161 161
? question 077 077
¿ questiondown 277 277
" quotedbl 042 042
„ quotedblbase 271 —
“ quotedblleft 252 —
” quotedblright 272 —
‘ quoteleft 140 140
’ quoteright 047 047
‚ quotesinglbase 270 —
' quotesingle 251 —
r r 162 162

® registered — 256
˚ ring 312 232

s s 163 163
š scaron — —
§ section 247 247
; semicolon 073 073

7 seven 067 067
6 six 066 066
/ slash 057 057
 space 040 040

£ sterling 243 243
t t 164 164
þ thorn — 376
3 three 063 063
¾ threequarters — 276
³ threesuperior — 263
˜ tilde 304 224

™ trademark — —
2 two 062 062
² twosuperior — 262
u u 165 165
ú uacute — 372
û ucircumflex — 373
ü udieresis — 374
ù ugrave — 371
_ underscore 137 137
v v 166 166
w w 167 167
x x 170 170
y y 171 171
ý yacute — 375
ÿ ydieresis — 377
¥ yen 245 245
z z 172 172
ž zcaron — —
0 zero 060 060

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

598 Appendix E: Standard Character Sets and Encoding Vectors

E.6 StandardEncoding Encoding Vector

 ! " # $ % & ’

() * + , - . /

0 1 2 3 4 5 6 7

8 9 : ; < = > ?

@ A B C D E F G

H I J K L M N O

P Q R S T U V W

X Y Z [\] ^ _

‘ a b c d e f g

h i j k l m n o

p q r s t u v w

x y z { | } ~

¡ ¢ £ ⁄ ¥ ƒ §

¤ ' “ « ‹ › fi fl

– † ‡ · ¶ •

‚ „ ” » … ‰ ¿

` ´ ˆ ˜ ¯ ˘ ˙

¨ ˚ ¸ ˝ ˛ ˇ

—

Æ ª

Ł Ø Œ º

æ ı

ł ø œ ß

0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

\20x

\21x

\22x

\23x

\24x

\25x

\26x

\27x

\30x

\31x

\32x

\33x

\34x

\35x

\36x

\37x

octal

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

E.7 ISOLatin1Encoding Encoding Vector 599

E.7 ISOLatin1Encoding Encoding Vector

 ! " # $ % & ’

() * + , − . /

0 1 2 3 4 5 6 7

8 9 : ; < = > ?

@ A B C D E F G

H I J K L M N O

P Q R S T U V W

X Y Z [\] ^ _

‘ a b c d e f g

h i j k l m n o

p q r s t u v w

x y z { | } ~

ı ` ´ ˆ ˜ ¯ ˘ ˙

¨ ˚ ¸ ˝ ˛ ˇ

 ¡ ¢ £ ¤ ¥ ¦ §

¨ © ª « ¬ - ® ¯

° ± ² ³ ´ µ ¶ ·

¸ ¹ º » ¼ ½ ¾ ¿

À Á Â Ã Ä Å Æ Ç

È É Ê Ë Ì Í Î Ï

Ð Ñ Ò Ó Ô Õ Ö ×

Ø Ù Ú Û Ü Ý Þ ß

à á â ã ä å æ ç

è é ê ë ì í î ï

ð ñ ò ó ô õ ö ÷

ø ù ú û ü ý þ ÿ

0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

\20x

\21x

\22x

\23x

\24x

\25x

\26x

\27x

\30x

\31x

\32x

\33x

\34x

\35x

\36x

\37x

octal

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

600 Appendix E: Standard Character Sets and Encoding Vectors

E.8 Expert Character Set

Char Name Code Char Name Code Char Name Code

æ AEsmall 346
Æ Aacutesmall 341
â Acircumflexsmall 342
’ Acutesmall 047
ä Adieresissmall 344
à Agravesmall 340
å Aringsmall 345
a Asmall 141
ª Atildesmall 343
' Brevesmall 251
b Bsmall 142
“ Caronsmall 252
ç Ccedillasmall 347
‚ Cedillasmall 270
^ Circumflexsmall 136
c Csmall 143
¤ Dieresissmall 250
‹ Dotaccentsmall 254
d Dsmall 144
Ø Eacutesmall 351
Œ Ecircumflexsmall 352
º Edieresissmall 353
Ł Egravesmall 350
e Esmall 145
ð Ethsmall 360
f Fsmall 146
‘ Gravesmall 140
g Gsmall 147
h Hsmall 150
" Hungarumlautsmall 042
í Iacutesmall 355
î Icircumflexsmall 356
ï Idieresissmall 357
ì Igravesmall 354
i Ismall 151
j Jsmall 152
k Ksmall 153
£ Lslashsmall 243
l Lsmall 154

fl Macronsmall 257
m Msmall 155
n Nsmall 156
æ Ntildesmall 361
÷ OEsmall 367
ó Oacutesmall 363
ô Ocircumflexsmall 364
ö Odieresissmall 366
¶ Ogoneksmall 266
ò Ogravesmall 362
ł Oslashsmall 370
o Osmall 157
ı Otildesmall 365
p Psmall 160
q Qsmall 161
• Ringsmall 267
r Rsmall 162
ƒ Scaronsmall 246
s Ssmall 163
þ Thornsmall 376
~ Tildesmall 176
t Tsmall 164
œ Uacutesmall 372
ß Ucircumflexsmall 373
ü Udieresissmall 374
ø Ugravesmall 371
u Usmall 165
v Vsmall 166
w Wsmall 167
x Xsmall 170
ý Yacutesmall 375
ÿ Ydieresissmall 377
y Ysmall 171
§ Zcaronsmall 247
z Zsmall 172
& ampersandsmall 046
A asuperior 101
B bsuperior 102
Ü centinferior 334

¢ centoldstyle 242
C centsuperior 103
: colon 072
{ colonmonetary 173
, comma 054
ß commainferior 337
< commasuperior 074
Ý dollarinferior 335
$ dollaroldstyle 044
% dollarsuperior 045
D dsuperior 104
Ú eightinferior 332
8 eightoldstyle 070
— eightsuperior 320
E esuperior 105
¡ exclamdownsmall 241
! exclamsmall 041
V ff 126
Y ffi 131
Z ffl 132
W fi 127
† figuredash 262
´ fiveeighths 302
× fiveinferior 327
5 fiveoldstyle 065
˝ fivesuperior 315
X fl 130
Ö fourinferior 326
4 fouroldstyle 064
Ì foursuperior 314
/ fraction 057
- hyphen 055
‡ hypheninferior 263
_ hyphensuperior 137
I isuperior 111
L lsuperior 114
M msuperior 115
Û nineinferior 333
9 nineoldstyle 071

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

E.8 Expert Character Set 601

Char Name Code Char Name Code Char Name Code

Ñ ninesuperior 321
N nsuperior 116
+ onedotenleader 053
À oneeighth 300
| onefitted 174
‰ onehalf 275
Ó oneinferior 323
1 oneoldstyle 061
… onequarter 274
É onesuperior 311
˜ onethird 304
O osuperior 117
[parenleftinferior 133
(parenleftsuperior 050
] parenrightinferior 135
) parenrightsuperior 051

. period 056
Þ periodinferior 336
> periodsuperior 076
¿ questiondownsmall 277
? questionsmall 077
R rsuperior 122
} rupiah 175
; semicolon 073
ˆ seveneighths 303
Ù seveninferior 331
7 sevenoldstyle 067
ˇ sevensuperior 317
Ø sixinferior 330
6 sixoldstyle 066
˛ sixsuperior 316
 space 040

S ssuperior 123
` threeeighths 301
Õ threeinferior 325
3 threeoldstyle 063
¾ threequarters 276
= threequartersemdash 075
¸ threesuperior 313
T tsuperior 124
* twodotenleader 052
Ô twoinferior 324
2 twooldstyle 062
˚ twosuperior 312
¯ twothirds 305
Ò zeroinferior 322
0 zerooldstyle 060
¨ zerosuperior 310

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

602 Appendix E: Standard Character Sets and Encoding Vectors

E.9 Expert Encoding Vector

 ! " # $ % & ’

() * + , - . /

0 1 2 3 4 5 6 7

8 9 : ; < = > ?

@ A B C D E F G

H I J K L M N O

P Q R S T U V W

X Y Z [\] ^ _

‘ a b c d e f g

h i j k l m n o

p q r s t u v w

x y z { | } ~

¡ ¢ £ ⁄ ¥ ƒ §

¤ ' “ « ‹ › fi fl

– † ‡ · ¶ •

‚ „ ” » … ‰ ¿

` ´ ˆ ˜ ¯ ˘ ˙

¨ ˚ ¸ ˝ ˛ ˇ

—

Æ ª

Ł Ø Œ º

æ ı

ł ø œ ß

0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

\20x

\21x

\22x

\23x

\24x

\25x

\26x

\27x

\30x

\31x

\32x

\33x

\34x

\35x

\36x

\37x

octal

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

E.10 ExpertSubset Encoding Vector 603

E.10 ExpertSubset Encoding Vector

 ! " # $ % & ’

() * + , - . /

0 1 2 3 4 5 6 7

8 9 : ; < = > ?

@ A B C D E F G

H I J K L M N O

P Q R S T U V W

X Y Z [\] ^ _

‘ a b c d e f g

h i j k l m n o

p q r s t u v w

x y z { | } ~

¡ ¢ £ ⁄ ¥ ƒ §

¤ ' “ « ‹ › fi fl

– † ‡ · ¶ •

‚ „ ” » … ‰ ¿

` ´ ˆ ˜ ¯ ˘ ˙

¨ ˚ ¸ ˝ ˛ ˇ

—

Æ ª

Ł Ø Œ º

æ ı

ł ø œ ß

0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

\20x

\21x

\22x

\23x

\24x

\25x

\26x

\27x

\30x

\31x

\32x

\33x

\34x

\35x

\36x

\37x

octal

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

604 Appendix E: Standard Character Sets and Encoding Vectors

E.11 Symbol Character Set

Char Name Code Char Name Code Char Name Code

Α Alpha 101
Β Beta 102
Χ Chi 103
∆ Delta 104
Ε Epsilon 105
Η Eta 110
Γ Gamma 107
ℑ Ifraktur 301
Ι Iota 111

Κ Kappa 113
Λ Lambda 114
Μ Mu 115
Ν Nu 116
Ω Omega 127
Ο Omicron 117
Φ Phi 106
Π Pi 120
Ψ Psi 131
ℜ Rfraktur 302
Ρ Rho 122
Σ Sigma 123
Τ Tau 124
Θ Theta 121
Υ Upsilon 125
ϒ Upsilon1 241
Ξ Xi 130
Ζ Zeta 132
ℵ aleph 300
α alpha 141
& ampersand 046
∠ angle 320
〈 angleleft 341
〉 angleright 361
≈ approxequal 273

↔ arrowboth 253
⇔ arrowdblboth 333
⇓ arrowdbldown 337

⇐ arrowdblleft 334
⇒ arrowdblright 336

⇑ arrowdblup 335
↓ arrowdown 257

 arrowhorizex 276
← arrowleft 254
→ arrowright 256
↑ arrowup 255
 arrowvertex 275
∗ asteriskmath 052
| bar 174

β beta 142
{ braceleft 173
} braceright 175
 bracelefttp 354
 braceleftmid 355
 braceleftbt 356
 bracerighttp 374
 bracerightmid 375
 bracerightbt 376
 braceex 357
[bracketleft 133
] bracketright 135
 bracketlefttp 351
 bracketleftex 352
 bracketleftbt 353
 bracketrighttp 371
 bracketrightex 372
 bracketrightbt 373
• bullet 267
↵ carriagereturn 277
χ chi 143
⊗ circlemultiply 304
⊕ circleplus 305
♣ club 247
: colon 072
, comma 054

≅ congruent 100
 copyrightsans 343
 copyrightserif 323
° degree 260

δ delta 144
♦ diamond 250
÷ divide 270
⋅ dotmath 327
8 eight 070
∈ element 316

… ellipsis 274
∅ emptyset 306
ε epsilon 145
= equal 075
≡ equivalence 272
η eta 150
! exclam 041
∃ existential 044
5 five 065
ƒ florin 246
4 four 064
⁄ fraction 244
γ gamma 147

∇ gradient 321
> greater 076
≥ greaterequal 263
♥ heart 251
∞ infinity 245
∫ integral 362

⌠ integraltp 363
 integralex 364
⌡ integralbt 365
∩ intersection 307
ι iota 151
κ kappa 153
λ lambda 154
< less 074
≤ lessequal 243
∧ logicaland 331
¬ logicalnot 330
∨ logicalor 332
◊ lozenge 340
− minus 055

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

E.11 Symbol Character Set 605

Char Name Code Char Name Code Char Name Code

′ minute 242
µ mu 155
× multiply 264
9 nine 071
∉ notelement 317
≠ notequal 271
⊄ notsubset 313
ν nu 156
numbersign 043
ω omega 167
ϖ omega1 166
ο omicron 157
1 one 061
(parenleft 050
) parenright 051
 parenlefttp 346
 parenleftex 347
 parenleftbt 350
 parenrighttp 366
 parenrightex 367
 parenrightbt 370
∂ partialdiff 266

% percent 045
. period 056

⊥ perpendicular 136
φ phi 146
ϕ phi1 152
π pi 160
+ plus 053
± plusminus 261
∏ product 325
⊂ propersubset 314
⊃ propersuperset 311
∝ proportional 265
ψ psi 171
? question 077
√ radical 326
 radicalex 140
⊆ reflexsubset 315
⊇ reflexsuperset 312
 registersans 342
 registerserif 322
ρ rho 162
″ second 262
; semicolon 073
7 seven 067
σ sigma 163
ς sigma1 126

∼ similar 176
6 six 066
/ slash 057
 space 040

♠ spade 252
∋ suchthat 047
∑ summation 345
τ tau 164

∴ therefore 134
θ theta 161
ϑ theta1 112
3 three 063

 trademarksans 344
 trademarkserif 324
2 two 062
_ underscore 137
∪ union 310
∀ universal 042
υ upsilon 165

℘ weierstrass 303
ξ xi 170
0 zero 060
ζ zeta 172

PLRM 2nd Edition January 21, 1994 Standard Character Sets and Encoding Vectors

606 Appendix E: Standard Character Sets and Encoding Vectors

E.12 Symbol Encoding Vector

 ! ∀ # ∃ % & ∋
() ∗ + , − . /
0 1 2 3 4 5 6 7
8 9 : ; < = > ?
≅ Α Β Χ ∆ Ε Φ Γ
Η Ι ϑ Κ Λ Μ Ν Ο
Π Θ Ρ Σ Τ Υ ς Ω
Ξ Ψ Ζ [∴] ⊥ _
 α β χ δ ε φ γ
η ι ϕ κ λ µ ν ο
π θ ρ σ τ υ ϖ ω
ξ ψ ζ { | } ∼

ϒ ′ ≤ ⁄ ∞ ƒ ♣
♦ ♥ ♠ ↔ ← ↑ → ↓
° ± ″ ≥ × ∝ ∂ •
÷ ≠ ≡ ≈ … ↵
ℵ ℑ ℜ ℘ ⊗ ⊕ ∅ ∩
∪ ⊃ ⊇ ⊄ ⊂ ⊆ ∈ ∉
∠ ∇ ∏ √ ⋅
¬ ∧ ∨ ⇔ ⇐ ⇑ ⇒ ⇓
◊ 〈 ∑

〉 ∫ ⌠ ⌡

0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x

\05x

\06x

\07x

\10x

\11x

\12x

\13x

\14x

\15x

\16x

\17x

\20x

\21x

\22x

\23x

\24x

\25x

\26x

\27x

\30x

\31x

\32x

\33x

\34x

\35x

\36x

\37x

octal

PLRM 2nd Edition January 21, 1994 System Name Encodings

607

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

APPENDIX F

System Name Encodings

Table F.1 System name encodings

Index Name Index Name

Example F.0
Table F.0
Figure F.0

0 abs

1 add

2 aload

3 anchorsearch

4 and

5 arc

6 arcn

7 arct

8 arcto

9 array

10 ashow

11 astore

12 awidthshow

13 begin

14 bind

15 bitshift

16 ceiling

17 charpath

18 clear

19 cleartomark

20 clip

21 clippath

22 closepath

23 concat

24 concatmatrix

25 copy

26 count

27 counttomark

28 currentcmykcolor

29 currentdash

30 currentdict

31 currentfile

32 currentfont

33 currentgray

34 currentgstate

35 currenthsbcolor

36 currentlinecap

37 currentlinejoin

38 currentlinewidth

39 currentmatrix

40 currentpoint

41 currentrgbcolor

42 currentshared

43 curveto

44 cvi

45 cvlit

46 cvn

47 cvr

48 cvrs

49 cvs

50 cvx

51 def

52 defineusername

53 dict

54 div

55 dtransform

56 dup

57 end

58 eoclip

59 eofill

60 eoviewclip

61 eq

PLRM 2nd Edition January 21, 1994 System Name Encodings

608 Appendix F: System Name Encodings

62 exch

63 exec

64 exit

65 file

66 fill

67 findfont

68 flattenpath

69 floor

70 flush

71 flushfile

72 for

73 forall

74 ge

75 get

76 getinterval

77 grestore

78 gsave

79 gstate

80 gt

81 identmatrix

82 idiv

83 idtransform

84 if

85 ifelse

86 image

87 imagemask

88 index

89 ineofill

90 infill

91 initviewclip

92 inueofill

93 inufill

94 invertmatrix

95 itransform

96 known

97 le

98 length

99 lineto

100 load

101 loop

102 lt

103 makefont

104 matrix

105 maxlength

106 mod

107 moveto

108 mul

109 ne

110 neg

111 newpath

112 not

113 null

114 or

115 pathbbox

116 pathforall

117 pop

118 print

119 printobject

120 put

121 putinterval

122 rcurveto

123 read

124 readhexstring

125 readline

126 readstring

127 rectclip

128 rectfill

129 rectstroke

130 rectviewclip

131 repeat

132 restore

133 rlineto

134 rmoveto

135 roll

136 rotate

137 round

138 save

139 scale

140 scalefont

141 search

142 selectfont

143 setbbox

144 setcachedevice

145 setcachedevice2

146 setcharwidth

147 setcmykcolor

148 setdash

149 setfont

150 setgray

151 setgstate

152 sethsbcolor

153 setlinecap

154 setlinejoin

155 setlinewidth

156 setmatrix

157 setrgbcolor

158 setshared

159 shareddict

160 show

161 showpage

162 stop

163 stopped

164 store

165 string

166 stringwidth

167 stroke

168 strokepath

169 sub

170 systemdict

171 token

172 transform

173 translate

174 truncate

175 type

176 uappend

177 ucache

178 ueofill

179 ufill

180 undef

181 upath

182 userdict

183 ustroke

184 viewclip

185 viewclippath

186 where

187 widthshow

188 write

189 writehexstring

190 writeobject

191 writestring

192 wtranslation

193 xor

PLRM 2nd Edition January 21, 1994 System Name Encodings

System Name Encodings 609

194 xshow

195 xyshow

196 yshow

197 FontDirectory

198 SharedFontDirectory

199 Courier

200 Courier-Bold

201 Courier-BoldOblique

202 Courier-Oblique

203 Helvetica

204 Helvetica-Bold

205 Helvetica-BoldOblique

206 Helvetica-Oblique

207 Symbol

208 Times-Bold

209 Times-BoldItalic

210 Times-Italic

211 Times-Roman

212 execuserobject

213 currentcolor

214 currentcolorspace

215 currentglobal

216 execform

217 filter

218 findresource

219 globaldict

220 makepattern

221 setcolor

222 setcolorspace

223 setglobal

224 setpagedevice

225 setpattern

256 =

257 ==

258 ISOLatin1Encoding

259 StandardEncoding

260 [

261]

262 atan

263 banddevice

264 bytesavailable

265 cachestatus

266 closefile

267 colorimage

268 condition

269 copypage

270 cos

271 countdictstack

272 countexecstack

273 cshow

274 currentblackgeneration

275 currentcacheparams

276 currentcolorscreen

277 currentcolortransfer

278 currentcontext

279 currentflat

280 currenthalftone

281 currenthalftonephase

282 currentmiterlimit

283 currentobjectformat

284 currentpacking

285 currentscreen

286 currentstrokeadjust

287 currenttransfer

288 currentundercolorremoval

289 defaultmatrix

290 definefont

291 deletefile

292 detach

293 deviceinfo

294 dictstack

295 echo

296 erasepage

297 errordict

298 execstack

299 executeonly

300 exp

301 false

302 filenameforall

303 fileposition

304 fork

305 framedevice

306 grestoreall

307 handleerror

308 initclip

309 initgraphics

310 initmatrix

311 instroke

312 inustroke

313 join

314 kshow

315 ln

316 lock

317 log

318 mark

319 monitor

320 noaccess

321 notify

322 nulldevice

323 packedarray

324 quit

325 rand

326 rcheck

327 readonly

328 realtime

329 renamefile

330 renderbands

331 resetfile

332 reversepath

333 rootfont

334 rrand

335 run

336 scheck

337 setblackgeneration

338 setcachelimit

339 setcacheparams

340 setcolorscreen

341 setcolortransfer

342 setfileposition

343 setflat

344 sethalftone

345 sethalftonephase

346 setmiterlimit

347 setobjectformat

348 setpacking

349 setscreen

350 setstrokeadjust

351 settransfer

352 setucacheparams

353 setundercolorremoval

354 sin

355 sqrt

PLRM 2nd Edition January 21, 1994 System Name Encodings

610 Appendix F: System Name Encodings

356 srand

357 stack

358 status

359 statusdict

360 true

361 ucachestatus

362 undefinefont

363 usertime

364 ustrokepath

365 version

366 vmreclaim

367 vmstatus

368 wait

369 wcheck

370 xcheck

371 yield

372 defineuserobject

373 undefineuserobject

374 UserObjects

375 cleardictstack

376 A

377 B

378 C

379 D

380 E

381 F

382 G

383 H

384 I

385 J

386 K

387 L

388 M

389 N

390 O

391 P

392 Q

393 R

394 S

395 T

396 U

397 V

398 W

399 X

400 Y

401 Z

402 a

403 b

404 c

405 d

406 e

407 f

408 g

409 h

410 i

411 j

412 k

413 l

414 m

415 n

416 o

417 p

418 q

419 r

420 s

421 t

422 u

423 v

424 w

425 x

426 y

427 z

428 setvmthreshold

429 <<

430 >>

431 currentcolorrendering

432 currentdevparams

433 currentoverprint

434 currentpagedevice

435 currentsystemparams

436 currentuserparams

437 defineresource

438 findencoding

439 gcheck

440 glyphshow

441 languagelevel

442 product

443 pstack

444 resourceforall

445 resourcestatus

446 revision

447 serialnumber

448 setcolorrendering

449 setdevparams

450 setoverprint

451 setsystemparams

452 setuserparams

453 startjob

454 undefineresource

455 GlobalFontDirectory

456 ASCII85Decode

457 ASCII85Encode

458 ASCIIHexDecode

459 ASCIIHexEncode

460 CCITTFaxDecode

461 CCITTFaxEncode

462 DCTDecode

463 DCTEncode

464 LZWDecode

465 LZWEncode

466 NullEncode

467 RunLengthDecode

468 RunLengthEncode

469 SubFileDecode

470 CIEBasedA

471 CIEBasedABC

472 DeviceCMYK

473 DeviceGray

474 DeviceRGB

475 Indexed

476 Pattern

477 Separation

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

611

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

APPENDIX G

Document Structuring
Conventions—Version 3.0

As discussed in Chapter 3, the PostScript language standard does not
specify the overall structure of a PostScript language program. Any
sequence of tokens conforming to the syntax and semantics of the Post-
Script language is a valid program that may be presented to a PostScript
interpreter for execution.

For a PostScript language program that is a page description (in other
words, a description of a printable document), it is often advantageous
to impose an overall program structure.

A page description can be organized as a prolog and a script, as dis-
cussed in section 2.4.2, “Program Structure.” The prolog contains appli-
cation-dependent definitions. The script describes the particular desired
results in terms of those definitions. The prolog is written by a program-
mer, stored in a place accessible to an application program, and incor-
porated as a standard preface to each page description created by the
application. The script is usually generated automatically by an applica-
tion program.

Beyond this simple convention, this appendix defines a standard set of
document structuring conventions (DSC). Use of the document struc-
turing conventions not only helps assure that a document is device
independent, it allows PostScript language programs to communicate
their document structure and printing requirements to document man-
agers in a way that does not affect the PostScript language page descrip-
tion.

A document manager can be thought of as an application that manipu-
lates the PostScript language document based on the document struc-
turing conventions found in it. In essence, a document manager
accepts one or more PostScript language programs as input, transforms

Example G.0
Table G.0
Figure G.0

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

612 Appendix G: Document Structuring Conventions—Version 3.0

them in some way, and produces a PostScript language program as out-
put. Examples of document managers include print spoolers, font and
other resource servers, post-processors, utility programs, and toolkits.

If a PostScript language document properly communicates its structure
and requirements to a document manager, it can receive certain printing
services. A document manager can offer different types of services to a
document. If the document in question does not conform to the DSC,
some or all of these services may be denied to it.

Specially formatted PostScript language comments communicate the
document structure to the document manager. Within any PostScript
language document, any occurrence of the character % not inside a
PostScript language string introduces a comment. The comment consists
of all characters between the % and the next newline, including regular,
special, space, and tab characters. The scanner ignores comments, treat-
ing each one as if it were a single white-space character. DSC com-
ments, which are legal PostScript language comments, do not affect the
destination interpreter in any manner.

DSC comments are specified by two percent characters (%%) as the first
characters on a line (no leading white space). These characters are
immediately followed by a unique keyword describing that particular
comment—again, no white space. The keyword always starts with a
capital letter and is almost always mixed-case. For example:

%%BoundingBox: 0 0 612 792
%%Pages: 45
%%BeginSetup

Note that some keywords end with a colon (considered to be part of the
keyword), which signifies that the keyword is further qualified by
options or arguments. There should be one space character between the
ending colon of a keyword and its subsequent arguments.

The PostScript language was designed to be inherently device indepen-
dent. However, there are specific physical features that an output device
may have that certain PostScript operators activate (in Level 1 imple-
mentations many of these operators are found in statusdict). Examples
of device-dependent operators are legal, letter, and setsoftwareiomode.
Use of these operators can render a document device dependent; that is,
the document images properly on one type of device and not on others.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.1 Using the Document Structuring Conventions 613

Use of DSC comments such as %%BeginFeature:, %%EndFeature (note
that the colon is part of the first comment and that this comment pair
is often referred to as %%Begin(End)Feature) and %%IncludeFeature: can
help reduce device dependency if a document manager is available to
recognize these comments and act upon them.

The DSC are designed to work with PostScript printer description (PPD)
files, which provide the PostScript language extensions for specific
printer features in a regular parsable format. PPD files include informa-
tion about printer-specific features, and include information about the
fonts built into the ROM of each printer. The DSC work in tandem with
PPD files to provide a way to specify and invoke these printer features
in a device-independent manner. For more information about PPD files,
see the PostScript Printer Description Files Specification available from the
Adobe Systems Developers’ Association.

Note Even though the DSC comments are a layer of communication beyond the
PostScript language and do not affect the final output, their use is considered
to be good PostScript language programming style.

G.1 Using the Document Structuring Conventions

Ideally, a document composition system should be able to compose a
document regardless of available resources—for example, font availabil-
ity and paper sizes. It should be able to rely on the document manage-
ment system at printing time to determine the availability of the
resources and give the user reasonable alternatives if those resources are
not available.

Realistically, an operating environment may or may not provide a doc-
ument management system. Consequently, the DSC contain some
redundancy. There are two philosophically distinct ways a resource or
printer-specific feature might be specified:

• The document composition system trusts its environment to handle
the resource and feature requirements appropriately, and merely
specifies what its particular requirements are.

• The document composer may not know what the network environ-
ment holds or even that one exists, and includes the necessary
resources and printer-specific PostScript language instructions within
the document. In creating such a document, the document com-
poser delimits these included resources or instructions in such a way
that a document manager can recognize and manipulate them.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

614 Appendix G: Document Structuring Conventions—Version 3.0

It is up to the software developer to determine which of these methods
is appropriate for a given environment. In some cases, both may be
used.

These two methods are mirrored in the DSC comments:

• Many DSC comments provide %%Begin and %%End constructs for
identifying resources and printer-specific elements of a document.
The document then prints regardless of whether a document man-
ager is present or not.

• Many of the requirement conventions provide a mechanism to spec-
ify a need for some resource or printer-specific feature through the
use of %%Include comments, and leave the inclusion of the resource
or invocation of the feature to the document manager. This is an
example of complete network cooperation, where a document can
forestall some printing decisions and pass them to the next layer of
document management. In general, this latter approach is the
preferred one.

G.2 Document Manager Services

A document manager can provide a wide variety of services. The types
of services are grouped into five management categories: spool,
resource, error, print, and page management. The DSC help facilitate
these services. A document that conforms to this specification can
expect to receive any of these services, if available; one that does not
conform may not receive any service. Listed below are some of the ser-
vices that belong to each of these categories.

G.2.1 Spool Management

Spooling management services are the most basic services that a docu-
ment manager can perform. A category of DSC comments known as
general conventions—specifically the header comments—provide infor-
mation concerning the document’s creator, title, pages, and routing
information.

Spooling

The basic function of spool management is to deliver the document to
the specified printer or display. The document manager should estab-
lish queues for each device to handle print job traffic in an effective
manner, giving many users access to one device. In addition, the docu-

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.2 Document Manager Services 615

ment manager should notify the user of device status (busy/idle,
jammed, out of paper, waiting) and queue status (held, waiting, print-
ing). More advanced document managers can offer job priorities and
delayed-time printing.

Banner and Trailer Pages

As a part of spool management, a document manager can add a banner
or trailer page to the beginning or end, respectively, of each print job to
separate the output in the printer bin. The document manager can
parse information from the DSC comments to produce a proper banner
that includes the title, creator, creation date, the number of pages, and
routing information of the document.

Print Logging

If a document manager tracks the number of pages, the type of media
used, and the job requirements for each document, the document man-
ager can produce a comprehensive report on a regular basis detailing
paper and printer usage. This can help a systems administrator plan
paper purchases and estimate printing costs. Individual reports for users
can serve as a way to bill internally for printing.

G.2.2 Resource Management

Resource management services deal with the inclusion, caching, and
manipulation of resources, such as fonts, forms, files, patterns, and doc-
uments. A category of DSC comments, known as requirement conven-
tions, enables a document manager to properly identify instances in
the document when resources are either needed or supplied.

Resource Inclusion

Frequently used resources, such as company logos, copyright notices,
special fonts, and standard forms, can take up vast amounts of storage
space if they are duplicated in a large number of documents. The DSC
support special %%Include comments so a document manager can
include a resource at print time, saving disk space.

Supplied resources can be cached in a resource library for later use. For
example, a document manager that identifies a frequently used logo
while processing a page description subsequently stores the logo in a
resource library. The document manager then prints the document nor-

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

616 Appendix G: Document Structuring Conventions—Version 3.0

mally. When future %%IncludeResource: comments are found in suc-
ceeding documents, the document manager retrieves the PostScript
language program for the logo from the resource library. The program is
inserted into the document at the position indicated by the DSC com-
ment before the document is sent to the printer.

Resource Downloading

Another valuable service that a document manager can provide is auto-
matically downloading frequently used resources to specific printers so
those resources are available instantly. Transmission and print time of
documents can be greatly reduced by using this service.

For example, the document manager judges that the Stone-Serif font
program is a frequently used resource. It downloads the font program
from the resource library to the printer. Later, the document manager
receives a document that requests the Stone-Serif font program. The
document manager knows this resource is already available in the
printer and sends the document to the printer without modification.
Note that the resource can be downloaded persistently into VM or onto
a hard disk if the printer has one. For Level 2 interpreters, resources are
found automatically by the findresource operator.

Resource Optimization

An intelligent document manager can alter the position of included
resources within a document to optimize memory and/or resource
usage. For example, if an encapsulated PostScript (EPS) file is included
several times in a document, the document manager can move dupli-
cate procedure set definitions (procsets) to the top of the document to
reduce transmission time. If a document manager performs dynamic
resource positioning, it must maintain the relative order of the
resources to preserve any interdependencies among them.

G.2.3 Error Management

A document manager can provide advanced error reporting and recov-
ery services. By downloading a special error handler to the printer, the
document manager can detect failed print jobs and isolate error-pro-
ducing lines of PostScript language instructions. It can send this infor-
mation, a descriptive error message, and suggestions for solution back
to the user.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.2 Document Manager Services 617

There may be other instances where a document manager can recover
from certain types of errors. Resource substitution services can be
offered to the user. For example, if your document requests the Stone-
Serif font program and this font program is not available on the printer
or in the resource library, a document manager could select a similar
font for substitution.

G.2.4 Print Management

Good print management ensures that the requested printer can fulfill
the requirements of a particular document. This is a superset of the
spool management spooling function, which is concerned with deliver-
ing the print job to the printer regardless of the consequences. By
understanding the capabilities of a device and the requirements of a
document, a document manager can provide a wide variety of print
management services.

Printer Rerouting

A document manager can reroute documents based on printer availabil-
ity. Heavily loaded printers can have their print jobs off-loaded to dif-
ferent printers in the network. The document manager can also inform
a user if a printer is busy and suggest an idle printer for use as a backup.

If a specified printer cannot meet the requirements of a document (if
for example, the document requests duplex printing and the printer
does not support this feature), the document manager can suggest alter-
nate printers.

For example, a user realizes that a document to be printed on a mono-
chrome printer contains a color page. The user informs the document
manager that the document should be rerouted to the color printer.
Any printer-specific portions are detected by the document manager via
the %%Begin(End)Feature: comments. The document manager consults
the appropriate PostScript printer description (PPD) file, the printer-spe-
cific portion is replaced in the document, and the document is rerouted
to the appropriate queue.

Feature Inclusion

This service is similar in concept to resource inclusion. Instead of using
PostScript language instructions that activate certain features of a target
printer, an application can use the %%IncludeFeature: comment to
specify that a fragment of feature instructions should be included in the

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

618 Appendix G: Document Structuring Conventions—Version 3.0

document at a specific point. A document manager can recognize such
a request, consult the PPD file for the target printer, look for the speci-
fied feature, and insert the code into the document before sending it to
the printer.

Parallel Printing

Parallel printing, another possible feature of a document manager, is
especially useful for large documents or rush orders. Basically, the
document manager splits the document based on the %%Page: com-
ment, sending different pieces of the document to different printers
simultaneously. The document is printed in parallel.

For example, a user requests that the first 100 pages of a document be
printed in parallel on five separate printers. The document manager
splits the document into five sections of 20 pages each, replicating the
original prolog and document setup for each section. Also, a banner
page is specified for each section to identify the pages being printed.

Page Breakout

Color and high-resolution printing are often expensive propositions. It
does not make sense to send an entire document to a color printer if the
document contains only one color illustration. When the appropriate
comments are used, document managers can detect color illustrations
and detailed drawings that need to be printed on high resolution print-
ers, and split them from the original document. The document man-
ager sends these pages separately to a high-resolution or color printer,
while sending the rest of the document to lower-cost monochrome
printers.

G.2.5 Page Management

Page management deals with organizing and reorganizing individual
pages in the document. A category of comments known as page com-
ments facilitate these services. See section G.4.5, “Convention Catego-
ries,” for a thorough description of page-level comments.

Page Reversal

Some printers place output in the tray face-up, some face-down. This
small distinction can be a nuisance to users who have to reshuffle out-
put into the correct order. Documents that come out of the printer into

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.2 Document Manager Services 619

a face-up tray should be printed last page first; conversely, documents
that end up face-down should be printed first page first. A document
manager can reorder pages within the document based on the %%Page:
comment to produce either of these effects.

n-Up Printing

n-up, thumbnail, and signature printing all fall under this category.
This enables the user to produce a document that has multiple virtual
pages on fewer physical pages. This is especially useful when proofing
documents, and requires less paper.

For example, suppose a user wants a proof of the first four pages of a
document (two copies, because the user’s manager is also interested).
Two-up printing is specified, where two virtual pages are mapped onto
one physical sheet. The document manager adds PostScript language
instructions (usually to the document setup section) that will imple-
ment this service.

Range Printing

Range printing is useful when documents need not be printed in their
entirety. A document manager can isolate the desired pages from the
document (using the %%Page: comment and preserving the prolog and
document setup) before sending the new document to the printer. In
the previous example, the user may want only the first four pages of the
document. The document manager determines where the first four
pages of the document reside and discards the rest.

Collated Printing

When using the #copies or setpagedevice features to specify multiple
copies, on some printers the pages of the document emerge uncollated
(1-1-1-2-2-2-3-3-3). Using the same mechanics as those for range print-
ing, a document manager can print a group of pages multiple times and
obtain collated output (1-2-3-1-2-3-1-2-3), saving the user the frustra-
tion of hand collating the document.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

620 Appendix G: Document Structuring Conventions—Version 3.0

Underlays

Underlays are text and graphic elements, such as draft and confidential
notices, headers, and images, that a document manager can add to a
document so they appear on every page. By adding PostScript language
instructions to the document setup, each page of the document renders
the underlay before drawing the page itself.

G.3 DSC Conformance

The PostScript interpreter does not distinguish between PostScript lan-
guage page descriptions that do or do not conform to the DSC. How-
ever, the structural information communicated through DSC
comments is of considerable importance to document managers that
operate on PostScript page descriptions as data. Because document
managers cannot usually interpret the PostScript language directly, they
must rely on the DSC comments to properly manipulate the document.
It is necessary to distinguish between those documents that conform to
the DSC and those that do not.

Note In previous versions of the DSC, there were references to partially conforming
documents. This term has caused some confusion and its use has been
discontinued. A document either conforms to the conventions or it does not.

G.3.1 Conforming Documents

A conforming document can expect to receive the maximum amount of
services from any document manager. A conforming document is rec-
ognized by the header comment %!PS-Adobe-3.0 and is optionally fol-
lowed by keywords indicating the type of document. Please see the
description of this comment in section G.5, “General Conventions,” for
more details about optional keywords.

A fully conforming document is one that adheres to the following rules
regarding syntax and semantics, document structure, and the compli-
ance constraints. It is also strongly suggested that documents support
certain printing services.

Syntax and Semantics

If a comment is to be used within a document, it must follow the syn-
tactical and semantic rules laid out in this specification for that com-
ment.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.3 DSC Conformance 621

Consider the following incorrect example:

%%BoundingBox 43.22 50.45 100.60 143.49

This comment is incorrect on two counts. First, there is a colon missing
from the %%BoundingBox: comment. Abbreviations for comments are
not acceptable. Second, floating point arguments are used instead of
the integer arguments this comment requires.

Document Structure

The document structure rules described in section G.4, “Document
Structure Rules,” must be followed. The following comments delineate
the structure of the document. If there is a section of a document that
corresponds to a particular comment, that comment must be used to
identify that section of the document.

%!PS-Adobe-3.0
%%Pages:
%%EndComments
%%BeginProlog
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page:
%%BeginPageSetup
%%EndPageSetup
%%PageTrailer
%%Trailer
%%EOF

For example, if there are distinct independent pages in a document, the
%%Page: comment must be used at the beginning of each page to iden-
tify those pages.

Where sections of the structure are not applicable, those sections and
their associated comments need not appear in the document. For exam-
ple, if a document setup is not performed inside a particular document,
the %%BeginSetup and %%EndSetup comments are unnecessary. Figure
G.1 illustrates the structure of a conforming PostScript language docu-
ment.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

622 Appendix G: Document Structuring Conventions—Version 3.0

Figure G.1 Structure of a conforming PostScript language document

%!PS-Adobe-3.0

...DSC comments only...

%%EndComments

%%BeginProlog

%%BeginResource: procset name1

...PostScript code and DSC comments...

%%EndResource
 •
 •
 •

%%BeginResource: procset namen

...PostScript code and DSC comments...

%%EndResource

%%EndProlog

%%BeginSetup

...PostScript code and DSC comments...

%%EndSetup

%%Page: label1 ordinal1
...DSC comments only...

%%BeginPageSetup

...PostScript code and DSC comments...

%%EndPageSetup

...PostScript code and DSC comments...

%%PageTrailer

...PostScript code and DSC comments...
 •
 •
 •

%%Page: labeln ordinaln
...DSC comments only...

%%BeginPageSetup

...PostScript code and DSC comments...

%%EndPageSetup

...PostScript code and DSC comments...

%%PageTrailer

...PostScript code and DSC comments...

%%Trailer

...PostScript code and DSC comments...

Prolog

Document
Trailer

Script

Procedure
Definitions

Header

Document
Setup

Pages

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.3 DSC Conformance 623

Compliance Constraints

The compliance constraints described in section G.4.3, “Constraints,”
including the proper use of restricted operators, must be adhered to.

Printing Services

There are document manager printing services (such as those described
in section G.2, “Document Manager Services”) that can be easily sup-
ported and add value to an application. Although it is not a require-
ment of a conforming document, it is strongly suggested that
applications support these services by using the comments listed below.
Note that 20 comments will ensure support of all services.

Spool Management
(Spooling, Banner and Trailer Pages, and Print Logging)
%%Creator: %%PageMedia:
%%CreationDate: %%PageRequirements:
%%DocumentMedia: %%Requirements:
%%DocumentPrinterRequired: %%Routing:
%%For: %%Title:

Resource Management
(Resource Inclusion, Downloading, and Optimization)
%%DocumentNeededResources: %%IncludeResource:
%%DocumentSuppliedResources: %%Begin(End)Resource:
%%PageResources:

Error Management
(Error Reporting and Recovery)
%%Extensions: %%ProofMode:
%%LanguageLevel:

Printer Management
(Printer Rerouting, Feature Inclusion, Parallel Printing, Color Breakout)
%%Begin(End)Feature: %%IncludeFeature:
%%Begin(End)Resource: %%IncludeResource:
%%DocumentMedia: %%LanguageLevel:
%%DocumentNeededResources: %%PageMedia:
%%DocumentPrinterRequired: %%PageRequirements:
%%DocumentSuppliedResources: %%PageResources:
%%Extensions: %%Requirements:

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

624 Appendix G: Document Structuring Conventions—Version 3.0

Page Management
(Page Reversal, N-up Printing, Range Printing, Collation, Underlays)
%%Pages: %%Page:
%%EndComments %%Begin(End)PageSetup
%%Begin(End)Setup %%PageTrailer
%%Begin(End)Prolog %%Trailer

G.3.2 Non-Conforming Documents

A non-conforming document most likely will not receive any services
from a document manager, may not be able to be included into another
document, and may not be portable. In some cases, this may be appro-
priate; a PostScript language program may require an organization that
is incompatible with the DSC. This is especially true of very sophisti-
cated page descriptions composed directly by a programmer.

However, for page descriptions that applications generate automati-
cally, adherence to the structuring conventions is strongly recom-
mended, simple to achieve, and essential in achieving a transparent
corporate printing network.

A non-conforming document is recognized by the %! header comment.
Under no circumstances should a non-conforming document use the
%!PS-Adobe-3.0 header comment.

G.4 Document Structure Rules

One of the most important levels of document structuring in the Post-
Script language is the distinction between the document prolog and the
document script. The prolog is typically a set of procedure definitions
appropriate for the set of operations a document composition system
needs, and the script is the software-generated program that represents a
particular document.

A conforming PostScript language document description must have a
clearly defined prolog and script separated by the %%EndProlog
comment.

G.4.1 Prolog

The prolog consists of a header section, an optional defaults subsection,
and the prolog proper, sometimes known as the procedures section.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.4 Document Structure Rules 625

The header section consists of DSC comments only and describes the
environment that is necessary for the document to be output properly.
The end of the header section is denoted by the %%EndComments com-
ment (see the note on header comments in section G.4.5, “Convention
Categories”).

The defaults section is an optional section that is used to save space in
the document and as an aid to the document manager. The beginning
of this section is denoted by the %%BeginDefaults comment. Only DSC
page comments should appear in the defaults section. Information on
the page-level comments that are applicable and examples of their use
can be found in section G.5.2, “General Body Comments” under the
definition of %%Begin(End)Defaults. The end of the defaults section is
indicated by the %%EndDefaults comment.

The beginning of the procedures section is indicated by the
%%BeginProlog comment. This section is a series of procedure set
(procset) definitions; each procset is enclosed between a
%%BeginResource: procset and %%EndResource pair. Procsets are groups
of definitions and routines appropriate for different imaging
requirements.

The prolog has the following restrictions:

• Executing the prolog should define procsets only. For example, these
procsets can consist of abbreviations, generic routines for drawing
graphics objects, and routines for managing text and images.

• A document-producing application should almost always use the
same prolog for all of its documents, or at least the prolog should be
drawn from a pool of common procedure sets. The prolog should
always be constructed in a way that it can be removed from the doc-
ument and downloaded only once into the printer. All subsequent
documents that are downloaded with this prolog stripped out
should still execute correctly.

• No output can be produced while executing the prolog, no changes
can be made to the graphics state, and no marks should be made on
the page.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

626 Appendix G: Document Structuring Conventions—Version 3.0

G.4.2 Script

The document script consists of three sections: a document setup sec-
tion, page sections, and a document trailer.

• The document setup section is denoted by the %%Begin(End)Setup
comments. The document setup should consist of procedure calls for
invoking media selections (for example, setting page size), running
initialization routines for procsets, downloading a font or other
resource, or setting some aspect of the graphics state. This section
should appear after the %%EndProlog comment, but before the first
%%Page: comment.

• The pages section of the script consists of 1 to n pages, each of which
should be functionally independent of the other pages. This means that
each page should be able to execute in any order and may be physi-
cally rearranged, resulting in an identical document as long as the
information within it is the same, but with the physical pages
ordered differently. A typical example of this page reordering occurs
during a page-reversal operation performed by a document manager.

The start of each page is denoted by the %%Page: comment and can
also contain a %%Begin(End)PageSetup section (analogous to the
document setup section on a page level), and an optional
%%PageTrailer section (similar to the document trailer). In any
event, each page will contain between the setup and the trailer sec-
tions the PostScript language program necessary to mark that page.

• The document trailer section is indicated by the %%Trailer comment.
PostScript language instructions in the trailer consists of calls to ter-
mination routines of procedures and post-processing or cleanup
instructions. In addition, any header comments that were deferred
using the (atend) notation will be found here. See section G.4.6,
“Comment Syntax Reference,” for a detailed description of (atend).

There are generally few restrictions on the script. It can have definitions
like the prolog and it can also modify the graphics environment, draw
marks on the page, issue showpage, and so on. There are some Post-
Script language operators that should be avoided or at least used with
extreme caution. A thorough discussion of these operators can be found
in Appendix I.

The end of a document should be signified by the %%EOF comment.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.4 Document Structure Rules 627

G.4.3 Constraints

There are several constraints on the use of PostScript language operators
in a conforming document. These constraints are detailed below and
are not only applicable to documents that conform to the DSC. Even a
non-conforming document is much more portable across different Post-
Script interpreters if it observes these constraints.

Page Independence

Pages should not have any inter-dependencies. Each page may rely on
certain PostScript language operations defined in the document prolog
or in the document setup section, but it is not acceptable to have any
graphics state set in one page of a document on which another page in
the same document relies on. It is also risky to reimpose or rely on a
state defined in the document setup section; the graphics state should
only be added to or modified, not reimposed. See Appendix I for more
details on proper preservation of the graphics state with operators like
settransfer.

Page independence enables a document manager to rearrange the docu-
ment’s pages physically without affecting the execution of the docu-
ment description. Other benefits of page independence include the
ability to print different pages in parallel on more than one printer and
to print ranges of pages. Also, PostScript language previewers need page
independence to enable viewing the pages of a document in arbitrary
order.

For the most part, page independence can be achieved by placing a
save-restore pair around each page, as shown below:

%!PS-Adobe-3.0
...Header comments, prolog definitions, document setup...
%%Page: cover 1
%%BeginPageSetup
/pgsave save def
...PostScript language instructions to perform page setup...
%%EndPageSetup
...PostScript language instructions to mark page 1...
pgsave restore
showpage
...Rest of the document...
%%EOF

The save-restore pair will also reclaim any non-global VM used during
the page marking (for example, text strings).

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

628 Appendix G: Document Structuring Conventions—Version 3.0

Note If pages must have interdependencies, the %%PageOrder: Special comment
should be used. This ensures that a document manager will not attempt to
reorder the pages.

Line Length

To provide compatibility with a large body of existing application and
document manager software, a conforming PostScript language docu-
ment description does not have lines exceeding 255 characters, exclud-
ing line-termination characters. The intent is to be able to read lines
into a 255-character buffer without overflow (Pascal strings are a com-
mon example of this sort of buffer).

The PostScript interpreter imposes no constraints as to where line
breaks occur, even in string bodies and hexadecimal bitmap representa-
tions. This level of conformance should not pose a problem for software
development. Any document structuring comment that needs to be
continued on another line to avoid violating this guideline should use
the %%+ notation to indicate that a comment line is being continued
(see %%+ in section G.5.2, “General Body Comments”).

Line Endings

Lines must be terminated with one of the following combinations of
characters: CR, LF, or CR LF. CR is the carriage-return character and LF is
the line-feed character (decimal ASCII 13 and 10, respectively).

Use of showpage

To reduce the amount of VM used at any point, it is common practice
to delimit PostScript language instructions used for a particular page
with a save-restore pair. See the page-independence constraint for an
example of save-restore use.

If the showpage operator is used in combination with save and restore,
the showpage should occur after the page-level restore operation. The
motivation for this is to redefine the showpage operator so it has side
effects in the printer VM, such as maintaining page counts for printing
n-up copies on one sheet of paper. If showpage is executed within the
confines of a page-level save-restore, attempts to redefine showpage to
perform extra operations will not work as intended. This also applies to
the BeginPage and EndPage parameters of the setpagedevice diction-
ary. The above discussion also applies to gsave-grestore pairs.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.4 Document Structure Rules 629

Document Copies

In a conforming document, the number of copies must be modified in
the document setup section of the document (see %%BeginSetup and
%%EndSetup). Changing the number of copies within a single page
automatically breaks the page independence constraint. Also, using the
copypage operator is not recommended because doing so inhibits page
independence. If multiple copies of a document are desired, use the
#copies key or the setpagedevice operator.

In Level 1 implementations, the #copies key can be modified to pro-
duce multiple copies of a document as follows:

%!PS-Adobe-3.0
%%Pages: 23
%%Requirements: numcopies(3) collate
%%EndComments
...Prolog with procset definitions...
%%EndProlog
%%BeginSetup
/#copies 3 def
%%EndSetup
...Rest of the Document (23 virtual pages)...
%%EOF

In Level 2 implementations, the number of copies of a document can
be set using the setpagedevice operator as follows:

<< /NumCopies 3 >> setpagedevice

The %%Pages: comment should not be modified if the number of cop-
ies is set, as it represents the number of unique virtual pages in the
document. However, the %%Requirements: comment should have its
numcopies option modified, and the collate option set, if applicable.

Restricted Operators

There are several PostScript language operators intended for system-
level jobs that are not appropriate in the context of a page description
program. Also, there are operators that impose conditions on the graph-
ics state directly instead of modifying or concatenating to the existing
graphics state. However, improper use of these operators may cause a
document manager to process a document incorrectly. The risks of
using these operators involve either rendering a document device

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

630 Appendix G: Document Structuring Conventions—Version 3.0

dependent or unnecessarily inhibiting constructive post-processing of
document files for different printing needs—for example, embedding
one PostScript language document within another.

In addition to all operators in statusdict and the operators in userdict
for establishing an imageable area, the following operators should be
used carefully, or not at all, in a PostScript language page description:

banddevice framedevice quit setpagedevice
clear grestoreall renderbands setscreen
cleardictstack initclip setglobal setshared
copypage initgraphics setgstate settransfer
erasepage initmatrix sethalftone startjob
exitserver nulldevice setmatrix undefinefont

For more specific information on the proper use of these operators in
various situations, see Appendix I.

There are certain operators specific to the Display PostScript system that
are not part of the Level 1 and Level 2 implementations. These opera-
tors are for display systems only and must not be used in a document.
This is a much more stringent restriction than the above list of
restricted operators, which may be used with extreme care. For a com-
plete list see section A.1.2, “Display PostScript Operators.”

G.4.4 Parsing Rules

Here are a few explicit rules that can help a document manager parse
the DSC comments:

• In the interest of forward compatibility, any comments that are not
recognized by the parser should be ignored. Backward compatibility
is sometimes difficult, and it may be helpful to develop an “upgrad-
ing parser” that will read in documents conforming to older versions
of the DSC and write out DSC version 3.0 conforming documents.

• Many comments have a colon separating the comment keyword
from its arguments. This colon is not present in all comment key-
words (for example, %%EndProlog) and should be considered part of
the keyword for parsing purposes. It is not an optional character.

• Comments with arguments (like %%Page:) should have a space sepa-
rating the colon from the first argument. Due to existing software,
this space must be considered optional.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.4 Document Structure Rules 631

• “White space” characters within comments may be either spaces or
tabs (decimal ASCII 32 and 9, respectively).

• Comment keywords are case-sensitive, as are all of the arguments
following a comment keyword.

• The character set for comment keywords is limited to printable
ASCII characters. The keywords only contain alphabetic characters
and the :, !, and ? characters. The arguments may include any char-
acter valid in the PostScript language character set, especially where
procedure names, font names, and strings are represented. See the
definition of the <text> elementary type for the use of the \ escape
mechanism.

• When looking for the %%Trailer comment (or any (atend) com-
ments), allow for nested documents. Observe %%BeginDocument:
and %%EndDocument comments as well as %%BeginData: and
%%EndData.

• In the case of multiple header comments, the first comment encoun-
tered is considered to be the truth. In the case of multiple trailer com-
ments (those comments that were deferred using the (atend)
convention), the last comment encountered is considered to be the
truth. For example, if there are two %%Requirements: comments in
the header of a document, use the first one encountered.

• Header comments can be terminated explicitly by an instance of
%%EndComments, or implicitly by any line that does not begin with
%X, where X is any printable character except space, tab, or newline.

• The order of some comments in the document is significant, but in a
section of the document they may appear in any order. For example,
in the header section, %%DocumentResources:, %%Title:, and
%%Creator: may appear in any order.

• Lines must never exceed 255 characters, and line endings should fol-
low the line ending restrictions set forth in section G.4.3, “Con-
straints.”

• If a document manager supports resource or feature inclusion, at
print time it should replace %%Include comments with the resource
or feature requested. This resource or feature code should be encap-
sulated in %%Begin and %%End comments upon inclusion. If a
document manager performs resource library extraction, any

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

632 Appendix G: Document Structuring Conventions—Version 3.0

resources that are removed, including their associated %%Begin and
%%End comments, should be replaced by equivalent %%Include
comments.

G.4.5 Convention Categories

The DSC comments are roughly divided into the following five catego-
ries of conventions:

• General conventions

• Requirement conventions

• Color separation conventions

• Query conventions

• Open structuring conventions

• Special conventions

Typically, some subsets of the general, requirement, and color sepa-
ration conventions are used consistently in a particular printing envi-
ronment. The DSC have been designed with maximum flexibility in
mind and with a minimum amount of interdependency between con-
ventions. For example, one may use only general conventions in an
environment where the presence of a document manager may not be
guaranteed, or may use the requirement conventions on a highly
spooled network.

General conventions delimit the various structural components of a Post-
Script language page description, including its prolog, script, and trailer,
and where the page breaks fall, if there are any. The general convention
comments include document and page setup information, and they
provide a markup convention for noting the beginning and end of par-
ticular pieces of the page description that might need to be identified
for further use.

Requirement conventions are comments that suggest document manager
action. These comments can be used to specify resources the document
supplies or needs. Document managers may make decisions based on
resource frequency (those that are frequently used) and load resources
permanently into the printer, download them before the job, or store
them on a printer’s hard disk, thus reducing transmission time.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.4 Document Structure Rules 633

Other requirement comments invoke or delimit printer-specific features
and requirements, such as paper colors and weights, collating order,
and stapling. The document manager can replace printer-specific Post-
Script language fragments based on these comments when rerouting a
print job to another printer, by using information in the PostScript
printer description (PPD) file for that printer.

Color separation conventions are used to complement the color
extensions to the PostScript language. Comments typically identify
PostScript language color separation segments in a page, note custom
color ratios (RGB or CMYK), and list document and page level color use.

Query conventions delimit parts of a PostScript language program that
query the current state or characteristics of a printer, including the
availability of resources (for example, fonts, files, procsets), VM, and
any printer-specific features and enhancements. The type of program
that uses this set of conventions is usually interactive—that is, one that
expects a response from the printer. This implies that document man-
agers should be able to send query jobs to a printer, and route an
answer back to the application that issued the query. Query conven-
tions should only be used in %!PS-Adobe-3.0 Query jobs.

Open structuring conventions are user-defined conventions. Section G.9,
“Open Structuring Conventions,” provides guidelines for creating these
vendor-specific comments.

Special conventions include those comments that do not fall into the
above categories.

The general, requirement, and color separation conventions can be fur-
ther broken down into three classes: header comments, body com-
ments, and page comments.

Header Comments

Header comments appear first in a document file, before any of the exe-
cutable PostScript language instructions and before the procedure defi-
nitions. They may be thought of as a table of contents. In order to
simplify a document manager’s job in parsing these header comments,
there are two rules that apply:

• If there is more than one instance of a header comment in a
document file, the first one encountered takes precedence. This simplifies
nesting documents within one another without having to remove
the header comments.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

634 Appendix G: Document Structuring Conventions—Version 3.0

• Header comments must be contiguous. That is, if a document manager
comes across a line that does not begin with %, the document man-
ager may quit parsing for header comments. The comments may
also be ended explicitly with the %%EndComments convention.

All instances of lines beginning with %! after the first instance are
ignored by document managers, although to avoid confusion, this
notation should not appear twice within the block of header comments
(see %%BeginDocument: and %%EndDocument for examples of embed-
ded documents).

Body Comments

Body comments may appear anywhere in a document, except the
header section. They are designed to provide structural information
about the organization of the document file and should match any
related information provided in the header comments section. They
generally consist of %%Begin and %%End constructs to delimit specific
components of the document file, such as procsets, fonts, or emulation
code, and %%Include comments that request the document manager to
take action when encountering the comment, such as including a docu-
ment, resource, or printer-specific fragment of code.

Page Comments

Page comments are page-level structure comments. They should not
span across page boundaries (see the exception below). That is, a page
comment applies only to the page in which it appears. The beginning
of a page should be noted by the %%Page: comment. The other page
comments are similar to their corresponding header comments (for
example, %%BoundingBox: vs. %%PageBoundingBox:), except for
%%Begin or %%End comments that are more similar to body com-
ments in use (e.g., %%Begin(End)Setup vs. %%Begin(End)PageSetup).

Note Some page comments that are similar to header comments can be used in the
defaults section of the file to denote default requirements or media for all
pages. See the %%Begin(End)Defaults comments for a more detailed
explanation.

G.4.6 Comment Syntax Reference

Before describing the DSC comments, it is prudent to specify the syntax
with which they are documented. This section introduces a syntax
known as Backus-Naur form (BNF) that helps eliminate syntactical

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.4 Document Structure Rules 635

ambiguities and helps comprehend the comment definitions. A brief
explanation of the BNF operators is given in Table G.1. The following
section discusses elementary types, which are used to specify the key-
words and options of the DSC comments.

Table G.1 Explanation of BNF operators

BNF Operator Explanation

<token> This indicates a token item. This item may comprise
other tokens or it may be an elementary type (see
below).

::= Literally means “is defined as.”

[expression] This indicates that the expression inside the brackets is
optional.

{ expression } The braces are used to group expressions or tokens into
single expressions. It is often used to denote parsing
order (it turns the expression inside the braces into a
single token).

<token> ... The ellipsis indicates that one or more instances of
<token> can be specified.

| The | character literally means “or” and delimits
alternative expressions.

Elementary Types

An elementary or base type is a terminating expression. That is, it does
not reference any other tokens and is considered to be a base on which
other expressions are built. For the sake of clarity, these base types are
defined here in simple English, without the exhaustive dissection that
BNF normally requires.

(atend)
Some of the header and page comments can be deferred until the end
of the file (that is, to the %%Trailer section) or to the end of a page (that
is, the %%PageTrailer section). This is for the benefit of application pro-
grams that generate page descriptions on-the-fly. Such applications
might not have the necessary information about fonts, page count, and
so on at the beginning of generating a page description, but have them
at the end. If a particular comment is to be deferred, it must be listed in
the header section with an (atend) for its argument list. A comment
with the same keyword and its appropriate arguments must appear in
the %%Trailer or %%PageTrailer sections of the document.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

636 Appendix G: Document Structuring Conventions—Version 3.0

The following comments support the (atend) convention:

%%BoundingBox: %%DocumentSuppliedProcSets:
%%DocumentCustomColors: %%DocumentSuppliedResources:
%%DocumentFiles: %%Orientation:
%%DocumentFonts: %%Pages:
%%DocumentNeededFiles: %%PageBoundingBox:
%%DocumentNeededFonts: %%PageCustomColors:
%%DocumentNeededProcSets: %%PageFiles:
%%DocumentNeededResources: %%PageFonts:
%%DocumentProcSets: %%PageOrder:
%%DocumentProcessColors: %%PageOrientation:
%%DocumentSuppliedFiles: %%PageProcessColors:
%%DocumentSuppliedFonts: %%PageResources:

Note Page-level comments specified in the defaults section of the document cannot
use the (atend) syntax to defer definition of their arguments. (atend) can only
be used in the header section and within individual pages.

In Example G.1, the bounding box information is deferred until the
end of the document:

Example G.1

%!PS-Adobe-3.0
...Document header comments...
%%BoundingBox: (atend)
%%EndComments
...Rest of the document...
%%Trailer
%%BoundingBox: 0 0 157 233
...Document clean up...
%%EOF

<filename>
A filename is similar to the <text> elementary type in that it can com-
prise any printable character. It is usually very operating system spe-
cific. The following example comment lists four different files:

%%DocumentNeededResources: file /usr/smith/myfile.epsf
%%+ file (Corporate Logo \042large size\042) (This is (yet) another file)
%%+ file C:\LIB\LOGO.EPS

Note that the backslash escape mechanism is only supported inside
parentheses. It can also be very convenient to list files on separate lines
using the continuation comment %%+.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.4 Document Structure Rules 637

<fontname>
A fontname is a variation of the simple text string (see <text>). Because
font names cannot include blanks, font names are considered to be
delimited by blanks. In addition, the \ escape mechanism is not sup-
ported. The following example comment uses five font names:

%%DocumentNeededResources: font Times-Roman Palatino-Bold
%%+ font Helvetica Helvetica-Bold NewCenturySchoolbook-Italic

The font name does not start with a slash character (/) as it does in the
PostScript language when you are specifying the font name as a literal.

<formname>
A formname is the PostScript language object name of the form as used
by the defineresource operator. It is a simple text string as defined by
the <text> elementary type.

<int>
An integer is a non-fractional number that may be signed or unsigned.
There are practical limitations for an integer’s maximum and minimum
values (see Appendix B).

<procname> ::= <name> <version> <revision>
<name> ::= <text>
<version> ::= <real>
<revision> ::= <uint>

A procname token describes a procedure set (procset), which is a block of
PostScript language definitions. A procset is labeled by a text string
describing its contents and a version number. A procset version may
undergo several revisions, which is indicated by the revision number.
Procset names should be descriptive and meaningful. It is also sug-
gested that the corporate name and application name be used as part of
the procset name to reduce conflicts, as in this example:

(MyCorp MyApp - Graphic Objects) 1.1 0
Adobe-Illustrator-Prolog 2.0 1

The name, version, and revision fields should uniquely identify the
procset. If a version numbering scheme is not used, these fields should
still be filled with a dummy value of 0.

The revision field should be taken to be upwardly compatible with proc-
sets of the same version number. That is, if myprocs 1.0 0 is requested,
then myprocs 1.0 2 should be compatible, although the converse (back-
ward compatibility) is not necessarily true. If the revision field is not

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

638 Appendix G: Document Structuring Conventions—Version 3.0

present, a procset may be substituted as long as the version numbers are
equal. Different versions of a procset may not be upwardly compatible
and should not be substituted.

<patternname>
A patternname is the PostScript language object name of the pattern as
used by the defineresource operator. It is a simple text string as defined
by the <text> elementary type.

<real>
A real number is a fractional number that may be signed or unsigned.
There are practical limitations on the maximum size of a real (see
Appendix B). Real numbers may or may not include a decimal point,
and exponentiation using either an ‘E’ or an ‘e’ is allowed. For example,

-.002 34.5 -3.62 123.6e10 1E-5 -1. 0.0

are all valid real numbers.

<resource> ::= font <fontname> | file <filename> |
procset <procname> | pattern <patternname> |
form <formname> | encoding <vectorname>

<resources> ::= font <fontname> ... | file <filename> ... |
procset <procname> ... | pattern <patternname> ... |
form <formname> ... | encoding <vectorname> ...

A resource is a PostScript object, referenced by name, that may or may
not be available to the system at any given time. Times-Roman is the
name of a commonly available resource. The name of the resource
should be the same as the name of the PostScript object—in other
words, the same name used when using the defineresource operator.

Note Although files are not resources in the PostScript language sense, they can be
thought of as a resource when document managers are dealing with them.

<text>
A text string comprises any printable characters and is usually consid-
ered to be delimited by blanks. If blanks or special characters are desired
inside the text string, the entire string should be enclosed in parenthe-
ses. Document managers parsing text strings should be prepared to
handle multiple parentheses. Special characters can be denoted using
the PostScript language string \ escape mechanism.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.5 General Conventions 639

The following are examples of valid DSC text strings:

Thisisatextstring
(This is a text string with spaces)
(This is a text string (with parentheses))
(This is a special character \262 using the \\ mechanism)

It is a good idea to enclose numbers that should be treated as text
strings in parentheses to avoid confusion. For example, use (1040)
instead of 1040.

The sequence () denotes an empty string.

Note that a text string must obey the 255 character line limit as set
forth in section G.3, “DSC Conformance.”

<textline>
This is a modified version of the <text> elementary type. If the first char-
acter encountered is a left parenthesis, it is equivalent to a <text> string.
If not, the token is considered to be the rest of the characters on the
line until end of line is reached (some combination of the CR and LF
characters).

<uint>
An unsigned integer is a non-fractional number that has no sign. There
are practical limitations for an unsigned integer’s maximum value, but
as a default it should be able to range between 0 and twice the largest
integer value given in Appendix B.

<vectorname>
A vectorname denotes the name of a particular encoding vector and is
also a simple text string. It should have the same name as the encoding
vector the PostScript language program uses. Examples of encoding vec-
tor names are StandardEncoding and ISOLatin1Encoding.

G.5 General Conventions

The general conventions are the most basic of all the comments. They
impart general information, such as the bounding box, language level,
extension usage, orientation, title of the document, and other basics.
There are comments that are used to impart structural information (end
of header, setup, page breaks, page setup, page trailer, trailer) that are
the keys to abiding by the document structure rules of G.3, “DSC Con-

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

640 Appendix G: Document Structuring Conventions—Version 3.0

formance.” Other general comments are used to identify special sec-
tions of the document, including binary and emulation data, bitmap
previews, and page level objects.

G.5.1 General Header Comments

%!PS-Adobe-3.0 <keyword>
<keyword> ::= EPSF-3.0 | Query | ExitServer | Resource-<restype>
<restype> ::= Font | File | ProcSet | Pattern | Form | Encoding

This comment differs from the previous %!PS-Adobe-2.1 comment only
in version number. It indicates that the PostScript language page
description fully conforms to the DSC version 3.0. This comment must
occur as the first line of the PostScript language file.

There are four keywords that may follow the %!PS-Adobe-3.0 comment
on the same line. They flag the entire print job as a particular type of
job so document managers may immediately switch to some appropri-
ate processing mode. The following job types are recognized:

• EPSF—The file is an Encapsulated PostScript file, which is primarily a
PostScript language file that produces an illustration. The EPS format
is designed to facilitate including these illustrations in other docu-
ments. The exact format of an EPS file is described in Appendix H.

• Query—The entire job consists of PostScript language queries to a
printer from which replies are expected. A systems administrator or
document manager is likely to create a query job. See section G.12.4,
“Query Conventions.”

• ExitServer—This flags a job that executes the exitserver or startjob
operator to allow the contents of the job to persist within the printer
until it is powered off. Some document managers require this com-
mand to handle these special jobs effectively. See the discussion of
exitserver under %%Begin(End)ExitServer.

• Resource—As a generalization of the idea of Level 2 resources, files
that are strictly resource definitions (fonts, procsets, files, patterns,
forms) should start with this comment and keyword. For example, a
procset resource should start with the %!PS-Adobe-3.0 Resource-
ProcSet comment.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.5 General Conventions 641

Fonts are resources, as well, but most fonts use one of two different
header comments: %!PS-AdobeFont-1.0 and %!FontType1-1.0. In the
future, fonts conforming to this specification should use the
%!PS-Adobe-3.0 Resource-Font comment.

Note Document composition programs should not use these keywords when
producing a document intended for printing or display. Instead, they should
use only the %!PS-Adobe-3.0 comment. Illustration applications may use the
EPSF-3.0 keyword.

%%BoundingBox: { <llx> <lly> <urx> <ury> } | (atend)
<llx> ::= <int> (Lower left x coordinate)
<lly> ::= <int> (Lower left y coordinate)
<urx> ::= <int> (Upper right x coordinate)
<ury> ::= <int> (Upper right y coordinate)

This comment specifies the bounding box that encloses all marks
painted on all pages of a document. That is, it must be a “high water
mark” in all directions for marks made on any page. The four argu-
ments correspond to the lower left (llx, lly) and upper right corners (urx,
ury) of the bounding box in the default user coordinate system (PostScript
units). See also the %%PageBoundingBox: comment.

Figure G.2 Determining the document bounding box

Page 1 bounding box Page 2 bounding box Page 3 bounding box Document bounding box

%%Copyright: <textline>

This comment details any copyright information associated with the
document or resource.

Cooperative
adj.

obedient, submissive, subservient,
tractable, willing

other

amenable, compaisant, compliant,

collective, helpful, jointly, participatory

Printing
noun

issue, manuscript, monograph, opus
paperback, publication, text, tome

book, correspondance, edition, folio

volume, work writing

together, unified, united

Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.
Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.

Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.

✬

123

Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.
Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.

Typography can be as rich
in nuance and diverse in
tone as the human voice.
It can add emphasis to
words by its boldness and
size. Inflect by choice of
typeface. Modulate pitch
by its lightness or darkness.

Today, thanks to the tools of
electronic publishing,
typography can speak
eloquently for anyone.

✬

123

Cooperative
adj.

obedient, submissive, subservient,
tractable, willing

other

amenable, compaisant, compliant,

collective, helpful, jointly, participatory

Printing
noun

issue, manuscript, monograph, opus
paperback, publication, text, tome

book, correspondance, edition, folio

volume, work writing

together, unified, unitedA
D

O
B

E
 P

O
S

T
S

C
R

I P
T

 A
D

O
B

E
 P

O
S

T
S

C
R

I P
T

A
D

O
B

E
 P

O
S

T
S

C
R

I P
T

A

D
O

B
E

 P
O

S
T

S
C

R
I P

T

Cooperative

Printing

Cooperative

Printing

A
D

O
B

E
 P

O
S

T
S

C
R

I P
T

 A
D

O
B

E
 P

O
S

T
S

C
R

I P
T

A
D

O
B

E
 P

O
S

T
S

C
R

I P
T

A

D
O

B
E

 P
O

S
T

S
C

R
I P

T

Cooperative

Printing

Cooperative

Printing

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

642 Appendix G: Document Structuring Conventions—Version 3.0

%%Creator: <textline>

This comment indicates the document creator, usually the name of the
document composition software.

%%CreationDate: <textline>

This comment indicates the date and time the document was created.
Neither the date nor time need be in any standard format. This com-
ment is meant to be used purely for informational purposes, such as
printing on banner pages.

%%DocumentData: Clean7Bit | Clean8Bit | Binary

This header comment specifies the type of data, usually located
between %%Begin(End)Data: comments, that appear in the document.
It applies only to data that are part of the document itself, not bytes
that are added by communications software—for example, an EOF
character marking the end of a job, or XON/XOFF characters for flow
control. This comment warns a print manager, such as a spooler, to
avoid communications channels that reserve the byte codes used in the
document. A prime example of this is a serial channel, which reserves
byte codes like 0x04 for end of job and 0x14 for status request.

There are three ranges of byte codes defined:

• Clean7Bit—The page description consists of only byte codes 0x1B to
0x7E (ESC to ‘~’), 0x0A (LF), 0x0D (CR), and 0x09 (TAB). Whenever
0x0A and/or 0x0D appear, they are used as end-of-line characters.
Whenever 0x09 appears, it is used as a tab character (i.e. whitespace).

• Clean8Bit—The same as Clean7Bit, but the document may also con-
tain byte codes 0x80-0xFF.

• Binary—Any byte codes from 0x00-0xFF may appear in the docu-
ment.

The header section of the document (up to %%EndComments) must
always consist of Clean7bit byte codes so it is universally readable. If the
application declares the document to be Clean7Bit or Clean8Bit, it is
responsible for transforming any byte codes that fall outside the accept-
able range back into the acceptable range. Byte codes within character
strings may be escaped—for example, a 0x05 may be written (\005).

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.5 General Conventions 643

Documents with Clean7Bit data may be transmitted to a PostScript
interpreter over a serial line with 7 data bits. Documents with Clean8Bit
data may be transmitted to a PostScript interpreter over a serial line
with 8 data bits. Documents with Binary data cannot be transmitted
over a serial line because they may use byte codes reserved by the com-
munications protocol. However, they may be transmitted via a trans-
parent protocol, such as LocalTalk.

%%Emulation: <mode> ...
<mode> ::= diablo630 | fx100 | lj2000 | hpgl | impress | hplj | ti855

This comment indicates that the document contains an invocation of
the stated emulator. This allows a document manager to route the doc-
ument to a printer that supports the correct type of emulation. See
%%Begin(End)Emulation: for more details.

%%EndComments (no keywords)

This comment indicates an explicit end to the header comments of the
document. Because header comments are contiguous, any line that
does not begin with %X where X is any printable character except
space, tab, or newline implicitly denotes the end of the header section.

%!PS-Adobe-3.0
%%Title: (Example of Header Comment Termination)
...More header comments...
%%DocumentResources: font Sonata
%GBDNodeName: smith@atlas.com
% This line implicitly denotes the end of the header section.

%%Extensions: <extension> ...
<extension> ::= DPS | CMYK | Composite | FileSystem

This comment indicates that in order to print properly, the document
requires a PostScript Level 1 interpreter that supports the listed Post-
Script language extensions. The document manager can use this infor-
mation to determine whether a printer can print the document or to
select possible printers for rerouting the document. A list of operator
sets specific to each extension is in Appendix A.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

644 Appendix G: Document Structuring Conventions—Version 3.0

• DPS—The document contains operators defined in the PostScript
language extensions for the Display PostScript system. Most of these
operators are available in Level 2 implementations. See Appendix A
for a list of operators that are present only in Display PostScript
implementations.

• CMYK—The document uses operators defined in the PostScript lan-
guage color extensions. Note that this is different from the
%%Requirements: color comment, in that it specifies that the Post-
Script interpreter must be able to understand the CMYK color opera-
tors. It does not specify that the printer must be capable of
producing color output.

• Composite—The document uses operators defined in the PostScript
language composite font extensions.

• FileSystem—This keyword should be used if the document performs
file system commands. Note that certain file operators are already
available under the basic implementation of the PostScript language.
See Appendix A for a list of those operators that are specifically part
of the file system extensions to Level 1 implementations.

The %%Extensions: comment must be used if there are operators in the
document specific to a particular extension of the PostScript language.
However, documents that provide conditional Level 1 emulation do
not need to use this comment. Also, if the document uses Level 2 oper-
ators, use the %%LanguageLevel: comment instead.

%%For: <textline>

This comment indicates the person and possibly the company name for
whom the document is being printed. It is frequently the “user name”
of the individual who composed the document, as determined by the
document composition software. This can be used for banner pages or
for routing the document after printing.

%%LanguageLevel: <uint>

This comment indicates that the document contains PostScript lan-
guage operators particular to a certain level of implementation of the
PostScript language. Currently, only Level 1 and Level 2 are defined.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.5 General Conventions 645

This comment must be used if there are operators in the document spe-
cific to an implementation of the PostScript language above Level 1.
However, documents that provide conditional Level 1 emulation (for
example, Level 1 emulation of the Level 2 operators used) need not use
this comment. See Appendix D for emulation and compatibility strate-
gies.

Level 2 operators are essentially a superset of the DPS, CMYK, Compos-
ite, and FileSystem language extensions. If a language level of 2 is speci-
fied, the individual extensions need not be specified. That is, use of
both the %%LanguageLevel: and %%Extensions: comments is not neces-
sary; one or the other is sufficient. See the %%Extensions: comment.

Note To enable a document to be output to as many interpreters as possible, a
document composition application should determine the minimum set of
extensions needed for the document to print correctly. It is poor practice to use
the %%LanguageLevel: comment when an %%Extensions: comment would
have been able to encompass all of the operators used in the document.

%%Orientation: { <orientation> ... } | (atend)
<orientation> ::= Portrait | Landscape

This comment indicates the orientation of the pages in the document.
It can be used by previewing applications and post-processors to deter-
mine how to orient the viewing window. A portrait orientation indicates
that the longest edge of the paper is parallel to the vertical (y) axis. A
landscape orientation indicates that the longest edge of the paper is par-
allel to the horizontal (x) axis. If more than one orientation applies to
the document, an individual page should specify its orientation by
using the %%PageOrientation: comment.

%%Pages: <numpages> | (atend)
<numpages> ::= <uint> (Total number of pages)

This comment defines the number of virtual pages that a document will
image. This may be different from the number of physical pages the
printer prints (the #copies key or setpagedevice operator and other
document manager features may reduce or increase the physical num-
ber of pages). If the document produces no pages (for instance, if it rep-
resents an included illustration that does not use showpage), the page
count should be 0. See also the %%Page: comment.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

646 Appendix G: Document Structuring Conventions—Version 3.0

In previous specifications, it was valid to include an optional page order
number after the number of pages. Its use is now discouraged because
of problems with the (atend) syntax (one might know the page order
before one knows the number of pages). Please use the %%PageOrder:
comment to indicate page order.

%%PageOrder: <order> | (atend)
<order> ::= Ascend | Descend | Special

The %%PageOrder: comment is intended to help document managers
determine the order of pages in the document file, which in turn
enables a document manager optionally to reorder the pages. This com-
ment can have three page orders:

• Ascend—The pages are in ascending order—for example, 1-2-3-4-5.

• Descend—The pages of the document are in descending order—for
example, 5-4-3-2-1.

• Special—Indicates that the document is in a special order—for exam-
ple, signature order.

The distinction between a page order of Special and no page order at all
is that in the absence of the %%PageOrder comment, any assumption
can be made about the page order, and the document manager permits
any reordering of the page. However, if the page order comment is Spe-
cial, the pages must be left intact in the order given.

%%Routing: <textline>

This comment provides information about how to route a document
back to its owner after printing. At the discretion of the system admin-
istrator, it may contain information about mail addresses or office
locations.

%%Title: <textline>

This comment provides a text title for the document that is useful for
printing banner pages and for routing or recognizing documents.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.5 General Conventions 647

%%Version: <version> <revision>
<version> ::= <real>
<revision> ::= <uint>

This comment can be used to note the version and revision number of a
document or resource. A document manager may wish to provide
version control services, or allow substitution of compatible versions/
revisions of a resource or document. Please see the <procname> elemen-
tary type for a more thorough discussion of version and revisions.

G.5.2 General Body Comments

%%+ (no keywords)

Any document structuring comment that must be continued on
another line to avoid violating the 255-character line length constraint
must use the %%+ notation to indicate that a comment line is being
continued. This notation may be used after any of the document com-
ment conventions, but may only be necessary in those comments that
provide a large list of names, such as %%DocumentResources:. Here is
an example of its use:

%%DocumentResources: font Palatino-Roman Palatino-Bold
%%+ font Palatino-Italic Palatino-BoldItalic Courier
%%+ font Optima LubalinGraph-DemiOblique

See section G.3, “DSC Conformance,” for more information about line
length and restrictions.

%%BeginBinary: <bytecount>
<bytecount> ::= <uint>

%%EndBinary (no keywords)

These comments are used in a manner similar to the %%Begin(End)-
Data: comments. The %%Begin(End)Binary: comments are designed to
allow a document manager to effectively ignore any binary data these
comments encapsulate.

To read data directly from the input stream in the PostScript language
(using currentfile, for instance), it is necessary to invoke a procedure
followed immediately by the data to be read. If the data is embedded in
the %%Begin(End)Binary: construct, those comments are effectively part
of the data, which typically is not desired. To avoid this problem, the

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

648 Appendix G: Document Structuring Conventions—Version 3.0

procedure invocation should fall inside the comments, even though it is
not binary, and the bytecount should reflect this so it can be skipped cor-
rectly. In the case of a byte count, allow for carriage returns, if any.

Note This comment has been included for backward compatibility only and may be
discontinued in future versions of the DSC; use the more specific
%%Begin(End)Data: comments instead.

%%BeginData: <numberof>[<type> [<bytesorlines>]]
<numberof> ::= <uint> (Lines or physical bytes)
<type> ::= Hex | Binary | ASCII (Type of data)
<bytesorlines> ::= Bytes | Lines (Read in bytes or lines)

%%EndData (no keywords)

These comments are designed to provide information about embedded
bodies of data. When a PostScript language document file is being
parsed, encountering raw data can tremendously complicate the pars-
ing process. Encapsulating data within these comments can allow a
document manager to ignore the enclosed data, and speed the parsing
process. If the type argument is missing, binary data is assumed. If the
bytesorlines argument is missing, numberof should be considered to indi-
cate bytes of data.

Note that <numberof> indicates the bytes of physical data, which vary
from the bytes of virtual data in some cases. With hex, each byte of vir-
tual data is represented by two ASCII characters (two bytes of physical
data). Although the PostScript interpreter ignores white space in hex
data, these count toward the byte count.

For example,

FD 10 2A 05

is 11 bytes of physical data (8 bytes hex, 3 spaces) and 4 binary bytes of
virtual data.

Remember that binary data is especially sensitive to different print
environments because it is an 8-bit representation. This can be very
important to the document manager if a print network has a channel
that is 7 bit serial, for example. See also the %%DocumentData:
comment.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.5 General Conventions 649

To read data directly from the input stream (using currentfile, for
instance), it is necessary to invoke a procedure followed immediately by
the data to be read. If the data is embedded in the %%Begin(End)Data:
construct, then those comments are effectively part of the data, which is
typically not desirable. To avoid this problem, the procedure invocation
should fall inside the comments, even though it is not binary, and the
byte or line counts should reflect this so it can be skipped correctly. In
the case of a byte count, allow for end-of-line characters, if any.

Note Document managers should ensure that the entire %%BeginData: comment
line is read before acting on the byte count.

In the example below, there are 135174 bytes of hex data, but the
%%BeginData: and %%EndData comments encompass the call to the
image operator. The resulting byte count includes 6 additional bytes,
for the string “image” plus the newline character.

/picstr 256 string def
25 140 translate
132 132 scale
256 256 8 [256 0 0 -256 0 256] { currentfile picstr readhexstring pop }
%%BeginData: 135174 Hex Bytes
image
4c47494b3187c237d237b137438374ab
213769876c8976985a5c987675875756
...Additional 135102 bytes of hex...
%%EndData

Instead of keeping track of byte counts, it is probably easier to keep
track of lines of data. In the following example, the line count is
increased by one to account for the “image” string:

/picstr 256 string def
25 140 translate
132 132 scale
256 256 8 [256 0 0 -256 0 256] { currentfile picstr readhexstring pop }
%%BeginData: 4097 Hex Lines
image
4c47494b3187c237d237b137438374ab
213769876c8976985a5c987675875756
...Additional 4094 lines of hex...
%%EndData

With binary data, it is unlikely that the concept of lines would be used,
because binary data is usually considered one whole stream.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

650 Appendix G: Document Structuring Conventions—Version 3.0

%%BeginDefaults (no keywords)
%%EndDefaults (no keywords)

These comments identify the start and end of the defaults section of the
document. These comments can only occur after the header section
(%%EndComments), after the EPSI preview (%%Begin(End)Preview), if
there is one, but before the prolog (%%BeginProlog) definitions.

Some page level comments that are similar to header comments can be
used in this defaults section of the file to denote default requirements,
resources, or media for all pages. This saves space in large documents
(page-level values do not need to be repeated for every page) and can
give the document manager some hints on how it might optimize
resource usage in the file. The only comments that can be used this way
are the following:

%%PageBoundingBox:
%%PageCustomColors:
%%PageMedia:
%%PageOrientation:
%%PageProcessColors:
%%PageRequirements:
%%PageResources:

For example, if the %%PageOrientation: Portrait comment were used in
the defaults section, it would indicate that the default orientation for
all pages is portrait. When page-level comments are used this way they
are known as page defaults. Page comments used in a page override any
page defaults in effect. In reference to the previous example, if a partic-
ular page of the document were to have a landscape orientation, it
would place a %%PageOrientation: Landscape comment after the
%%Page: comment to override the default portrait orientation.

Example G.2 illustrates the page default concept.

Example G.2

%!PS-Adobe-3.0
%%Title: (Example of page defaults)
%%DocumentNeededResources: font Palatino-Roman Helvetica
%%DocumentMedia: BuffLetter 612 792 75 buff ()
%%+ BlueLetter 612 792 244 blue (CorpLogo)
%%EndComments
%%BeginDefaults
%%PageResources: font Palatino-Roman
%%PageMedia: BuffLetter
%%EndDefaults

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.5 General Conventions 651

%%BeginProlog
...Prolog definitions...
%%EndProlog
%%BeginSetup
...PostScript language instructions to set the default paper size, weights, and color...
%%EndSetup
%%Page: Cover 1
%%PageMedia: BlueLetter
%%BeginPageSetup
...PostScript language instructions to set the blue corporate logo cover paper...
%%EndPageSetup
...Rest of page 1...
%Page: ii 2
%%PageResources: font Palatino-Roman Helvetica
...Rest of page 2...
%%Page: iii 3
...Rest of the document...
%%EOF

In this example, the font resource Palatino-Roman is specified in the
defaults section as a page resource. This indicates that Palatino-Roman is
a page default and will most likely be used on every page. Also, the
media BuffLetter is specified as the page default. Buff-colored, 20-lb, 8.5"
x 11" paper will be used for most pages.

Page 1 uses a special blue cover paper and overrides the page default
(buff paper) by putting a %%PageMedia: comment in the page defini-
tion. Page 2 uses buff paper and therefore doesn’t have to put the
%%PageMedia: comment in its page definition. However, it does use
the Helvetica font in addition to the Palatino-Roman font. The page
default of Palatino-Roman is overridden by the %%PageResources: com-
ment in the page definition.

Note In some instances it may be superfluous to use these page defaults. If only one
type of orientation, media type, etc. is used in the entire document, the header
comment alone is sufficient to indicate the default for the document. Page
defaults should only be used if there is more than one bounding box, custom
color, medium, orientation, process color, requirement, or resource used.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

652 Appendix G: Document Structuring Conventions—Version 3.0

%%BeginEmulation: <mode>
<mode> ::= diablo630 | fx100 | lj2000 | hpgl | hplj | impress | ti855

%%EndEmulation (no keyword)

The %%BeginEmulation: comment signifies that the input data follow-
ing the comment contains some printer language other than PostScript.
The first line after the %%BeginEmulation comment should be the Post-
Script language instructions to invoke the emulator. This code is in the
PPD file for the printer. Note that the invocation of the emulator is
restricted to one line.

This comment enables a document manager to route the document or
piece of the document to an appropriate printer. The %%EndEmulation
comment should be preceded by the code to switch back to PostScript
mode on printers that support this type of switching (again, limit this
code to one line). Alternatively, the %%EndEmulation comment may be
omitted, in which case the end-of-file switches the printer back into
PostScript mode. The following example illustrates the first approach:

%!PS-Adobe-3.0
%%Title: (Example of emulator comments)
%%Emulation: hplj
%%EndComments
...Prolog definitions and document setup...
%%BeginEmulation: hplj
3 setsoftwareiomode % Invoke hplj emulation
...Emulator data...
1B 7F 30 % Switch back to PostScript
%%EndEmulation
...Remainder of document...

Note When including emulator data, this may break the page independence
constraint for a conforming PostScript language file, because there is no way
to signify page boundaries. Care should be taken when invoking specialized
features of the document manager, such as n-up printing. The document may
not be printed as expected.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.5 General Conventions 653

%%BeginPreview: <width> <height> <depth> <lines>
<width> ::= <uint> (Width of the preview in pixels)
<height> ::= <uint> (Height of the preview in pixels)
<depth> ::= <uint> (Number of bits of data per pixel)
<lines> ::= <uint> (Number of lines in the preview)

%%EndPreview (no keywords)

These comments bracket the preview section of an EPS file in inter-
change format (EPSI). The EPSI format is preferred over other platform-
dependent previews (for example, Apple Macintosh and IBM PC) when
transferring EPS files between heterogenous platforms. The width and
height fields provide the number of image samples (pixels) for the pre-
view. The depth field indicates how many bits of data are used to estab-
lish one sample pixel of the preview (typical values are 1, 2, 4, or 8). The
lines field indicates how many lines of hexadecimal data are contained
in the preview, so that an application disinterested in the preview can
easily skip it.

The preview consists of a bitmap image of the file, as it would be ren-
dered on the page by the printer or PostScript language previewer.
Applications that use the EPSI file can use the preview image for on-
screen display. Each line of hexadecimal data should begin with a single
percent sign. This makes the entire preview section a PostScript lan-
guage comment so the file can be sent directly to a printer without
modification. See section H.6, “Device-Independent Screen Preview.”

The EPSI preview should be placed after the %%EndComments in the
document file, but before the defaults section (%%Begin(End)Defaults),
if there is one, and before the prolog (%%BeginProlog) definitions.

Note Preview comments can be used only in documents that comply with the EPS
file format. See Appendix H for more details, including platform-specific
versions of the preview (Apple Macintosh and IBM PC platforms).

%%BeginProlog (no keywords)

%%EndProlog (no keywords)

These comments delimit the beginning and ending of the prolog in the
document. The prolog must consist only of procset definitions. The
%%EndProlog comment is widely used and parsed for, and must be
included in all documents that have a distinct prolog and script.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

654 Appendix G: Document Structuring Conventions—Version 3.0

Breaking a document into a prolog and a script is conceptually impor-
tant, although not all document descriptions fall neatly into this
model. If your document represents free form PostScript language frag-
ments that might entirely be considered a script, you should still
include the %%EndProlog comment, even though there may be noth-
ing in the prolog part of the file. This effectively makes the entire docu-
ment a script.

See section G.3.1, “Conforming Documents,” and G.4, “Document
Structure Rules,” for more information on the contents of the docu-
ment prolog.

%%BeginSetup (no keywords)

%%EndSetup (no keywords)

These comments delimit the part of the document that does device
setup for a particular printer or document. There may be instructions
for setting page size, invoking manual feed, establishing a scale factor
(or “landscape” mode), downloading a font, or other document-level
setup. Expect to see liberal use of the setpagedevice operator and
statusdict operators between these two comments. There may also be
some general initialization instructions, such as setting some aspects of
the graphics state. This code should be limited to setting those items of
the graphics state, such as the current font, transfer function, or half-
tone screen, that will not be affected by initgraphics or erasepage
(showpage performs these two operations implicitly). Special care must
be taken to ensure that the document setup code modifies the current
graphics state and does not replace it. See Appendix I for more informa-
tion about how to properly modify the graphics state.

If present, these comments appear after the %%EndProlog comment,
but before the first %%Page: comment. In other words, these com-
ments are not part of the prolog. They should be in the first part of the
script before any pages are specified.

G.5.3 General Page Comments

Some of the following general page comments that specify the bound-
ing box or orientation may appear in the defaults section or in a partic-
ular page. If these comments appear in the defaults section of the
document file between %%BeginDefaults and %%EndDefaults, they are

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.5 General Conventions 655

in effect for the entire print job. If they are found in the page-level com-
ments for a page, they should be in effect only for that page. See
%%Begin(End)Defaults for more details on page defaults.

%%BeginObject: <name> [<code>]
<name> ::= <text> (Name of object)
<code> ::= <text> (Processing code)

%%EndObject (no keywords)

These comments delimit individual graphic elements of a page. In a
context where it is desirable to be able to recognize individual page ele-
ments, this comment provides a mechanism to label and recognize
them at the PostScript language level. Labelling is especially useful
when a document printing system can print selected objects in a docu-
ment or on a page.

For instance, the code field of this comment can be used to represent
proofing levels for a document. For example, the printing manager may
be requested to “print only those objects with proofing levels less than
4.” This can save printing time when proofing various elements of a
document. It can also be useful in systems that allow PostScript lan-
guage program segments to be parsed and re-edited into convenient
groupings and categorizations of graphic page elements. In a document
production system or in an application that is highly object-oriented,
use of this comment is strongly recommended.

The user must specify to the application what things constitute an
object and what the proofing level of each object will be.

%%BeginPageSetup (no keywords)

%%EndPageSetup (no keywords)

These comments are analogous to the %%BeginSetup: and %%EndSetup
comments, except that %%BeginPageSetup: and %%EndPageSetup
appear in the body of a document right after a %%Page: comment.
They delimit areas that set manual feed, establish margins, set
orientation, download fonts or other resources for the page, invoke par-
ticular paper colors, and so on. This is the proper place to set up the
graphics state for the page. It should be assumed that an initgraphics
and an erasepage (i.e. showpage) have been performed prior to this

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

656 Appendix G: Document Structuring Conventions—Version 3.0

page. Take special care to ensure that the code in the page setup modifies
the current graphics state rather than replaces it. See Appendix I for
more information about how to properly modify the graphics state.

%%Page: <label> <ordinal>
<label> ::= <text> (Page name)
<ordinal> ::= <uint> (Page position)

This comment marks the beginning of the PostScript language instruc-
tions that describe a particular page. %%Page: requires two arguments:
a page label and a sequential page number. The label may be anything, but
the ordinal page number must reflect the position of that page in the
body of the PostScript language file and must start with 1, not 0. In the
following example, the name of the third page of the document is 1:

%!PS-Adobe-3.0
...Document prolog and setup...
%%Page: cover 1
...Rest of the cover page...
%%Page: ii 2
...Rest of the ii page...
%%Page: 1 3
...Rest of the first page...
%%Page: 2 4
...Rest of the second page...
%%EOF

A document manager should be able to rearrange the contents of the
print file into a different order based on the %%Page: comment (or the
pages may be printed in parallel, if desired). The %%PageOrder: Special
comment can be used to inform a document manager that page reor-
dering should not take place.

%%PageBoundingBox: { <llx> <lly> <urx> <ury> } | (atend)
<llx> ::= <int> (Lower-left x coordinate)
<lly> ::= <int> (Lower-left y coordinate)
<urx> ::= <int> (Upper-right x coordinate)
<ury> ::= <int> (Upper-right y coordinate)

This comment specifies the bounding box that encloses all the marks
painted on a particular page (this is not the bounding box of the whole
document—see the %%BoundingBox: comment). llx, lly and urx, ury are
the coordinates of the lower-left and upper-right corners of the bound-
ing box in the default user coordinate system (PostScript units). This com-

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.5 General Conventions 657

ment can pertain to an individual page or a document, depending on
the location of the comment. For example, the comment may be in the
page itself or in the document defaults section.

%%PageOrientation: Portrait | Landscape

This comment indicates the orientation of the page and can be used by
preview applications and post-processors to determine how to orient
the viewing window. This comment can pertain to an individual page
or a document, depending on the location of the comment. For exam-
ple, the comment may be in the page itself or in the document defaults
section. See %%Orientation: for a description of the various orienta-
tions. See %%Begin(End)Defaults for use of this comment as a page
default.

G.5.4 General Trailer Comments

Some trailer comments are special and work with other comments that
support the (atend) notation. In addition, trailer comments delimit sec-
tions of PostScript language instructions that deal with cleanup and
other housekeeping. This cleanup can affect a particular page or the
document as a whole.

%%PageTrailer (no keywords)

This comment marks the end of a page. Any page comments that may
have been deferred by the (atend) convention should follow the
%%PageTrailer comment.

%%Trailer (no keywords)

This comment must only occur once at the end of the document script.
Any post-processing or cleanup should be contained in the trailer of the
document, which is anything that follows the %%Trailer comment. Any
of the document-level structure comments that were deferred by using
the (atend) convention must be mentioned in the trailer of the docu-
ment after the %%Trailer comment.

When entire documents are embedded in another document file, there
may be more than one %%Trailer comment as a result. To avoid ambi-
guity, embedded documents must be delimited by the %%Begin-
Document: and %%EndDocument comments.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

658 Appendix G: Document Structuring Conventions—Version 3.0

%%EOF (no keywords)

This comment signifies the end of the document. When the document
manager sees this comment, it issues an end-of-file signal to the Post-
Script interpreter. This is done so system-dependent file endings, such
as Control-D and end-of-file packets, do not confuse the PostScript
interpreter.

G.6 Requirement Conventions

The requirement conventions are comments that suggest document
manager action. Some of these comments list the resources needed or
supplied by the document, delimit those resources if they are supplied,
and specify the insertion point for those resources if they are needed.
Other comments deal with printer-specific features (listing
requirements, delimiting portions of and indicating insertion points for
printer specific code) and are used in tandem with the setpagedevice
operators or statusdict operators, as well as the PostScript printer
description (PPD) files.

Note Use of the %%Include or %%Operator comments in an environment that
does not have a document manager can result in the document being
processed incorrectly.

G.6.1 Requirement Header Comments

%%DocumentMedia: <medianame> <attributes>
<medianame> ::= <text> (Tag name of the media)
<attributes> ::= <width> <height> <weight> <color> <type>
<width> ::= <real> (Width in PostScript units)
<height> ::= <real> (Height in PostScript units)
<weight> ::= <real> (Weight in g/m2)
<color> ::= <text> (Paper color)
<type> ::= <text> (Type of pre-printed form)

This comment indicates all types of paper media (paper sizes, weight,
color) this document requires. If any of the attributes are not applicable
to a particular printing situation, zeroes must be substituted for
numeric parameters and null strings must be substituted for text param-
eters. Each different medium that is needed should be listed in its
approximate order of descending quantity used.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 659

%%DocumentMedia: Plain 612 792 75 white ()
%%+ BlueCL 612 792 244 blue CorpLogo
%%+ Tax 612 792 75 () (1040)

The preceding example indicates that the following media are needed
for this job:

• 8.5" x 11", 20 lb. paper (Bond lbs × 3.76 = g/m2).

• Cover pages in blue 8.5" x 11", 65 lb. paper preprinted with the cor-
porate logo.

• Preprinted IRS 1040 tax forms.

Note that the type attribute refers to preprinted forms only, and does not
refer to the PostScript language concept of form objects as resources.
The following keywords for the type name are defined for general use:

19HoleCerlox ColorTransparency CustLetterHead Tabs
3Hole CorpLetterHead DeptLetterHead Transparency
2Hole CorpLogo Labels UserLetterHead

The related %%PageMedia: comment explicitly calls for the medium
that each page requires by referring to its medianame.

%%DocumentNeededResources: <resources>

This comment provides a list of resources the document needs—that is,
resources not contained in the document file. This comment is intended
to help a document manager decide whether further parsing of the doc-
ument file is necessary to provide these needed resources. There must
be at least one corresponding instance of the %%IncludeResource: com-
ment for each resource this comment lists.

The application that produces the print file must not make any assump-
tions about which resources are resident in the output device; it must
list all resources the document needs. Even if it is a resource, such as the
Times-Roman font program, that exists in nearly all implementations,
it must appear here. A resource must not be listed if it is not used any-
where in the document.

As a general rule, different types of resources should be listed on sepa-
rate lines using the %%+ comment, as illustrated in the following
example:

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

660 Appendix G: Document Structuring Conventions—Version 3.0

%%DocumentNeededResources: font Times-Roman Helvetica StoneSerif
%%+ font Adobe-Garamond Palatino-Roman
%%+ file /usr/lib/PostScript/logo.ps
%%+ procset Adobe_Illustrator_abbrev 1.0 0
%%+ pattern hatch bubbles
%%+ form (corporate order form)
%%+ encoding JIS

%%DocumentSuppliedResources: <resources>

The %%DocumentSuppliedResources: comment contains extra informa-
tion for document managers designed to store and reuse the resources,
and provides helpful directories of the resources contained in the print
file. This comment lists all resources that have been provided in the doc-
ument print file. There is a %%BeginResource: and %%EndResource pair
for each resource in this list. It is assumed that all resources on the
%%DocumentSuppliedResources: list are mutually exclusive of those
resources found on the %%DocumentNeededResources: list.

%%DocumentPrinterRequired: <print> <prod> [<vers> [<rev>]]
<print> ::= <text> (Printer name and print zone)
<prod> ::= <text> (Product string or nickname)
<vers> ::= <real> (Version number)
<rev> ::= <uint> (Revision number)

This comment indicates that the PostScript language instructions in the
document are intended for a particular printer, which is identified by its
network printer name, nickname, or product string. The printer can
optionally be identified by its version and revision strings, as defined by
the printer’s PPD file or as returned by the product, version, and
revision operators.

%%DocumentPrinterRequired: can be used to request a particular printer
in a highly networked environment where that printer may be more
convenient or to override document manager defaults and prevent re-
routing of the document. It can also be used if the PostScript language
file itself contains printer-specific elements. This last case should rarely
be necessary, as most documents requiring particular features of a Post-
Script printer can provide requirement conventions indicating a need
for that feature, rather than require a particular printer. Then, if other
printers are available that have the necessary features, the document
may still be printed as desired. The following example unconditionally
routes the document to a printer called SEVILLE in the network’s
“Sys_Marketing” zone:

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 661

%%DocumentPrinterRequired: (SEVILLE@Sys_Marketing) ()

If the nickname of the printer is used (this is often necessary to differ-
entiate among different models of printers), the version/revision num-
bers that are part of the nickname should be ignored.

For example, the product name for a series of printers may be
(SpeedyLaser). There are several models of SpeedyLaser printers, the
SL300, SL600, and SL1200. The nicknames of these printers are (SL300
Version 47.2), (SL600 Version 48.1), and (SL1200 Version 49.4). To specify
the need for a SL600 printer, the nickname (excluding the version num-
ber) should be used. For example:

%%DocumentPrinterRequired: () (SL600)

The version and revision numbers in this comment should be used
infrequently.

%%DocumentNeededFiles: { <filename> ... } | (atend)

The comment %%DocumentNeededFiles: lists the files a document
description needs. Each file mentioned in this list appears later in the
document as the argument of an %%IncludeFile: comment. It is
assumed that files on the %%DocumentNeededFiles: list do not include
those appearing on the %%DocumentSuppliedFiles: file list.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentNeededResources: instead.

%%DocumentSuppliedFiles: { <filename> ... } | (atend)

The comment %%DocumentSuppliedFiles: lists the files in a document
description. Each file mentioned in this list appears later in the docu-
ment in the context of a %%BeginFile: and %%EndFile: comment con-
struct. It is assumed that files on the %%DocumentSuppliedFiles: list do
not include those appearing on the %%DocumentNeededFiles: file list.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentSuppliedResources: instead.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

662 Appendix G: Document Structuring Conventions—Version 3.0

%%DocumentFonts: { <fontname> ... } | (atend)

This comment indicates that the print job uses all fonts listed. In partic-
ular, there is at least one invocation of the findfont or findresource
operator for each of the font names listed. The application producing
the print file should not make any assumptions about which fonts are
resident in the printer (for example, Times-Roman). Note that the list of
font names for %%DocumentFonts: should be the union of the
%%DocumentNeededFonts: and %%DocumentSuppliedFonts: font lists.
If the list of font names exceeds the 255 characters-per-line limit, the
%%+ comment should be used to extend the line.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comments
%%DocumentNeededResources: and %%DocumentSuppliedResources:
instead.

%%DocumentNeededFonts: { <fontname> ... } | (atend)

This comment provides a list of fonts the document requires and are not
contained in the document file. It is assumed that fonts on the
%%DocumentNeededFonts: list do not appear on the %%Document-
SuppliedFonts: font list. It is also assumed that there is at least one corre-
sponding instance of the %%IncludeFont: comment for each font listed
in this section.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentNeededResources: instead.

%%DocumentSuppliedFonts: { <fontname> ... } | (atend)

This comment provides a list of font files that have been provided in
the document print file as downloaded fonts. It is assumed that fonts
on the %%DocumentSuppliedFonts: list do not appear on the
%%DocumentNeededFonts: font list. There is at least one corresponding
%%BeginFont: and %%EndFont pair in the document description for
each of the listed font names.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentSuppliedResources: instead.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 663

%%DocumentProcSets: { <procname> ... } | (atend)

This comment provides a list of all procsets referenced in the
document. Its use is similar to the %%DocumentFonts: comment. The
list of procsets for %%DocumentProcSets: should be the union of the
%%DocumentNeededProcSets: and %%DocumentSuppliedProcSets:
procset lists. If the list of procset names exceeds the 255 characters-per-
line limit, the %%+ comment should be used to extend the line.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%DocumentNeededResources: and %%DocumentSuppliedResources:
comments instead.

%%DocumentNeededProcSets: { <procname> ... } | (atend)

This comment indicates that the document needs the listed procsets. It
is assumed that procsets on the %%DocumentNeededProcSets: list do
not appear on the %%DocumentSuppliedProcSets: procset list. This
comment is used whenever any %%IncludeProcSet: comments appear
in the file.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentNeededResources: instead.

%%DocumentSuppliedProcSets: { <procname> ... } | (atend)

This comment indicates that the document contains the listed procsets.
It is assumed that procsets in the %%DocumentSuppliedProcSets: list do
not include those appearing on the %%DocumentNeededProcSets:
procset list. This comment is used whenever any %%BeginProcSet and
%%EndProcSet comments appear within the document.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentSuppliedResources: instead.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

664 Appendix G: Document Structuring Conventions—Version 3.0

%%OperatorIntervention: [<password>]
<password> ::= <textline>

This comment causes the document manager to block a print job in the
print queue until the printer operator releases the print job for printing.
The comment may contain an optional password that the print operator
must supply to release the job. This allows the printing of sensitive doc-
uments to be delayed until the intended recipient is present at the
printer to pick up the document.

%%OperatorMessage: <textline>

If the output device has an appropriate user interface, the
%%OperatorMessage: comment provides a message that the document
manager can display on the console before printing the job. This com-
ment must only appear in the header of the file.

%%ProofMode: <mode>
<mode> ::= TrustMe | Substitute | NotifyMe

This comment provides information about the level of accuracy that is
required for printing. It is intended to provide guidance to the docu-
ment manager for appropriate tactics to use when error conditions arise
or when resource and feature shortages are encountered.

The three modes may be thought of as instructions to the document
manager. If the document manager detects a resource or feature short-
age, such as a missing font or unavailable paper size, it should take
action based on these proof modes:

• TrustMe—Indicates the document manager should not take special
action. The intent is that the document formatting programs or the
user knows more than the document manager. For example, fonts
may be available on a network font server that the document man-
ager does not know about.

Even with a comment like %%IncludeResource:, if the %%ProofMode
is TrustMe, the printing manager should proceed even if a resource
cannot be found. The assumption is that the document can compen-
sate for the resource not being included.

• Substitute—Indicates the printing manager should do the best it can
to supply missing resources with alternatives. This may mean substi-
tuting fonts, scaling pages (or tiling) when paper sizes are not avail-

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 665

able, and so on. This is the default proofing level and should be used
if the mode is missing from the comment or if the comment is miss-
ing from the document.

• NotifyMe—Indicates the document should not be printed if there are
any mismatches or resource shortages noted by the printing man-
ager. For example, when printing on an expensive color printer, if
the correct font is not available, the user probably does not want a
default font. The document manager, if it cancels the print job,
should notify the user in some system-specific manner.

These modes are intended for the printing manager to consider before it
prints the file, based on its own knowledge and queries of available
fonts, paper sizes, and other resources. If the file is printed, and an error
occurs, that is a separate issue.

%%Requirements: <requirement> [(<style> ...)] ...
<requirement> ::= collate | color | duplex | faceup | fax | fold | jog |

manualfeed | numcopies | punch | resolution | rollfed |
staple

<style> ::= <text>

This comment describes document requirements, such as duplex print-
ing, hole punching, collating, or other physical document processing
needs. These requirements may be activated by the document using
statusdict operators or setpagedevice, or they may be requested using
the %%IncludeFeature: comment.

The requirement parameter should correspond to a specific printer fea-
ture. The optional style parameter can be used to further describe the
specifics of the processing. For example, the punch requirement has a
style to indicate that a printer capable of 19 Hole Cerlox punching is
required: punch(19). If more than one style of requirement is necessary,
the styles can be listed in the enclosing parentheses (separated by com-
mas) for that requirement. For example, if both positional stapling (sta-
ple in the lower right hand corner) and staple orientation (staple at 45
degrees) is desired, the requirement is: staple(position,orient). This
informs the document manager that the printer printing this document
must be equipped with a stapler that can position and orient the staple.

The %%Requirements: comment can be used to determine if the printer
the user selects can meet the document’s requirements. If it cannot, the
document should be rerouted to a printer that can, otherwise the
document is not processed as expected. It is the document manager’s

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

666 Appendix G: Document Structuring Conventions—Version 3.0

responsibility to determine if the printer can fulfill the requirements
and if the operator and/or application should be notified of any incapa-
bility. See also the %%ProofMode: comment for actions to take when
there are no printers available that satisfy the requirements.

Note The %%Requirements: comment is informational only; it does not suggest
that the document manager actuate these requirements—that is, turn them
on. The PostScript language instructions in the document activate these
features.

The following keywords for the requirement parameter are defined:

• collate—Indicates that the document contains code that will instruct
the printer to produce collated copies (for example, 1-2-3-1-2-3-1-2-
3), rather than uncollated copies (for example, 1-1-1-2-2-2-3-3-3). If
collate is not specified, then non-collation of the document should
be assumed, except if the duplex, fold, jog, or staple requirements are
specified (they imply collation by definition). This requirement
should be used in conjunction with the numcopies requirement.

• color—Indicates that the printer must be able to print in color. If this
option is not specified, monochrome printing is assumed to be
sufficient.

• color(separation)—Indicates that the printer must be able to perform
internal color separation. If this style modifier is not specified, com-
posite color output is assumed to be sufficient.

• duplex—Indicates that the document issues commands such that
pages are printed on both sides of the paper. Any printer intended to
print such a document properly must be capable of producing
duplex output.

• duplex(tumble)—Indicates a style of duplex printing in which the
logical top of the back side is rotated 180 degrees from the logical
top of the front side. A wall calendar is an example of a document
that is typically tumble duplexed.

• faceup—Indicates that output pages are stacked face-up. If this
requirement is not specified, then the selected printer need not be
capable of stacking pages face-up.

• fax—Indicates that the document contains segments of PostScript
code pertaining to fax devices and should be sent to a fax-capable
printer.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 667

• fold—Indicates that the document requests that the printer fold the
resulting output. Typical style modifiers to this requirement would
be letter, z-fold, doublegate, leftgate, rightgate, and saddle. These are
illustrated in Figure G.3.

• jog—Indicates that jobs or multiple replications of the same docu-
ment are offset-stacked from one another in the output tray. The
document manager must ensure that the selected printer has the
ability to offset stack job output.

• manualfeed—Indicates that the document requests that paper be fed
in from the manual feed slot. If this requirement is not specified, the
selected printer need not have a manual feed slot.

• numcopies(<uint>)—Indicates that the document instructs the
printer to produce <uint> number of copies of the output. If this
requirement is not specified, a default of numcopies(1) should be
assumed.

• punch—Indicates that the document specifies commands concern-
ing hole punching. If punch is not specified, the printer need not be
capable of punching.

• punch(<uint>)—Indicates that the document contains PostScript lan-
guage instructions that cause the output to be punched with <uint>
number of holes. Typical values are 3-, 5-, and 19-hole (Cerlox)
punching. If there is no style modifier to the punch requirement, 3-
hole punching should be assumed to be acceptable.

• resolution(x, y)—Indicates that the printer is set to a particular resolu-
tion in the x and y directions. The printer manager must provide a
printer that can print in that resolution. If this requirement is not
specified, any printer resolution is acceptable.

• rollfed—Indicates that the document issues commands specific to
roll-fed devices, such as where and when to cut the paper, how far to
advance the paper, and so on. If this requirement is not specified, the
printer need not support roll-fed paper.

• staple—Indicates that PostScript language commands in the docu-
ment cause the output to be stapled. If staple is not specified as a
requirement, the printer need not support stapling.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

668 Appendix G: Document Structuring Conventions—Version 3.0

• staple([position],[orient])—Indicates a staple position and a staple
orientation. A stapler may be able to position staples on a page in
several different locations. If the print job needs a printer stapler that
performs positioning, this should be indicated by the style keyword
position. If staple orientation is needed (for example, 0, 45, 90, or 135
degrees), the orient style should be included with the staple require-
ment. If no style modifiers are given, then simple stapling is assumed
to be sufficient (top left-hand corner).

Figure G.3 Various fold options

The order of the arguments to the %%Requirements: comment is signif-
icant and implies the order in which the operations occur in the Post-
Script language code.

Example G.3 shows the proper use of the %%Requirements: comment
and the associated %%Begin(End)Feature: comments. Three copies of
this document will be printed duplex; the copies will be offset in the
output tray from one another.

Z-Fold

Double Gate

Right GateLeft Gate Saddle

Letter

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 669

Example G.3

%!PS-Adobe-3.0
%%Title: (Example of requirements)
%%LanguageLevel: 2
%%Requirements: duplex numcopies(3) jog
%%EndComments
%%BeginProlog
...Various prolog definitions...
%%EndProlog
%%BeginSetup
% For Level 1 this could have been a series of statusdict operators
%%BeginFeature: *Duplex True
<< /Duplex true >> setpagedevice
%%EndFeature
/#copies 3 def
%%BeginFeature: *Jog 3
<< /Jog 3 >> setpagedevice
%%EndFeature
%%EndSetup
...Rest of the document...
%%EOF

Note that in this instance, calls to setpagedevice are separated for each
feature. This enables a document manager to re-route the document to
a Level 1 printer. If output is going to a Level 2 printer only, the follow-
ing could have been used:

<< /Duplex true /NumCopies true /Jog 3 >> setpagedevice

Because Level 2 feature activation is device independent, the
%%Begin(End)Feature: comments are unnecessary if the document is
confined to Level 2 interpreters. The %%Requirements: and the
%%LanguageLevel: comments are still necessary, however.

Note This comment lists all of the requirements for a particular job; individual
pages may use some of the requirements in different combinations. To specify
what the page requirements are for a particular page or for the whole
document (page defaults), see the %%PageRequirements: comment.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

670 Appendix G: Document Structuring Conventions—Version 3.0

%%VMlocation: global | local

This comment is to inform resource users if a resource can be loaded
into global or local VM. For all resource categories other than a font,
the operator findresource unconditionally executes true setglobal
before executing the file that defines the resource. This means a
resource is loaded into global VM unless false setglobal appears in the
resource definition.

The creator of a resource must determine if the resource works correctly
in global VM. If it does, the resource must not execute setglobal. The
resource may wish to include the %%VMlocation: global comment. The
resource is loaded into global VM by findresource, but will be loaded
into current VM under the control of a document manager if it is
explicitly downloaded.

If the resource does not work in global VM or if the creator of the
resource does not know if the resource will work reliably in global VM,
the resource must use the %%VMlocation: local comment and the fol-
lowing PostScript language fragment:

currentglobal
false setglobal
...Definition of the resource, including defineresource...
setglobal

%%VMusage: <max> <min>
<max> ::= <uint> (Maximum VM used by resource)
<min> ::= <uint> (Minimum VM used by resource)

The document manager can use the information supplied by this com-
ment to determine if the PostScript language interpreter has enough
VM storage to handle this particular resource. This comment should be
used only in static resource files, such as fonts, procsets, files, forms,
and patterns, which are all resources that rarely change and should not
generally be used in page descriptions.

max indicates the amount of VM storage this resource consumes if it is
the first resource of its type to be downloaded. min indicates the mini-
mum amount of VM this resource needs. The numbers may not be
equal because some resources, such as fonts, can share VM storage in
some versions of the PostScript interpreter. In synthetic fonts, for exam-
ple, the charstrings of the font may be shared.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 671

These numbers are not determined in the resource. Rather, they are
determined by the resource creator when the resource (for example, a
font) is initially programmed. The numbers are placed in the resource as
static entities in this comment. To achieve accurate results when deter-
mining the usage values, make sure there are no dependencies on other
resources or conditions.

The VM a resource uses can be found by issuing the vmstatus command
before and after downloading a resource, and then again after down-
loading the same resource a second time. The difference between the
first and second numbers (before and after the first downloading) yields
the max value; the difference between the second and third (after the
second download) yields the min value. The following example illus-
trates how to obtain the max and min values for a resource:

vmstatus pop /vmstart exch def pop
...The resource goes here...
vmstatus pop dup vmstart sub (Max:) print == flush
/vmstart exch def pop
...The resource goes here...
vmstatus pop vmstart sub (Min:) print == flush pop

Note To obtain accurate memory usage values, it is important to turn off the
garbage collection mechanism in Level 2.

G.6.2 Requirement Body Comments

Some of the comments listed in this section, if used, must have a corre-
sponding comment in the header of the document. For example, if the
%%IncludeResource: comment is used, there must be a
%%DocumentNeededResources: comment in the header of the docu-
ment.

Table G.2 Body and header comment usage

Body Comment Used Corresponding Header Comment

%%Begin(End)Document: %%DocumentSuppliedResources: file

%%IncludeDocument: %%DocumentNeededResources: file

%%Begin(End)Resource: %%DocumentSuppliedResources:

%%IncludeResource: %%DocumentNeededResources:

%%Begin(End)File: %%DocumentSuppliedResources: file

%%IncludeFile: %%DocumentNeededResources: file

%%Begin(End)Font: %%DocumentSuppliedResources: font

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

672 Appendix G: Document Structuring Conventions—Version 3.0

%%IncludeFont: %%DocumentNeededResources: font

%%Begin(End)ProcSet: %%DocumentSuppliedResources: procset

%%IncludeProcSet: %%DocumentNeededResources: procset

%%Begin(End)Feature: %%Requirements: or %%DocumentMedia:

%%IncludeFeature: %%Requirements: or %%DocumentMedia

%%Begin and %%End comments indicate that the PostScript language
instructions enclosed by these comments is a resource, feature, or docu-
ment. An intelligent document manager may save resources for future
use by creating a resource library on the host system. The document
manager may replace printer-specific feature instructions when rerout-
ing the document to a different printer, or may ignore duplicate DSC
comments in an included document. The proper use of these com-
ments facilitates this intelligent document handling.

%%Include comments indicate that the named resource, feature, or doc-
ument (for example, font, procset, file, paper attribute, EPS file, and so
on) should be included in the document at the point where the com-
ment is encountered. The document manager fulfills these
requirements so there is an inherent risk in using these comments in a
document. If there is no document manager in your system environ-
ment, the document may not print correctly. As the DSC become more
prevalent and strictly adhered to, there will be more document man-
ager products available to take advantage of these %%Include com-
ments.

%%BeginDocument: <name> [<version> [<type>]]
<name> ::= <text> (Document name)
<version> ::= <real> (Document version)
<type> ::= <text> (Document type)

%%EndDocument (no keywords)

These comments delimit an entire conforming document that is imported
as part of another PostScript language document or print job. The name
of the document is usually environment-specific; it can be an operating
system file name or a key to a document database. The version and type
fields are optional and, if used, should provide extra information for
recognizing specific documents (an example of usage is a version con-
trol system).

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 673

The %%BeginDocument: comment is necessary to allow multiple occur-
rences of the %!PS-Adobe-3.0, %%EndProlog, %%Trailer, and %%EOF
comments in the body of a document. Any document file that is
embedded within another document file must be surrounded by these
comments.

Note All feature and resource requirements of an included (child) document should
be inherited by the including (parent) document. For example, if a child
document needs the StoneSerif font resource, this must be reflected in the
%%DocumentNeededResources: comment of the parent. This is necessary
so document managers can examine the top level header of any document and
know all resources and features that are required.

%%IncludeDocument: <name> [<version> [<revision>]]
<name> ::= <text> (Document name)
<version> ::= <real> (Version of the document)
<revision> ::= <int> (Revision of version)

This comment is much like the %%IncludeResource: file comment
except that it specifies that the included file is a conforming document
description rather than a small portion of stand-alone PostScript lan-
guage code. This means that, in all probability, the document contains
at least one instance of showpage, and the included document should
be wrapped with a save and restore. In particular, illustrations and EPSF
files that have no effect other than to make marks on a page are per-
fectly suited for the %%IncludeDocument: convention.

When a document file is printed, usually a certain amount of PostScript
language code is added to the file. Such code may deal with font down-
loading issues, paper sizes, or other aspects of printing once a printer
has been selected for the document. At that stage, the printing manager
must remove the %%IncludeDocument: comment and embed the
requested document (along with all the structuring conventions that
may fall within that file) between %%BeginDocument: and
%%EndDocument comments.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

674 Appendix G: Document Structuring Conventions—Version 3.0

%%BeginFeature: <featuretype> [<option>]
<featuretype> ::= <text> (PPD feature name)
<option> ::= <text> (Feature option)

%%EndFeature (no keywords)

The %%BeginFeature and %%EndFeature comments delimit any Post-
Script language fragments that invoke a printer-specific feature on a
printer. The featuretype corresponds to one of the keywords in the Post-
Script printer description (PPD) file, and the featuretype option sequence
must be exactly as it is found in the PPD file so it cooperates effectively
with these conventions.

A document manager may choose to replace the enclosed PostScript
language code with the proper sequence of instructions if the docu-
ment is sent to a different printer than originally intended. In a sense,
this is the opposite of the %%IncludeFeature: comment, which indicates
that the document manager must invoke the specified printer feature at
that position in the print file. The next two examples set up an imagea-
ble region for a job. Example G.4 uses the Level 1 statusdict method of
selecting page size. Example G.5 uses the new Level 2 setpagedevice
operator.

Example G.4

%%BeginFeature: *PageSize Legal
legal
%%EndFeature

Example G.5

%%BeginFeature: *PageSize Legal
 << /PageSize [612 1004] >> setpagedevice
%%EndFeature

%%IncludeFeature: <featuretype> [<option>]
<featuretype> ::= <text> (Name of desired feature)
<option> ::= <text> (Feature option)

This comment specifies the need for a particular printer feature, as
described in the PostScript printer description (PPD) file. Its use specifies
a requirement a document manager must fulfill before printing (see also
the discussion under %%BeginFeature). The document file may make
the assumption that the %%IncludeFeature line in the file is replaced by
the appropriate PostScript language fragment from the appropriate PPD
file, and that the execution of the file may be contextually dependent

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 675

upon this replacement. This offers a very powerful way of making a
document behave differently on different printers in a device-indepen-
dent manner. See the PostScript Printer Description Files Specification for
more information about PPD files.

%%BeginFile: <filename>

%%EndFile (no keywords)

The enclosed segment is a fragment of PostScript language code or
some other type of resource that does not fall within any of the other
resource categories. The file-server component of a document manager
may extract a copy of this file for later use by the %%IncludeFile: or
%%IncludeResource: file comments. The file name will usually corre-
spond to the original disk file name on the host system.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%Begin(End)Resource: comments instead.

%%IncludeFile: <filename>

Indicates that the document manager must insert the specified file at
the current position in the document. The file name specified also must
appear in the %%DocumentNeededResources: file or the
%%DocumentNeededFiles: list.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%IncludeResource: comment instead.

%%BeginFont: <fontname> [<printername>]
<printername> ::= <text>

%%EndFont (no keywords)

These comments delimit a downloaded font. The font-server compo-
nent of a document manager may remove the font from the print file
(for instance, if the font is already resident on the chosen printer) or it
may simply keep a copy of it for later use by the %%IncludeFont: or
%%IncludeResource: font comments. The fontname field must be the
valid PostScript language name of the font as used by the definefont

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

676 Appendix G: Document Structuring Conventions—Version 3.0

operator, and the optional printername field may contain the network
name of the printer, in an environment where fonts may be tied to par-
ticular printers.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%Begin(End)Resource: comments instead.

%%IncludeFont: <fontname>

Indicates that the document manager must include the specified font at
the current position in the document. The fontname specified should be
the correct PostScript language name for the font (without the leading
slash). Due to the presence of multiple save/restore contexts, a docu-
ment manager may have to supply a specific font more than once in
one document, and should do so whenever this comment is encoun-
tered.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%IncludeResource: comment instead.

%%BeginProcSet: <procname>

%%EndProcSet (no keywords)

The PostScript language instructions enclosed by the %%BeginProcSet:
and %%EndProcSet comments typically represents some subset of the
document prolog. The prolog may be broken down into many subpack-
ages, or procedure sets (procsets), which may define groups of routines
appropriate for different imaging requirements. These individual proc-
sets are identified by name, version, and revision numbers for reference
by a document management system. A document manager may choose
to extract these procsets from the print file to manage them separately
for a whole family of documents. An entire document prolog may be an
instance of a procset, in that it is a body of procedure definitions used
by a document description file. (See the %%DocumentProcSets:,
%%IncludeProcSet:, and %%IncludeResource: procset comments). The
name, version, and revision fields should uniquely identify the procset.
The name may consist of a disk file name or it may use a PostScript lan-
guage name under which the prolog is stored in the printer. See the
%%?Begin(End)ProcSetQuery: and the %%?Begin(End)ResourceQuery:
procset comment, which one may use to query the printer or document
manager for the prolog name and version fields.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 677

A document manager may assume that the document prolog consists of
everything from the beginning of the print file through the
%%EndProlog comment, which may encompass several instances of the
%Begin(End)ProcSet: comments.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%Begin(End)Resource: comments instead.

%%IncludeProcSet: <procname>

This is a special case of the more general %%IncludeResource: file com-
ment. It requires that a PostScript language procset with the given
name, version, and revision be inserted into the document at the cur-
rent position. If a version-numbering scheme is not used, these fields
should still be filled with a “dummy” value, such as 0. See the
%%Begin(End)Resource: and %DocumentNeededResources: comments.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%IncludeResource: comment instead.

%%BeginResource: <resource> [<max> <min>]
<max> ::= <uint> (Maximum VM used by resource)
<min> ::= <uint> (Minimum VM used by resource)

%%EndResource (no keywords)

These comments delimit a resource that is defined by PostScript lan-
guage code directly in the document file—for example, downloadable
fonts. The resource-management component of the document manager
may remove the resource from the print file and replace it with an
%%IncludeResource comment (for instance, if the chosen printer
already has the resource resident) or it may simply keep a copy of it for
later use by the %%IncludeResource: comment. The resource name spec-
ified should also appear in the %%DocumentSuppliedResources: list.

The optional usage parameters should be supplied if the %%VMusage:
comment is not provided in the resource. A document manager can use
these numbers to determine if a particular resource will fit inside the
printer VM. If it cannot, the document manager may move the resource
within the print file, juggling resources until the file can fit, or it may
reroute the print file to a printer with more VM. See the %%VMusage:
comment for details on how to obtain these numbers for a resource.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

678 Appendix G: Document Structuring Conventions—Version 3.0

Font note—These comments delimit a font that is being downloaded.
The font server component of a document manager may remove the
font from the print file (for instance, if the chosen printer already has
the font resident) or it may simply keep a copy of it for later use by the
%%IncludeResource: comment.

File note—The enclosed segment is a fragment of PostScript language
code or some other item that does not fall within the other resource
categories. The file-server component of the document manager may
extract a copy of this file for later use by the %%IncludeResource: com-
ment. The file name will usually correspond to the original disk file
name on the host system.

Procset note—The PostScript language code enclosed by these comments
typically represents some subset of the document prolog. The prolog
may be broken down into many procedure sets, which may define
groups of routines appropriate for different imaging requirements.
These individual procsets are identified by a name, version, and optional
revision numbers for reference by a print management system. A docu-
ment manager may choose to extract these procsets from a print file to
manage them separately for a whole family of documents. An entire
document prolog may be an instance of a procset, in that it is a body of
procedure definitions used by a document description file.

%%IncludeResource: <resource>

Indicates that the document manager must include the named resource
at this point in the document. The resource name specified also must
appear in the %%DocumentNeededResources: list. It is up to the applica-
tion creating the document to manage memory for resources that
employ this comment (using save/restore pairs). Although the font
example below is specific to fonts, memory management and resource
optimization are also applicable to forms, patterns, and other memory-
intensive resources.

Font note—In the case of commonly available fonts, it is highly likely
that the font server or document manager would ignore the inclusion
request, because the fonts would already be available on the printer.
However, the %%IncludeResource: font comment must still be included
so that if a standard font is not available it can be supplied (there are
printers that do not have the 13 standard fonts that are resident in most
of Adobe’s PostScript implementations). %%IncludeResource: font com-
ments of this nature should be placed in the document setup section.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 679

Due to the presence of multiple save/restore contexts, a font server
may have to supply a specific font more than once within a single doc-
ument, and should do so whenever this comment is encountered.
Depending on the memory available in the target printer, a document
manager may optimize font usage by moving the inclusion of fonts
within the document. A frequently used font could be downloaded dur-
ing the document setup, thus making it available for use by any page. A
font that is used on one or two particular pages, could be downloaded
during the page setups for each of the individual pages. A special font
that is used for one or two paragraphs on one page only would not be
moved.

In Example G.6, four different fonts (ITC Stone®, Palatino*, Carta®, and
Sonata®) are downloaded. The memory management scheme used by
the application that generated this code assumes that up to three fonts
may be downloaded at any one point in time. Note the use of multiple
%%IncludeResource: font comments for the same font when a save-
restore pair “undefines” previously included fonts.

Example G.6

%!PS-Adobe-3.0
%%Title: (Example of memory management)
%%DocumentNeededResources: font Helvetica Helvetica-Bold
%%+ font StoneSerif Palatino-Roman Carta Sonata
%%EndComments
%%BeginDefaults
%%PageResources: font Helvetica Helvetica-Bold StoneSerif
%%EndDefaults
%%BeginProlog
...Document prolog...
%%EndProlog
%%BeginSetup
% Include the common fonts found in most implementations
%%IncludeResource: font Helvetica
%%IncludeResource: font Helvetica-Bold
...Rest of the set up...
%%EndSetup
%%Page: 1 1
%%PageResources: font Helvetica Helvetica-Bold
%%+ font StoneSerif Palatino-Roman Carta Sonata
%%BeginPageSetup
/pagelevel save def
%%EndPageSetup
...Text that uses common fonts like Helvetica...
/fontlevel save def
%%IncludeResource: font StoneSerif
...Text that uses the StoneSerif font and/or common fonts...

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

680 Appendix G: Document Structuring Conventions—Version 3.0

%%IncludeResource: font Palatino-Roman
...Text that uses Palatino-Roman, StoneSerif and/or common fonts...
%%IncludeResource: font Carta
...Text that uses the Carta, Palatino-Roman, StoneSerif, and/or common fonts...
fontlevel restore % Ran out of room for new fonts
/fontlevel save def
%%IncludeResource: font StoneSerif
%%IncludeResource: font Palatino-Roman
%%IncludeResource: font Sonata
...Text that uses the Sonata, Palatino-Roman, StoneSerif, and/or common fonts...
fontlevel restore % Need to switch fonts
/fontlevel save def
%%IncludeResource: font StoneSerif
%%IncludeResource: font Carta
...Text that uses the Carta, StoneSerif, and/or common fonts...
pagelevel restore
showpage
%%Page: 2 2
%%PageResources: font StoneSerif Palatino-Roman
...Rest of the document...
%%EOF

At print time, the document manager decides there is enough memory
available in the VM of the target device to hold four fonts at any one
point in time and decides to optimize the document. The Helvetica and
Helvetica-Bold inclusions are ignored because these fonts are available
on the printer. The page level comment %%PageResources: font
StoneSerif is recognized in the defaults section, indicating that the font
StoneSerif is likely to be used on every page. The document manager
moves the inclusion of this font to the end of the document setup and
ignores all subsequent inclusion requests for StoneSerif.

The document manager also realizes that the Palatino-Roman font is
only used on pages 1 and 2. This font is downloaded at the end of the
page setup for each page. The Carta and Sonata fonts are used on page 1
only. However, the Carta font is downloaded twice due to the three-font
memory management scheme used by the application. The document
manager also moves the downloading of the Carta font to the end of
the page setup. The Sonata font is used only once and is downloaded at
the %%IncludeResource: font comment. Example G.7 shows the result-
ing file:

Example G.7

%!PS-Adobe-3.0
%%Title: (Optimized file)
%%DocumentNeededResources: font Helvetica Helvetica-Bold
%%DocumentSuppliedResources: font StoneSerif Palatino-Roman Carta Sonata

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 681

%%EndComments
%%BeginDefaults
%%PageResources: font Helvetica Helvetica-Bold StoneSerif
%%EndDefaults
%%BeginProlog
...Document prolog...
%%EndProlog
%%BeginSetup
% Include the common fonts found in most implementations
%%IncludeResource: font Helvetica
%%IncludeResource: font Helvetica-Bold
%%BeginResource: font StoneSerif
...StoneSerif font is downloaded here...
%%EndResource
...Rest of the set up...
%%EndSetup
%%Page: 1 1
%%PageResources: font Helvetica Helvetica-Bold
%%+ font StoneSerif Palatino-Roman Carta Sonata
%%BeginPageSetup
/pagelevel save def
%%BeginResource: font Palatino-Roman
...Palatino-Roman font is downloaded here...
%%EndResource
%%BeginResource: font Carta
...Carta font is downloaded here...
%%EndResource
%%EndPageSetup
...Text that uses common fonts like Helvetica...
/fontlevel save def
...Text that uses the StoneSerif font and/or common fonts...
...Text that uses Palatino-Roman, StoneSerif and/or common fonts...
...Text that uses the Carta, Palatino-Roman, StoneSerif, and/or common fonts...
fontlevel restore % Ran out of room for new fonts
/fontlevel save def
%%BeginResource: font Sonata
...Sonata font is downloaded here...
%%EndResource
...Text that uses the Sonata, Palatino-Roman, StoneSerif, and/or common fonts...
fontlevel restore % Need to switch fonts again
/fontlevel save def
...Text that uses the Carta, StoneSerif, and/or common fonts...
pagelevel restore
showpage
%%Page: 2 2
%%PageResources: font StoneSerif Palatino-Roman
%%BeginPageSetup
/pagelevel save def
%%BeginResource: font Palatino-Roman

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

682 Appendix G: Document Structuring Conventions—Version 3.0

...Palatino-Roman font is downloaded again here...
%%EndResource
...Rest of the document...
%%EOF

Procset note—The %%IncludeResource: procset comment must appear in
the document prolog only. Procsets do not generally have to worry
about save/restore pairs as in the above example. In the case of proc-
sets, the document manager may replace the desired procset with an
upwardly compatible version of the desired procset (a newer version).
See section G.4.6, “Comment Syntax,” for more details on compatible
procsets. In addition, the document manager may optimize procset
inclusion by replacing a procset that occurs multiple times with a single
copy at the top level of a document. Example G.8 shows the use of the
%%IncludeResource: procset comment:

Example G.8

%!PS-Adobe-3.0
%%Creator: Adobe Illustrator 88(TM) 1.9.3
%%For: (Joe Smith) (Adobe Systems Incorporated)
%%Title: (Example.art)
%%CreationDate: (2/08/90) (8:30 am)
%%DocumentNeededResources: procset Adobe_packedarray 0 0
%%+ procset Adobe_cmykcolor 0 0 Adobe_cshow 0 0 Adobe_customcolor 0 0
%%+ procset Adobe_Illustrator881 0 0
%%+ font StoneSerif
%%EndComments
%%BeginProlog
%%IncludeResource: procset Adobe_packedarray 0 0
%%IncludeResource: procset Adobe_cmykcolor 0 0
%%IncludeResource: procset Adobe_cshow 0 0
%%IncludeResource: procset Adobe_customcolor 0 0
%%IncludeResource: procset Adobe_Illustrator881 0 0
%%EndProlog
...Rest of the document...
%%EOF

G.6.3 Requirement Page Comments

Some of the following comments that request particular page media,
requirements, or resources may appear in the defaults section or in a
particular page. If these comments fall within the defaults section of the
document file (%%BeginDefaults to %%EndDefaults), they may be con-
strued to be in effect for the entire print job. If they are found within
the page-level comments for a page, they should only be in effect for
that page. See %%Begin(End)Defaults for more details on page defaults.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.6 Requirement Conventions 683

%%PageFonts: { <fontname> ... } | (atend)

Indicates the names of all fonts used on the current page. The notation
(atend) is permissible. In that case, the list of fonts must be provided
after the %%PageTrailer comment. Also see the %%DocumentFonts:
comment.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%PageResources: comment instead.

%%PageFiles: { <filename> ... } | (atend)

Indicates the names of all files used on the current page. This should be
used only if file inclusion is required of the document manager—that is,
if there are subsequent instances of the %%IncludeFile: comment on
that particular page. See also %%DocumentNeededFiles: and
%%DocumentSuppliedFiles: comments.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%PageResources: comment instead.

%%PageMedia: <medianame>
<medianame> ::= <text> (Name of desired paper media)

Indicates that the paper attributes denoted by medianame are invoked
on this page. The medianame is specified by the %%DocumentMedia:
comment at the beginning of the document. This comment can pertain
to either a page or a document depending on the position of the com-
ment (for example, either in the page itself or in the defaults section).
See also the %%DocumentMedia: and %%Begin(End)Defaults comments.

In Example G.9, a one-hundred page report is printed on regular white
and heavy yellow paper. Ninety-nine of the pages use the white paper
so the %%PageMedia: comment is found in the defaults section, denot-
ing that the default media for this document is white paper. The white
paper is set using the setpagedevice operator in the document setup.
The cover page is the only page to use the yellow paper, and states so
via the %%PageMedia: comment that appears after the first %%Page:
comment. Note the use of the currentpagedevice operator to facilitate
the restoration of the white-paper device after the cover page.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

684 Appendix G: Document Structuring Conventions—Version 3.0

Example G.9

%!PS-Adobe-3.0
%%Title: (Example of %%PageMedia: as a page default)
%%DocumentMedia: Regular 612 792 75 white ()
%%+ Cover 612 792 244 yellow DeptLetterHead
%%Pages: 100
%%LanguageLevel: 2
%%EndComments
%%BeginDefaults
%%PageMedia: Regular
%%EndDefaults
%%BeginProlog
...Prolog definitions...
%%EndProlog
%%BeginSetup
<< % Attribute tray numbers to

/InputAttributes << % the particular media
0 << /PageSize [612 792] /MediaWeight 75 /MediaColor (white) >>
1 << /PageSize [612 792] /MediaWeight 244

/MediaColor (yellow) /MediaType (DeptLetterHead) >>
>>

>> setpagedevice

<< /MediaColor (white) >> setpagedevice % Set the white paper to be the
%%EndSetup % default for the document
%%Page: Cover 1
%%PageMedia: Cover
%%BeginPageSetup
/olddevice currentpagedevice def
<< /MediaColor (yellow) >> setpagedevice % Set up the yellow paper
/pagelevel save def % for this page
%%EndPageSetup
...Mark the cover page...
pagelevel restore
showpage
%%PageTrailer
olddevice setpagedevice % Restore the white paper
%%Page: 1 2
...Rest of the document... % No %%PageMedia:
%%EOF % comment, white letter paper

% is the default

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.7 Color Separation Conventions 685

%%PageRequirements: <requirement> [(<style>)] ...
<requirement> ::= collate | color | duplex | faceup | fax | fold | jog |

manualfeed | numcopies | punch | resolution | rollfed |
staple

<style> ::= <text>

This is the page-level invocation of a combination of the options listed
in the %%Requirements: comment. It takes precedence over any docu-
ment requirements set during the document setup. This comment can
pertain to a page or a document depending on the position of the com-
ment (either in the page itself or in the defaults section). See the
%%Requirements: and %%Begin(End)Defaults comments.

%%PageResources: { <resource> ... } | (atend)

This comment indicates the names and values of all resources that are
needed or supplied on the present page (procsets are an exception; they
need not be listed). This comment can pertain to an individual page or
a document, depending on the location of the comment. For example,
the comment may be in the page itself or in the document defaults sec-
tion. See the %%DocumentSuppliedResources:, %%DocumentNeededRe-
sources:, and %%Begin(End)Defaults comments.

G.7 Color Separation Conventions

Level 2 implementations and Level 1 implementations that contain the
CMYK color extensions to the PostScript language provide more com-
plete color functionality than the RGB color model in Level 1. There are
corresponding color separation comments that programs producing
PostScript language documents with color operators should use. Color
separation applications can use these comments as an aid in proper
color determination and to identify process color specific portions of
PostScript language code. These comments can also be used to enable
applications to communicate spot color usage.

Note These comments do not address the use of CIE based and special color spaces.
Expect future versions of the DSC to do so.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

686 Appendix G: Document Structuring Conventions—Version 3.0

G.7.1 Color Header Comments

%%CMYKCustomColor: <cya> <mag> <yel> <blk> <colorname>
<cya> :: = <real> (Cyan percentage)
<mag> ::= <real> (Magenta percentage)
<yel> ::= <real> (Yellow percentage)
<blk> ::= <real> (Black percentage)
<colorname> ::= <text> (Custom color name)

This comment provides an approximation of the custom color specified
by colorname. The four components of cyan, magenta, yellow, and black
must be specified as numbers from 0 to 1 representing the percentage of
that process color. The numbers are similar to the arguments to the
setcmykcolor operator. The colorname follows the same custom color
naming conventions as the %%DocumentCustomColors: comment.

%%DocumentCustomColors: { <colorname> ... } | (atend)
<colorname> ::= <text> (Custom color name)

This comment indicates the use of custom colors in a document. An
application arbitrarily names these colors, and their CMYK or RGB
approximations are provided through the %%CMYKCustomColor: or
%%RGBCustomColor: comments in the body of the document. Nor-
mally, the colorname specified can be any arbitrary string except Cyan,
Magenta, Yellow, or Black. If imaging to a specific process layer is desired,
these names may be used.

%%DocumentProcessColors: { <color> ... } | (atend)
<color> ::= Cyan | Magenta | Yellow | Black

This comment marks the use of process colors in the document. Process
colors are defined to be Cyan, Magenta, Yellow, and Black. This comment
is used primarily when producing color separations. See also
%%PageProcessColors:.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.7 Color Separation Conventions 687

%%RGBCustomColor: <red> <green> <blue> <colorname>
<red> ::= <real> (Red percentage)
<green> ::= <real> (Green percentage)
<blue> ::= <real> (Blue percentage)
<colorname> ::= <text> (Custom color name)

This comment provides an approximation of the custom color specified
by colorname. The three components of red, green, and blue must be
specified as numbers from 0 to 1 representing the percentage of that
process color. The numbers are similar to the arguments to the
setrgbcolor operator. The colorname follows the same custom color
naming conventions as the %%DocumentCustomColors: comment.

G.7.2 Color Body Comments

%%BeginCustomColor: <colorname>
<colorname> ::= <text> (Custom color name)

 %%EndCustomColor (no keywords)

These comments specify that the PostScript language code fragment
enclosed within should be interpreted only when rendering the
separation identified by colorname. The colorname here is any text string
except Cyan, Magenta, Yellow, and Black (see the exception in
%%DocumentCustomColors:). During color separation, the code
between these comments must only be downloaded during the appro-
priate pass for that custom color. Intelligent printing managers can save
considerable time by omitting code within these bracketing comments
during any other separations. The document composition software
must be extremely careful to correctly control overprinting and knock-
outs if these comments are employed, because the enclosed code may
or may not be executed.

Note In the absence of a document manager that understands these comments, the
document will print incorrectly. These comments should be used only if the
environment supports such a document manager.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

688 Appendix G: Document Structuring Conventions—Version 3.0

%%BeginProcessColor: <color>
<color> ::= Cyan | Magenta | Yellow | Black

%%EndProcessColor (no keywords)

These comments specify that the PostScript language code fragment
enclosed within should be interpreted only when rendering the
separation identified by color. During color separation, the code
between these comments must be downloaded only during the appro-
priate pass for that process color. Intelligent printing managers can save
considerable time by omitting code within these bracketing comments
on the other three separations. The document composition software
must be extremely careful to correctly control overprinting and knock-
outs if these comments are employed, because the code may or may not
be executed.

Note In the absence of a document manager that understands these comments, the
document will print incorrectly. These comments should only be used if the
environment supports such a document manager.

G.7.3 Color Page Comments

%%PageCustomColors: { <colorname> ... } | (atend)
<colorname> ::= <text> (Custom color name)

This comment indicates the use of custom colors in the page. An appli-
cation arbitrarily names these colors, and their CMYK or RGB approxi-
mations are provided through the %%CMYKCustomColor: or
%%RGBCustomColor: comments in the body of the document. See the
%%DocumentCustomColors: comment.

%%PageProcessColors: { <color> ... } | (atend)
<color> ::= Cyan | Magenta | Yellow | Black

This comment marks the use of process colors in the page. Process col-
ors are defined as Cyan, Magenta, Yellow, and Black. See the
%%DocumentProcessColors: comment.

G.8 Query Conventions

A query is any PostScript language program segment that generates and
returns information back to the host computer across the communica-
tions channel before a document can be formatted for printing. This

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.8 Query Conventions 689

might result from the execution of any of the =, ==, print or pstack
operators, for instance. In particular, this definition covers information
that is expected back from the PostScript printer for decision-making
purposes. Such decision-making might include the generation of font
lists or inquiries about the availability of resources, printer features, or
the like.

All query conventions consist of a begin and end construct, with the
keywords reflecting the type of query. For all of them, the
%%?EndQuery comment should include a field for a default value,
which document managers must return if they cannot understand or
do not support query comments. The value of the default is entirely
application dependent, and an application can use it to determine spe-
cific information about the spooling environment, if any, and to take
appropriate default action.

G.8.1 Responsibilities

A document manager that expects to be able to interpret and correctly
spool documents conforming to DSC version 3.0 must, at a minimum,
perform certain tasks in response to these query conventions. In gen-
eral, it must recognize the queries, remove them from the print stream,
and send some reply back to the host. If a document manager cannot
interpret the query, it must return the value provided as the argument
to the %%?EndQuery comment.

A query can be recognized by the sequence %%?Begin followed by any
number of characters (up to the 255 maximum per line, by convention)
through the end-of-line indication (the % is decimal ASCII 37, and the
? is decimal ASCII 63). The end of the query is delimited by the
sequence %%?End followed by some keywords, and optionally followed
by a colon (: decimal ASCII 58) and the default response to the query
(any text through end-of-line). A document manager should try to rec-
ognize the full query keyword, such as %%?BeginResourceQuery:, if it
can, but it is obligated at least to respond to any validly formed query.

If a more intelligent query handling interface is desired, the document
manager must recognize which printer the application is printing to
(the %%DocumentPrinterRequired: comment may be helpful in this
case). By using the PPD file for that particular printer, the known
printer network configuration, and the printer status, the document
manager should be able to answer the query.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

690 Appendix G: Document Structuring Conventions—Version 3.0

G.8.2 Query Comments

%!PS-Adobe-3.0 Query (no keywords)

A PostScript language query must be sent as a separate job to the printer
to be fully spoolable. This means that an end-of-file indication must be
sent immediately after the query job. A query job must always begin
with the %!PS-Adobe-3.0 Query convention, which further qualifies the
file as being a special case of a version 3.0 conforming PostScript lan-
guage file. A query job contains only query comments, and need not
contain any of the other standard structuring conventions. A document
manager must be prepared to extract query information from any print
file that begins with this comment convention. A document manager
must fully parse a query job file until the EOF indication is reached.

Note It is permissible to include more than one query in a print job, but it is not
permissible to include queries within the body of a regular print job. It cannot
be guaranteed that a document manager can properly handle a print job with
embedded queries.

%%?BeginFeatureQuery: <featuretype> [<option>]
<featuretype> ::= <text> (Requested feature)
<option> ::= <text> (Feature option)

%%?EndFeatureQuery: <default>
<default> ::= <text> (Default response)

This query provides information that describes the state of some speci-
fied, printer-specific feature as defined by the PostScript printer descrip-
tion (PPD) file. The featuretype field identifies the keyword as found in
the PPD file. The standard response varies with the feature and is
defined by the printer’s PPD file. In general, the value of the
<featuretype> or the value of <option> associated with the feature should
be returned. In the example that follows, the PPD file keywords True or
False are returned:

%%?BeginFeatureQuery: *InputSlot manualfeed
 statusdict /manualfeed known {
 statusdict /manualfeed get { (True) }{ (False) } ifelse
 }{
 (None)
} ifelse = flush
%%?EndFeatureQuery: Unknown

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.8 Query Conventions 691

%%?BeginFileQuery: <filename>

%%?EndFileQuery: <default>
<default> ::= <text> (Default response)

The PostScript language code between these comments causes the
printer to respond with information describing the availability of the
specified file. This presumes the existence of a file system that is avail-
able to the PostScript interpreter, which is not the case on all imple-
mentations. The standard response consists of a line containing the file
name, a colon, and either Yes or No, indicating whether the file is
present.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%?Begin(End)ResourceQuery: comments instead.

%%?BeginFontListQuery (no keywords)

%%?EndFontListQuery: <default>
<default> ::= <text> (Default response)

Provides a PostScript language sequence to return a list of all available
fonts. It should consult the FontDirectory dictionary and any mass stor-
age devices available to the interpreter. The list need not be in any par-
ticular order, but each name should be returned separated by a slash /
character. This is normally the way the PostScript == operator returns a
font name. All white space characters should be ignored. The end of the
font list must be indicated by a trailing * (asterisk) sign on a line by
itself (decimal ASCII 42).

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%?Begin(End)ResourceListQuery: comments instead.

%%?BeginFontQuery: <fontname> ...

%%?EndFontQuery: <default>
<default> ::= <text> (Default response)

This comment provides a PostScript language query that should be
combined with a particular list of font names being sought. It looks for
any number of names on the stack and prints a list of values depending
on whether the font is known to the PostScript interpreter. The font

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

692 Appendix G: Document Structuring Conventions—Version 3.0

names must be provided on the operand stack by the document man-
ager. This is done by simply sending the names, with leading slash /
characters, before sending the query itself.

To prevent the document manager from having to keep track of the pre-
cise order in which the values are returned and to guard against errors
from dropped information, the syntax of the returned value /Font-
Name: Yes or /FontName: No. Each font in the list is returned this way.
The slashes delimit the individually returned font names, although
newlines should be expected (and ignored) between them. A final *
(asterisk) character follows the returned values.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%?Begin(End)ResourceQuery: comments instead.

%%?BeginPrinterQuery (no keywords)

%%?EndPrinterQuery: <default>
<default> ::= <text> (Default response)

This comment delimits PostScript language code that returns informa-
tion describing the printer’s product name, version, and revision numbers.
The standard response consists of the printer’s product name, version,
and revision strings, each of which must be followed by a newline char-
acter, which must match the information in the printer’s printer
description file. This comment may also be used to identify the pres-
ence of a spooler, if necessary. In the following example the default
response as represented in the %%?EndPrinterQuery: line is the word
spooler, which would be returned by spooling software that did not have
a specific printer type attached to it.

%%?BeginPrinterQuery
statusdict begin
revision == version == productname == flush
end
%%?EndPrinterQuery: spooler

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.8 Query Conventions 693

%%?BeginProcSetQuery: <procname>

%%?EndProcSetQuery: <default>
<default> ::= <text> (Default response)

These comments delimit a procset query. The combination of the name,
version, and revision fields must uniquely identify the procset. The stan-
dard response to this query consists of a line containing any of the val-
ues 0, 1, 2 where a value of 0 means the procset is missing, a value of 1
means the procset is present and OK, and a value of 2 indicates the
procset is present but is an incompatible version. Note that methods for
procset queries are procset specific.

%%?BeginProcSetQuery: adobe_distill 1.1 1
/adobe_distill_dict where {
begin mark VERSION (1.) anchorsearch {(1)}{(2)} ifelse cleartomark
end
}{
(0)
} ifelse print flush
%%?EndProcSetQuery: unknown

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%?Begin(End)ResourceQuery: comments instead.

%%?BeginQuery: <identifier>
<identifier> ::= <text> (Query identifier)

%%?EndQuery: <default>
<default> ::= <text> (Default response)

These comments are for very general purposes and may serve any func-
tion that the rest of the query conventions, which are very specific, do
not adequately cover. To understand and intelligently respond to a
query, a document manager must semantically understand the query.
Therefore, specific keywords, such as %%?BeginPrinterQuery, are used.
When the generic %%?BeginQuery comment is encountered, a spooler
may be forced to return the default value. The comment is included pri-
marily for large installations that must implement specific additional
queries not covered here, and which will likely implement the docu-
ment composition software and the document manager software.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

694 Appendix G: Document Structuring Conventions—Version 3.0

%%?BeginResourceListQuery: font | file | procset | pattern | form | encoding

%%EndResourceListQuery: <text>

These comments delimit a segment of PostScript language code that
returns a list of all available resources. The arguments specify which
type of resources to return. The code that these comments delimit
should consult local VM, global VM, and any mass storage devices
available to compile a complete list of resources. The resulting list need
not be in any particular order, but the syntax of the returned values is
the resource type followed by the resource name. The end of the resource
list must be indicated by a trailing * (asterisk) on a line by itself.

Note that font names must be returned with a slash / character in front
of each font name.

Note The use of this type of query is discouraged because it can be time consuming
for interpreters with many accessible resources (for example, a printer with a
hard disk attached). It is far better to query for individual resources by using
the %%?Begin(End)ResourceQuery: comment.

%%?BeginResourceQuery: <resource>...

%%?EndResourceQuery: <default>
<default> ::= <text> (Default response)

The PostScript language code between these comments causes the
printer to respond with information describing the availability of the
specified resources. This code looks for any number of resource names
on the stack, and prints a list of values depending on whether the
resource is known to the PostScript interpreter.

The document manager could also process this query by using informa-
tion known about the print network and current printer status. To
reduce the overhead involved in keeping track of the precise order in
which values are returned, and to guard against errors from dropped
information, the syntax of the returned value is the resource type and
name followed by a colon, a space and then a yes or a no. The end of the
list should be denoted by a *.

Note It is recommended that a separate resource query be used for each type of
resource.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.8 Query Conventions 695

A file resource query presumes that a file system is available to the Post-
Script interpreter. This is not the case in all implementations. Example
G.10 shows a typical font resource query:

Example G.10

%!PS-Adobe-3.0 Query
%%Title: (Resource query for specified fonts)
%%?BeginResourceQuery: font Times-Roman Adobe-Garamond StoneSerif
/Times-Roman
/Adobe-Garamond
/StoneSerif
%%BeginFeature: *?FontQuery
save 4 dict begin /sv exch def
/str (fonts/) def
/st2 128 string def
{

count 0 gt {
dup st2 cvs (Font /) print print
dup FontDirectory exch known
{ pop (: Yes) }
{ str exch st2 cvs

dup length /len exch def
6 exch putinterval str 0 len 6 add getinterval mark exch
{ } st2 filenameforall counttomark
0 gt {? cleartomark (: Yes) }{ cleartomark (: No) }ifelse

} ifelse = flush
}{ exit } ifelse

} bind loop
(*) = flush
sv end restore
%%EndFeature
%%?EndResourceQuery: Unknown
%%EOF

The output from this sample program could be:

Font /StoneSerif: Yes
Font /Adobe-Garamond: No
Font /Times-Roman: No
*

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions —Version

696 Appendix G: Document Structuring Conventions —Version 3.0

%%?BeginVMStatus (no keywords)

%%?EndVMStatus: <default>
<default> ::= <text> (Default response)

This comment delimits PostScript language instructions that return the
state of the PostScript interpreter ’s VM. The standard response consists
of a line containing the results of the PostScript language vmstatus
operator as shown in Example G.11:

Example G.11

%!PS-Adobe-3.0 Query
%%Title: (VM status query)
%%?BeginVMStatus
vmstatus
(Maximum:) print =
(Used:) print =
(Save Level:) print = flush
%%?EndVMStatus: Unknown
%%EOF

G.9 Open Structuring Conventions

There is an open extension mechanism for the DSC comments. Its pur-
pose is to enable other vendors to extend the functionality of the DSC
without having to rely on Adobe to amend the of ficial speci fication.

Vendors may need or want to embed extra information in a file beyond
the comments that Adobe has already speci fied. To facilitate this and to
minimize con fl icts and dif ficulties for the vendor, Adobe maintains a
registry of comment pre fixes that are allocated to vendors, and these
comments may be used in any way that is meaningful to those vendors.
You may contact the registry at the following address:

Adobe Developer Technologies
Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110 USA

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.9 Open Structuring Conventions 697

G.9.1 The Extension Mechanism

All existing Adobe-specified comments in the DSC begin with the same
prefix, except one. Here is a quick summary of the syntax of existing
comments:

The first line of a PostScript language file must, by convention, begin
with the characters %! (percent and exclamation, often referred to as
“percent-bang”). If the file is a conforming file, meaning that it con-
forms to the DSC version 3.0, then it is further qualified with PS-Adobe-
3.0. This may be optionally continued by some special keywords, such
as EPSF or ExitServer, to identify the entire file as a special instance. The
first line of a PostScript language file may look something like this:

%!PS-Adobe-3.0 EPSF 3.0

This is the only Adobe-defined comment that does not begin with two
percent signs.

All remaining structuring conventions, in their various forms, are repre-
sented as comments beginning with two percent signs (%%) as the first
characters on the line.

The extension mechanism for the open structuring conventions is to
use one percent character followed immediately by a vendor-specific pre-
fix of up to five characters. Beyond those five characters the vendor
who has registered the prefix is responsible for the comments. The com-
ment is terminated at the end of the line.

Open structuring conventions may be used much like the existing DSC
and have similar syntax and philosophy. Here are some examples of fic-
titious comments from made-up company prefixes:

%GCRImageName: myimage.ps
%BCASpoolerName: local_spool 1.0
%BCACoverStock: 10129
%BCADocumentOrigin: (New York Office)

Restrictions

Adobe does not specify where in the document open structuring con-
vention comments can appear. However, the comments must not con-
flict in any way with the regular parsing of document structuring
conventions, and their specification and use is otherwise truly open.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

698 Appendix G: Document Structuring Conventions—Version 3.0

If these vendor-specific comments interact in some meaningful way
with the DSC, this interaction should be clearly specified by the creator
of the comments, and the description should specify the version num-
ber of the DSC with which they interact.

The new comments, however implemented, should still follow the con-
forming files restrictions discussed in section G.3, “DSC Conformance.”

Parsing Rules

Although the exact syntax of the vendor-specific comments is up to the
vendor, we strongly recommend adhering to the existing conventions
and parsing rules to simplify the task of writing parsing software.

Note The syntax and parsing rules for vendor-specific comments are up to the
vendor, and you should contact the vendor for details. The rules and details
supplied in this document are guidelines and suggestions that are
recommended, but are not enforced by Adobe.

G.10 Special Structuring Conventions

There are two comments that do not readily fall into the other com-
ment categories. They are listed below, along with a description of
when they should be used.

%%BeginExitServer: <password>
<password> ::= <text>

%%EndExitServer (no keywords)

These comments delimit the PostScript language sequence that causes
the rest of the file to be executed as an unencapsulated job (see section
3.7.7, “Job Execution Environment”). This convention is used to flag
any code that sets up or executes the exitserver or startjob operators, so
a document manager can recognize and remove this sequence if neces-
sary. The %%Begin(End)ExitServer comments may be used with the
%%EOF requirement convention to pinpoint where the document
manager should send an end-of-file indication. See the %!PS-Adobe-3.0
comment. PostScript language jobs that use exitserver or startjob
should be specially flagged with the %!PS-Adobe-3.0 ExitServer notation.
An example of appropriate use is shown in the following example:

%!PS-Adobe-3.0 ExitServer
%%Title: (Example of exitserver usage)
%%EndComments

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.11 Changes Since Earlier Versions 699

%%BeginExitServer: 000000
serverdict begin 000000 exitserver
%%EndExitServer
...PostScript language instructions to perform persistent changes...
%%EOF

G.11 Changes Since Earlier Versions

The following section details changes made to the DSC specification
since version 1.0 (Appendix C in the first edition of the PostScript Lan-
guage Manual). These changes are important to document managers
that may wish to allow backward compatibility with previous versions
of this specification.

G.11.1 Changes Since Version 1.0

In DSC version 1.0, there were several comment conventions that were
required to minimally conform to that version of the specification.
These comments were:

%%DocumentFonts:
%%EndProlog
%%Page:
%%Trailer

As of version 2.1, there no longer are any required comments. All com-
ments are optional in the sense that they may not be appropriate in a
given situation. The only rule is to make sure to use them correctly.

The following comments were added as of version 2.1:

%%Begin(End)Binary:
%%Begin(End)CustomColor:
%%Begin(End)Document:
%%Begin(End)ExitServer:
%%Begin(End)Feature:
%%Begin(End)File:
%%Begin(End)Font:
%%Begin(End)Object:
%%Begin(End)PageSetup:
%%Begin(End)PaperSize:
%%Begin(End)ProcessColor:
%%Begin(End)ProcSet
%%Begin(End)Setup

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

700 Appendix G: Document Structuring Conventions—Version 3.0

%%CMYKCustomColor:
%%DocumentCustomColors:
%%DocumentNeededFiles:
%%DocumentNeededFonts:
%%DocumentNeededProcSets:
%%DocumentPaperColors:
%%DocumentPaperSizes:
%%DocumentPaperForms:
%%DocumentPaperWeights:
%%DocumentPrinterRequired:
%%DocumentProcSets:
%%DocumentProcessColors:
%%DocumentSuppliedFiles:
%%DocumentSuppliedFonts:
%%DocumentSuppliedProcSets:
%%ExecuteFile:
%%IncludeFile:
%%IncludeFont:
%%IncludeProcSet:
%%EOF
%%Feature:
%%PageBoundingBox:
%%PageCustomColors:
%%PageFonts:
%%PageFiles:
%%PageProcessColors:
%%PageTrailer
%%PaperColor:
%%PaperForm:
%%PaperSize:
%%PaperWeight:
%%ProofMode:
%%Requirements:
%%RGBCustomColor:
%%Routing:
%%?Begin(End)FeatureQuery:
%%?Begin(End)FileQuery:
%%?Begin(End)FontQuery:
%%?Begin(End)FontListQuery:
%%?Begin(End)ProcSetQuery:
%%?Begin(End)PrinterQuery:
%%?Begin(End)Query:
%%?Begin(End)VMStatus:

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.11 Changes Since Earlier Versions 701

The following comment was discontinued in version 2.1 and should be
ignored by document managers:

%%ChangeFont:

G.11.2 Changes Since Version 2.1

The DSC version 3.0 specification has been reorganized as a whole to
better present the concepts. The first half of the specification is a how-
to guide and discusses why the comments should be used. The second
half is a reference, detailing the comments.

The introduction introduces the concepts of a document manager and
how a document manager might use the comments.

A new section talks about the various services a document can receive
from a document manager. These services can be obtained through
proper use of the DSC comments. Services include spooling, banner
and trailer pages, print logging, resource inclusion, resource download-
ing, resource optimization, error reporting and recovery, printer rerout-
ing, feature inclusion, parallel printing, color breakout, page reversal, n-
up printing, range printing, collated printing, and overlays. See section
G.2, “Document Manager Services.”

The section detailing DSC conformance has been expanded and is more
precise. A document either conforms or does not conform to this speci-
fication. See section G.3, “DSC Conformance.”

A new section describing proper document structure was added. In par-
ticular, the placement of various comments in the document is dis-
cussed as are restrictions on the prolog and script. See section G.4,
“Document Structure Rules.”

A section detailing the breakdown of conventions into different catego-
ries was added, as well as detailed explanations of header, body and
page comment types. The comments are arranged in the reference sec-
tion of the document according to these categories. See section G.4.5,
“Convention Categories.”

The syntax of the DSC comments was qualified in Backus-Naur form
(BNF) to avoid ambiguities. A new section of the document talks about
BNF and defines some elementary types. See section G.4.6, “Comment
Syntax Reference.”

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

702 Appendix G: Document Structuring Conventions—Version 3.0

The open structuring conventions are new as of this version. They
define an extensible mechanism for defining vendor-specific com-
ments. See section G.9, “Open Structuring Conventions.”

New Comments For Version 3.0

The following comments were added as of version 3.0:

%%Begin(End)Data:
%%Begin(End)Defaults
%%Begin(End)Emulation:
%%Begin(End)Preview:
%%BeginProlog
%%Begin(End)Resource:
%%Copyright:
%%DocumentData:
%%DocumentMedia:
%%DocumentNeededResources:
%%DocumentSuppliedResources:
%%Emulation:
%%Extensions:
%%IncludeDocument:
%%IncludeFeature:
%%IncludeResource:
%%LanguageLevel:
%%OperatorIntervention:
%%OperatorMessage:
%%Orientation:
%%PageMedia:
%%PageOrder:
%%PageOrientation:
%%PageRequirements:
%%PageResources:
%%Version
%%VMlocation:
%%VMusage:
%%?Begin(End)ResourceQuery:
%%?Begin(End)ResourceListQuery:

There are three justifications for the addition of the %%BeginProlog
comment. Previously, the beginning of the prolog section of the docu-
ment was implicitly declared after the %%EndComments comment.
This was confusing in the case of EPSI files that needed to insert the
EPSI preview after the comments and before the prolog, which was
defined as the first %%BeginProcSet: comment. In addition, there may

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.11 Changes Since Earlier Versions 703

be instances when a document does not need formal procset defini-
tions, but needs a prolog. Finally, in the interest of language purity, a
corresponding %%Begin comment is necessary for each %%End com-
ment. Expect to see this pairing of comments in future revisions of the
DSC.

Changes to Existing Comments

%!PS-Adobe-3.0
In addition to changing the version number from 2.1 to 3.0, the new
EPSF version number was added, as well as a general format keyword for
resources.

%%Pages:
The optional pageorder number at the end of the comment is no longer
recommended (-1 indicated descending order, 0 indicated special order,
and 1 indicated ascending order). There have been cases of conflicts
between pre-knowledge of page orders and page numbers; in other
words, an application may not know the number of pages, and wishes
to defer this comment to the end of the document, but it may already
know the page order. Previewers and other document managers gain an
advantage if they know the page order as soon as possible. If page order
must be specified, it is recommended that it be done using the
%%PageOrder: comment.

%%Begin(End)Binary:
There has been some confusion with this comment. Both hex and 8-bit
binary data has been seen between these comments. There also have
been some cases in which the byte count argument to this comment
has been used to specify the number of lines of data. A new comment,
%%Begin(End)Data:, has been introduced to deal with these ambigu-
ities. The new comment may also be extended in future versions of the
DSC to deal with compression and other filters, so a document manager
can handle special filtering on Level 1 implementations.

%%Requirements:
The idea of option styles is introduced. These styles modify the require-
ment option in some manner. For example, punch(3) indicates that the
printer needs to support 3 hole punching. Similarly, duplex(tumble)
indicates that the printer must be able to perform tumble duplexing.

New options include manualfeed, numcopies, collate, jog, faceup,
resolution, rollfed, fax, and punch. They reflect the additional functional-
ity added by the Level 2 setpagedevice operator.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

704 Appendix G: Document Structuring Conventions—Version 3.0

Deleted options include simplex, punch3, punch5. The simplex option is
redundant because if duplex is not specified as a requirement, simplex is
implied. The punch3 and punch5 options have been superceded by the
idea of style modifiers (see above).

%%Begin(End)Document:
There has been a note added to this comment indicating that feature
and resource requirements of an included document should be inher-
ited by the including document.

%%ExecuteFile:
This comment has been renamed %%IncludeDocument to better reflect
its meaning.

%%Feature:
This comment has been renamed %%IncludeFeature: to more clearly
express its dependence on the document manager.

Discontinued Comments For Version 3.0

%%BeginPaperSize:
%%EndPaperSize
The comments %%BeginFeature: and %%EndFeature should be substi-
tuted.

%%DocumentPaperColors:
%%DocumentPaperForms:
%%DocumentPaperSizes:
%%DocumentPaperWeights:
These comments have been replaced by the single %%DocumentMedia:
comment. This new comment addresses two shortcomings of DSC
version 2.1. First, the new comment provides the linkage among the
various parameters describing an output medium. Second, a generalized
portable methodology for describing paper is provided.

For document managers concerned with backward compatibility, the
following comments

%%DocumentPaperColors: white buff pink
%%DocumentPaperForms: Plain Plain CorpLetterHead
%%DocumentPaperSizes: letter letter legal
%%DocumentPaperWeights: 20 65 20

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.11 Changes Since Earlier Versions 705

can be converted to

%%DocumentMedia: Wplain 612 792 75 white
%%+ Bplain 612 792 244 buff
%%+ CLHpink 612 1008 75 pink CorpLetterHead

Note that in version 2.1 there was no explicit link among the listed
arguments and the other comments. The document manager will have
to use a best-guess method of conversion or ignore these comments
entirely.

%%PaperColor:
%%PaperForm:
%%PaperSize:
%%PaperWeight:
The individual paper-request comments are now replaced with the sin-
gle %%PageMedia: comment.

Document managers trying to maintain backward compatibility should
match the %%DocumentMedia: comment with its old counterparts (see
above). %%PageMedia: will use the names of the different media speci-
fied in %%DocumentMedia: to specify changes in media. The paper
comments for forms, colors, and weights should be replaced with the
corresponding %%PageMedia: comment.

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

706 Appendix G: Document Structuring Conventions—Version 3.0

G.12 DSC Version 3.0 Summary

The following summary lists the comments that comprise version 3.0 of
the document structuring conventions.

Note Some comments in this document may be discontinued in future versions of
the DSC and are not found in this list. However, they are in the body of the
document for backward compatibility with existing applications and
document managers. Their use is discouraged; they will eventually be omitted
from the specification.

G.12.1 General Conventions

General Header Comments

%!PS-Adobe-3.0
%%BoundingBox:
%%Creator:
%%CreationDate:
%%DocumentData:
%%DocumentPrinterRequired:
%%Emulation:
%%EndComments
%%Extensions:
%%For:
%%Version:
%%Copyright:
%%LanguageLevel:
%%OperatorIntervention:
%%OperatorMessage:
%%Orientation:
%%Pages:
%%Routing:
%%Title:

General Body Comments

%%+
%%Begin(End)Data:
%%Begin(End)Defaults
%%Begin(End)Emulation:
%%Begin(End)ExitServer:
%%Begin(End)Preview:
%%Begin(End)Prolog
%%Begin(End)Setup

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

G.12 DSC Version 3.0 Summary 707

General Page Comments

%%Begin(End)Object:
%%Begin(End)PageSetup:
%%Page:
%%PageBoundingBox:
%%PageOrientation:

General Trailer Comments

%%PageTrailer
%%Trailer
%%EOF

G.12.2 Requirement Conventions

Requirement Header Comments

%%DocumentMedia:
%%DocumentNeededResources:
%%DocumentSuppliedResources:
%%Requirements:
%%ProofMode:
%%VMlocation:
%%VMusage:

Requirement Body Comments

%%Begin(End)Document:
%%Begin(End)Feature:
%%Begin(End)Resource:
%%EOF
%%IncludeDocument:
%%IncludeFeature:
%%IncludeResource:

Requirement Page Comments

%%PageMedia:
%%PageRequirements:
%%PageResources:

PLRM 2nd Edition January 21, 1994 Document Structuring Conventions—Version

708 Appendix G: Document Structuring Conventions—Version 3.0

G.12.3 Color Separation Conventions

Color Header Comments

%%CMYKCustomColor:
%%DocumentCustomColors:
%%DocumentProcessColors:
%%RGBCustomColor:

Color Body Comments

%%Begin(End)CustomColor:
%%Begin(End)ProcessColor:

Color Page Comments

%%PageCustomColors
%%PageProcessColors

G.12.4 Query Conventions

%!PS-Adobe-3.0 Query
%%?Begin(End)FeatureQuery:
%%?Begin(End)PrinterQuery:
%%?Begin(End)Query:
%%?Begin(End)ResourceQuery:
%%?Begin(End)ResourceListQuery:
%%?Begin(End)VMStatus:

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

709

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

APPENDIX H

Encapsulated PostScript
File Format—Version 3.0

The encapsulated PostScript file (EPSF) format is a standard format for
importing and exporting PostScript language files among applications
in a variety of heterogeneous environments. This appendix details the
format and contains specific information about the Macintosh® and
MS-DOS® environments. The EPSF format is based on and conforms to
the document structuring conventions (DSC) detailed in Appendix G.
Proper use of the document structuring conventions is required when
creating a PostScript language file that conforms to the EPSF format.

The main topics of this appendix include creating encapsulated Post-
Script (EPS) files, importing EPS files into other PostScript language files,
and optional screen preview images for EPS files. Finally, a detailed
example illustrates the concepts presented throughout this appendix.

H.1 Introduction

An encapsulated PostScript file is a PostScript language program
describing the appearance of a single page. Typically, the purpose of the
EPS file is to be included, or “encapsulated,” in another PostScript lan-
guage page description. The EPS file can contain any combination of
text, graphics, and images, and it is the same as any other PostScript
language page description with only a few restrictions. Figure H.1 con-
ceptually shows how an EPS file can be included in another PostScript
document.

ap

Example H.0
Table H.0
Figure H.0

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

710 Appendix H: Encapsulated PostScript File Format—Version 3.0

Figure H.1 Document with an imported EPS file

Applications that create conforming EPS files must follow the guide-
lines in section H.2, “Guidelines for Creating EPS Files.” There are two
required DSC comments, some conditionally required comments, and
several programming guidelines to ensure that the EPS file can be reli-
ably imported into an arbitrary PostScript language page description
without causing any side effects. An example of a side effect is erasing
the page of the importing document or terminating the print job.

Applications that import EPS files must follow the guidelines in section
H.3, “Guidelines for Importing EPS Files.” An application importing an
EPS file must parse the EPS file for DSC comments and extract at least
the bounding box and resource dependencies of the EPS file. The appli-
cation should also read and display the screen preview, if present. If
there is no screen preview provided in the EPS file, the application must
provide an alternate representation and allow the user to place and
transform the preview on the screen. The application must then con-
vert the user’s manipulations into the appropriate transformation to
the PostScript coordinate system before sending the document to the
printer. The application must also preserve its stacks, current dictionary,
and graphics state before the imported EPS file is executed.

Note that EPS files are a final-form representation. They cannot be
edited when imported into a document. However, the imported EPS file
as a whole may be manipulated to some extent, including transforma-
tions such as translation, rotation, scaling, and clipping.

The device-independent nature of the PostScript language makes it an
excellent interchange format. However, it normally requires a Post-
Script language interpreter to preview an EPS file on screen. Display
PostScript systems allow EPS files to be dynamically interpreted, insur-

EPS File

=+

Document Page

Transportation
of the Future

What We Can
Do to Save

Our Rain Forests

Sailboard Heaven
Is Lake Lopez

50 Finest
Hiking Trails

Transportation
of the Future

What We Can
Do to Save

Our Rain Forests

Sailboard Heaven
Is Lake Lopez

50 Finest
Hiking Trails

OUTDOOR OUTDOOR

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.1 Introduction 711

ing the highest-quality, on-screen preview regardless of scale, rotation,
or monitor type. For other environments where the Display PostScript
system is not available, the EPS file format allows for an optional screen
preview image.

The format of this preview representation varies from system to system.
It is typically a Macintosh PICT resource, a TIFF file, or a device-inde-
pendent hex bitmap. If the EPS file does not provide a preview image,
the application that includes the EPS file must provide a representation
of the preview, such as a gray box that represents the extent of the EPS
file. The end user can use the screen preview to position and size the
EPS file in the document.

To support encapsulated PostScript files effectively, some cooperation is
required among the applications that produce EPS files and those that
use EPS files. Typically, EPS files are used by importing (or including)
them in other documents.

All DSC comments in an EPS file communicate information. How an
application uses this information is up to the programmer of the
including application. When importing an EPS file, do not reduce the
amount of information in the EPS file by improperly removing or alter-
ing DSC comments. In general, the comments indicate what resources
and language extensions are used, and where they are used in the EPS
file. Encapsulated PostScript files are final-form print files that do not
know anything about the printer on which they will be imaged. If they
have specific resource needs, such as fonts, these needs must be care-
fully preserved and addressed.

Any application that generates PostScript language programs is poten-
tially both a consumer and a producer of encapsulated PostScript files. It
is probably best not to think that an application is at either end of the
chain. If an application imports an EPS file, it is responsible for reading
and understanding any of the resource needs of the imported EPS file.
These needs must be reflected in the resource usage comments of the
composite document the including application creates. For example, if
an imported EPS file uses Lithos™, but the rest of the document is set in
Times-Roman, then by importing the EPS file, the document now also
uses the Lithos font. This fact must be reflected in the composite docu-
ment’s outermost %%DocumentNeededFonts: comment. This concept
holds true for the %%DocumentNeededResources:, %%LanguageLevel:
and %%Extensions: comments as well.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

712 Appendix H: Encapsulated PostScript File Format—Version 3.0

H.2 Guidelines for Creating EPS Files

To be considered a conforming EPSF version 3.0 file, a file must follow
the rules set forth in this appendix, be a single page document that fully
conforms to the DSC version 3.0 or later (described in Appendix G),
and include two required DSC header comments.

H.2.1 Required DSC Header Comments

The two required DSC Header comments are

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: llx lly urx ury

The first required DSC header comment informs the including applica-
tion that the file conforms to version 3.0 of the EPSF format as
described in this appendix. This is the version comment.

The second required DSC header comment provides information about
the size of the EPS file and must be present so the including application
can transform and clip the EPS file properly. This is the bounding box
comment.

The four arguments of the bounding box comment correspond to the
lower-left (llx, lly) and upper-right (urx, ury) corners of the bounding box.
They are expressed in the default PostScript coordinate system. For an
EPS file, the bounding box is the smallest rectangle that encloses all the
marks painted on the single page of the EPS file. Graphics state informa-
tion, such as the current line width and line join parameters, must be
considered when calculating the bounding box. Example H.1 shows a
minimally conforming EPS file that draws a square with a line width of
10 units.

Example H.1

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 5 5 105 105
10 setlinewidth
10 10 moveto
0 90 rlineto 90 0 rlineto 0 -90 rlineto closepath
stroke

The marks painted by Example H.1, and how they are positioned with
respect to the PostScript coordinate system, are illustrated in Figure H.2.
If the line width were not considered when calculating the bounding
box, the bounding box would be incorrectly positioned by five units on

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.2 Guidelines for Creating EPS Files 713

each side of the square, causing the application to incorrectly place and
clip the imported EPS file. The bounding box specified for this example
is correct.

Figure H.2 Calculating the correct bounding box

Regardless of the coordinate system in which an application operates,
there is a convenient way to estimate the bounding box: Print the page,
then use a point ruler to measure from the lower-left corner of the
paper to the lower-left corner of the image. Then measure to the upper-
right corner, also using the lower-left corner of the paper as the origin.
These two measurements give the bounding box and do not depend on
any computation.

H.2.2 Conditionally Required Comments

There are several optional DSC comments that may be conditionally
required for a conforming EPS file. These comments must appear in an
EPS file if certain features are present—for example, comments to
bracket the preview section or to state that a certain language version or
language extensions must be present in the interpreter.

The %%Begin(End)Preview comments must bracket the preview section
of an EPS file if the preview is represented in the encapsulated Post-
Script interchange (EPSI) format. See section H.6, “Device-Independent
Screen Preview,” for details and an example of EPSI.

The %%Extensions: comment is required if the EPS file requires a Post-
Script language interpreter that supports particular PostScript language
extensions to print properly. For example, the EPS file may contain

10

10

105

105

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

714 Appendix H: Encapsulated PostScript File Format—Version 3.0

CMYK language extension operators and must be sent to a printer that
can handle those operators. In such a case, the EPS file must contain
either the %%Extensions: CMYK or the %%LanguageLevel: 2 comment.

The %%LanguageLevel: comment is required if the EPS file uses Level 2
features without providing conditional emulation. With this informa-
tion, the including application can alert the user and avoid any errors
that would be generated if the file were sent to a Level 1 printer.

If the EPS file uses language extensions or Level 2 features, and it pro-
vides complete emulation of the features in terms of Level 1 operators,
the %%Extensions: and %%LanguageLevel: comments are not necessary.
See Appendix D for compatibility and emulation strategies.

If the EPS file requires any fonts, files, forms, patterns, procsets (proce-
dure sets), or any other resources, the appropriate DSC comment must
appear in the header comments section of the file. See Appendix G.

H.2.3 Recommended Comments

An application or spooler may optionally use the general header com-
ments %%Creator:, %%Title:, and %%CreationDate: to provide informa-
tion about a document. These header comments are strongly
recommended for EPS files.

H.2.4 Illegal and Restricted Operators

There are some PostScript language operators plus statusdict and
userdict operators that are intended for system-level jobs or page
descriptions that are not appropriate in an EPS file. In addition to all
operators in statusdict and the operators in userdict for establishing an
imageable area, the following operators must not be used in an EPS file:

banddevice exitserver initmatrix setshared
clear framedevice quit startjob
cleardictstack grestoreall renderbands
copypage initclip setglobal
erasepage initgraphics setpagedevice

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.2 Guidelines for Creating EPS Files 715

If used properly, the following operators are allowed in an EPS file.
However, use of any of these must comply with the rules in Appendix I.
Improper use can cause unpredictable results.

nulldevice sethalftone setscreen undefinefont
setgstate setmatrix settransfer

H.2.5 Stacks and Dictionaries

The PostScript interpreter’s operand and dictionary stacks must be left
in the state they were in before the EPS file was executed. The EPS file
must not leave objects on either of these two stacks as a result of its exe-
cution. All operators placed on the operand stack must be used or
removed from the stack with the pop operator.

It is strongly recommended that an EPS file make all of it definitions in
its own dictionary. This means an EPS file should create its own diction-
ary or dictionaries instead of writing into the importing application’s
current dictionary. In Level 1 interpreters, the dictionary the importing
application uses may not have room for the EPS file definitions. Also, to
avoid the possibility of an invalidrestore error, make sure the EPS file’s
dictionary is removed from the dictionary stack using the PostScript
language operator end when the EPS file has finished using it. Every
dictionary that the EPS file places on the dictionary stack with a begin
operator must be removed from the dictionary stack by the EPS file with
a corresponding end operator.

Note Do not use the clear or cleardictstack operators to clear the stacks in an EPS
file. These wholesale cleanup operators not only clear the EPS file’s operands
and dictionaries from the stacks, they may clear other objects as well.

The PostScript dictionary lookup mechanism searches the dictionaries
that are on the dictionary stack. Bypassing the dictionary lookup mech-
anism for system-level names is illegal in an EPS file. Do not use the fol-
lowing type of code:

/S systemdict /showpage get def % Illegal EPS code

It may cause incorrect results in the including application’s PostScript
output by overriding the application’s redefinitions.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

716 Appendix H: Encapsulated PostScript File Format—Version 3.0

H.2.6 Graphics State

An application importing an EPS file may transform the PostScript coor-
dinate system or alter some other aspect of the graphics state so it is no
longer in its default state. This allows the application to change the
appearance of the EPS file, typically by resizing, clipping, or rotating the
illustration. If the EPS file makes assumptions about the graphics state,
such as the current clipping path, or explicitly sets something it
shouldn’t, such as the transformation matrix (see section H.2.4, “Illegal
and Restricted Operators”), the results may not be what were expected.

In preparation for including an EPS file, the graphics state must be set
by the including application as follows: current color to black, line caps
to square butt end, line joins to mitered, line width to 1, dash pattern
to solid, miter limit to 10, and current path to an empty path. Also, if
printing to a Level 2 interpreter, overprint and stroke adjust should be
set to false. An EPS file can assume that this is the default state. It is the
responsibility of the application importing the EPS file to make sure
that the graphics state is correctly set.

H.2.7 Initializing Variables

It is common for PostScript language programs to use short names, such
as x, for variables or procedures. Name-conflict problems can occur if an
EPS file does not initialize its variables before defining its procedures—in
particular, before binding them. In the following example, the variable
x is not initialized before being used in the procedure proc1. Because
the value of x in the enclosing program happens to be an operator, bind
causes the name x to be replaced by the operator lineto in proc1. This
causes a stackunderflow error upon execution.

%!PS-Adobe-3.0
...Document prolog of including application...
/x /lineto load def % Application defines x to be lineto
...More of document prolog and setup...
%%BeginDocument: GRAPHIC.EPS
...Document prolog and setup for EPS file...
/proc1 { % Enter deferred execution mode

/x exch def
x 4 moveto
} bind def % x associated with lineto after bind

4 proc1 % Execute proc1 and cause error
...Rest of EPS file...
%%EndDocument
...Rest of including application document...

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.2 Guidelines for Creating EPS Files 717

In the following example, the EPS file correctly initializes the variable x
before defining the procedure proc1:

%!PS-Adobe-3.0
...Document prolog of including application...
/x /lineto load def % Application defines x to be lineto
...More of document prolog and setup...
%%BeginDocument: GRAPHIC.EPS
...Document prolog and setup for EPS file...
/x 0 def % Initialize variables before defining procs
/proc1 {

/x exch def
x 4 moveto

} bind def
4 proc1 % Execute Proc1
...Rest of EPS file...
%%EndDocument
...Rest of including application document...

H.2.8 Ensuring Portability

Although using outside resources, such as fonts, patterns, files, and
procsets, is allowed in an EPS file, the most portable files are those that
are self-contained and do not rely on outside resources. For example, if
an EPS file requires an encoding other than the default encoding for a
font, then the EPS file should perform the re-encoding.

EPS files must never rely on procedures that are defined in application-
or driver-provided prologs, such as procedures defined in the Apple
LaserPrep file. Such definitions might or might not be present, depend-
ing on the actions of the enclosing program or previous jobs.

Because EPS files should be portable across heterogenous environments,
7-bit ASCII is the recommended format for data in EPS files. Although
binary data is allowed, use caution when producing data that is
expected to be portable. The use of binary data may make it impossible
to print on some printers across some communication channels. Binary
data that has special meaning, such as “flow control” or “marking the
end of a file,” can cause file transmission problems in certain communi-
cations environments. For example, the control-D character is used as
an end-of-file indicator in serial and parallel communications channels.
Because this character terminates the job in serial and parallel environ-
ments, it is not prudent to produce an EPS file with this character in it.

See Appendix D for guidelines about how to take advantage of language
extensions and Level 2 features while maintaining compatibility with
Level 1 PostScript interpreters.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

718 Appendix H: Encapsulated PostScript File Format—Version 3.0

H.2.9 Miscellaneous Constraints

EPS files must not have lines of ASCII text that exceed 255 characters,
excluding line-termination characters.

Lines must be terminated with one of the following combinations of
characters: CR, LF, CR LF, or LF CR.

CR is the carriage return character and LF is the line feed character (dec-
imal ASCII 13 and 10, respectively).

H.3 Guidelines for Importing EPS Files

This section contains guidelines that should be followed when creating
an application that imports EPS files. The first part discusses displaying
an EPS file; the second covers producing the PostScript language code
for the printer.

This section contains several PostScript language code fragments. A
complete code example that implements all of these segments is in sec-
tion H.7, “EPS Example.”

H.3.1 Displaying an EPS File

There are several techniques for including an EPS file in a document.
The following scenario is typical:

1. When the user imports an EPS file, the application prompts the user
to select the EPS file to be imported.

2. The application opens the selected file and parses it for useful infor-
mation. If either of the two required header comments is missing,
the application should alert the user that the file is not a conforming
EPS file and abort the import.

The DSC elementary type (atend) may be used to defer bounding box
data to the end of the EPS file. This means an application may need
to parse through the %%Trailer comments to obtain the bounding
box data.

3. If the version and bounding box comments are found, the applica-
tion should prompt the user to place the EPS file. It should then dis-
play the screen preview. If no preview is provided with the EPS file,
the application must provide a representation of the EPS file.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.3 Guidelines for Importing EPS Files 719

If the application must create its own representation, a gray box
matching the extent of the bounding box with some information in
it suffices. The information should at least include the title of the
EPS file. This can be obtained from the DSC header comment:
%%Title:. Other information, such as %%Creator: and %%Creation-
Date:, may also be displayed.

The bounding box comment can be used to help determine scaling fac-
tors and the proportions of the illustration. The including application
should enable the user to specify a “placement box” to display the
screen preview or the application-supplied representation of the screen
preview if there is not a preview present in the EPS file.

The bounding box can be used to calculate a ratio that the application
can use if the user wants to maintain original proportions while specify-
ing a placement box. Alternately, the application may display the pre-
view full size, and then allow the user to size and place the graphic as
desired. Regardless of the method used to display the preview initially,
the user should have the option of maintaining the original propor-
tions supplied by the bounding box or distorting the proportions of the
EPS graphic.

H.3.2 Producing a Composite PostScript Language Program

The following guidelines must be considered when producing a com-
posite PostScript language program that includes an imported EPS file.

Use save and restore

An application should encapsulate the imported EPS file in a save/
restore construct. This allows all VM the EPS file uses to be recovered
and the graphics state to be restored.

Redefine showpage

The showpage operator is permitted in EPS files because it is present in
so many PostScript language files. Therefore, it is reasonable for an EPS
file to use the showpage operator, although it is not necessary if the EPS
file will only be imported into another document. The application
importing the EPS file is responsible for redefining showpage.
showpage may be redefined using the following code segment:

/showpage { } def

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

720 Appendix H: Encapsulated PostScript File Format—Version 3.0

Prepare the Graphics State

In preparation for including an EPS file, the including application must
set the graphics state as follows: current color to black, line caps to
square butt end, line joins to mitered, line width to 1, dash pattern to
solid, miter limit to 10, and the current path should be set to an empty
path. This state can be explicitly set using the following code segment:

0 setgray 0 setlinecap 1 setlinewidth
0 setlinejoin 10 setmiterlimit [] 0 setdash newpath

Also, if printing directly to a Level 2 printer, the overprint and stroke
adjust graphics state parameters must be set to false. This can be done
by conditionally using the following code segment:

false setoverprint false setstrokeadjust

Note If the application knows that any given parameter of the current graphics
state is already in its default state, there is no need to execute the related
PostScript language code to reset that parameter.

Push userdict

It is recommended that an application importing an EPS file use the
begin operator to push a copy of userdict on top of the dictionary stack.
Ideally, the imported EPS file should create its own dictionary, but if it
does not, and if the application’s dictionary does not have enough
room for the EPS file’s definitions, a dictfull error may result when the
EPS file makes its definitions. After execution of the EPS file, the appli-
cation should remove the copy of userdict from the dictionary stack by
executing the end operator.

Clear the Operand Stack

The application importing the EPS file must leave an empty operand
stack for the EPS file. It is reasonable for the EPS file to expect that the
entire operand stack be available for its own use. If the entire operand
stack is needed and is not available, a stackoverflow error may occur.
Also, if the operand stack is empty, an EPS file that inappropriately exe-
cutes clear will not cause any problems.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.3 Guidelines for Importing EPS Files 721

Protect the Stacks

An EPS file should leave the operand and dictionary stacks as they were
before the EPS file was executed. However, this may not always be the
case. So before including the EPS file, the importing application should
be sure to count the number of objects on the dictionary and operand
stacks. Then, after executing the EPS file, it should make sure the stacks
contain the same number of objects as they did before the EPS file was
executed. The following code segment shows how to obtain the count
of objects on the dictionary and operand stacks:

/Dict_Count countdictstack def
/Op_Count count def

Bracket EPS File with Comments

The included EPS file must be bracketed by the %%Begin(End)-
Document: comments as described in Appendix G.

Handle Special Requirements

If either the %%LanguageLevel: comment or the %%Extensions: com-
ment is present in the header comments section of the EPS file, then at
print time the application printing the composite file is responsible for
assuring that the printer can handle the specified language extensions.
If the application determines that the printer does not have the neces-
sary language features to print the document properly, or if the applica-
tion cannot determine extension availability, the user should be
notified and prompted for the appropriate action. Also, if an applica-
tion has imported an EPS file that requires extensions, the application’s
output is now dependent on the same extensions. This must be
reflected in the document’s header comment section.

If any %%DocumentNeededResources: or %%DocumentNeededFonts:
comments are present in the header comments section of the EPS file,
before printing the document the application must be sure the
resources are available. If any of the resource requirements cannot be
handled, the user must be notified and prompted for an appropriate
action. Such an action may involve having the user locate the resource
or allowing the user or document manager to reroute the print job to a
printer that has the required resources. Also, if an application has
included an EPS file that requires these comments, the application’s
output is now dependent on the same resources. This must be reflected
in the document’s header comment section.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

722 Appendix H: Encapsulated PostScript File Format—Version 3.0

Default Coordinate System Transformation

Before including the EPS file in its page description, the importing
application must transform the PostScript coordinate system according
to the final user placement of the EPS file. The order of the transforma-
tion sequence must be:

1. Translate the origin to the new user-chosen origin.

2. Rotate, if the user has rotated the EPS file.

3. Scale, if the user has changed the size.

4. Translate the lower-left corner of the EPS file’s bounding box to the
user-chosen origin.

Details on transforming the PostScript coordinate system are below.
The first example is a simple case in which the user coordinate system
matches the default PostScript coordinate system. The second example
is a general case transformation from application space to the default
PostScript coordinate system.

Figure H.3 shows an EPS file and its bounding box superimposed on a
target page. The EPS file is shown as it would be drawn if the EPS file
were printed without first transforming the PostScript coordinate sys-
tem. The placement box in the upper-right corner of the page shows
where the user chose to place the EPS file.

Figure H.3 EPS file and placement box

400,400

560,560

100,100

-100,-100

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.3 Guidelines for Importing EPS Files 723

Figure H.4 contains three diagrams that show the steps necessary to
properly translate and scale the PostScript coordinate system to achieve
the user-chosen placement on the page.

Figure H.4 Transforming the EPS file

Translate to new origin Scale to fit placement box Translate to final position

Assuming that the bounding box found in the header of the EPS file is
%%BoundingBox: -100 -100 100 100, the following PostScript language
code fragment properly places the EPS file on the printed page:

400 400 translate % Translate to new origin
.8 .8 scale % Scale to fit “placement box”
100 100 translate % −llx −lly translate

This transformation code must be inserted into the PostScript stream
ahead of the EPS code being sent to the printer.

Figures H.3 and H.4 and the corresponding PostScript code fragment
assume that the application coordinate system matches the default
PostScript coordinate system. The following section discusses a more
general coordinate system transformation.

General Coordinate System Transformation

Typically, an application transforms the PostScript coordinate system so
the native drawing units of the application space can be used as the
operands to the PostScript language operators defining the page. Con-
sider Figure H.5, which represents an arbitrary application coordinate
system and a placement box for an EPS file.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

724 Appendix H: Encapsulated PostScript File Format—Version 3.0

Figure H.5 Application coordinate system plus placement box

To transform the PostScript coordinate system to match the application
coordinate system in Figure H.5, an application could execute the fol-
lowing code fragment:

0 792 translate
1 −1 scale

This assumes that each unit of application space is equal to one Post-
Script unit. If one unit in application space were equal to five PostScript
units, then the transformation might look like this:

0 792 translate
5 −5 scale

Assuming that the coordinate system has already been properly trans-
lated and scaled from the PostScript coordinate system to the applica-
tion coordinate system as above, then the following steps can be used
to place the EPS file in the user-chosen box:

1. left bottom translate

2. ((right − left)/(urx − llx)) (top − bottom)/(ury − lly) scale

3. − (llx) − (lly) translate

where bottom, left, top, and right are coordinates of the placement box in
application space, and llx, lly, urx, and ury are bounding box parameters
the EPS file supplies.

20,20 right,top

left,bottom 60,60

0,0

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.3 Guidelines for Importing EPS Files 725

As a final example, assume that the PostScript coordinate system has
already been transformed to match the application coordinate system,
the EPS file bounding box is %%BoundingBox: 20 20 100 100, and the
user-chosen placement box is the box shown in Figure H.5 on page 724.
Using the formula and steps above, the transformation before execut-
ing the included EPS file would be as follows:

20 60 translate
.5 −.5 scale
−20 −20 translate

Set Up a Clipping Path

The importing application should set up a clipping path around the
imported EPS file. This can be accomplished by setting a clipping path
that corresponds to the bounding box of the imported EPS file after
making the PostScript coordinate system transformations or by allow-
ing the user to optionally supply an arbitrary clipping path for special
effects.

Discard the Screen Preview

If an EPS file includes a screen preview in EPSI format, the importing
application should discard the preview before sending the document to
a printer. Although the EPSI preview is represented by PostScript com-
ments and will not pose a problem when included in the PostScript lan-
guage file sent to the printer, it takes extra time to transmit the preview.

If the preview in the EPS file is in Macintosh PICT format, do not
include the PICT resource in the PostScript language file sent to the
printer.

If the preview is in TIFF format or in Microsoft® Windows™ Metafile
format, take care to extract the PostScript language code that is to be
sent to the printer. See section H.5.2, “Windows Metafile or TIFF,” for
details.

If the EPS file does not include a screen preview, the entire EPS file can
be included in the PostScript language file sent to the printer.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

726 Appendix H: Encapsulated PostScript File Format—Version 3.0

Maintain EPSF Version 2.0 Compatibility

The EPSF version 3.0 requires that an EPS file leave the operand and dic-
tionary stacks as they were before the EPSF was executed. However, this
was not explicitly stated in earlier versions of the EPSF format. There-
fore, before including the EPS file, be sure to count the number of
objects on the dictionary and operand stacks. After executing the EPS
file, make sure the stacks contain the same number of objects they did
before the EPS file was executed.

Preparation for Including an EPS File

Example H.2 shows procedure BeginEPSF, which an application might
use to prepare to include an EPS file in its print stream. Execute the
BeginEPSF procedure before the EPS file.

Example H.2

/BeginEPSF { %def
/b4_Inc_state save def % Save state for cleanup
/dict_count countdictstack def % Count objects on dict stack
/op_count count 1 sub def % Count objects on operand stack
userdict begin % Push userdict on dict stack
/showpage { } def % Redefine showpage, { } = null proc
0 setgray 0 setlinecap % Prepare graphics state
1 setlinewidth 0 setlinejoin
10 setmiterlimit [] 0 setdash newpath
/languagelevel where % If level not equal to 1 then
{pop languagelevel % set strokeadjust and
1 ne % overprint to their defaults.

{false setstrokeadjust false setoverprint
} if

} if
} bind def

Example H.3 shows procedure EndEPSF, which illustrates how to restore
the PostScript state to the way it was before inclusion and execution of
the EPS file. Execute the EndEPSF procedure after the EPS file.

Example H.3

/EndEPSF { %def
count op_count sub {pop} repeat % Clean up stacks
countdictstack dict_count sub {end} repeat
b4_Inc_state restore

} bind def

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.4 File Types and Naming 727

Example H.4 illustrates use of the BeginEPSF and EndEPSF procedures.

Example H.4

BeginEPSF % Prepare for the included EPS file
left bottom translate % Place the EPS file
angle rotate
Xscale Yscale scale
-llx -lly translate
...Set up a clipping path...
%%BeginDocument: MyEPSFile
...Included EPS file here...
%%EndDocument
EndEPSF % Restore state, and cleanup stacks

H.4 File Types and Naming

EPS files have become a standard format for importing and exporting
PostScript language files among applications in a variety of heteroge-
nous environments. This section contains specific information about
file types and naming conventions in a variety of environments.

H.4.1 Apple Macintosh File System

The Macintosh file type for application-created PostScript language files
is EPSF. Files of type TEXT are also allowed so users can create EPS files
with standard text editors. However, the DSC must still be strictly fol-
lowed. A file of type EPSF should contain a PICT resource in the
resource fork of the file containing a screen preview image of the EPS
file. The file name may follow any naming convention as long as the
file type is EPSF. If the file type is TEXT, the extensions .epsf, and .epsi
should be used for EPS files with Macintosh-specific and device-inde-
pendent preview images, respectively. See sections H.5, “Device-Specific
Screen Preview,” and H.6, “Device-Independent Screen Preview.”

H.4.2 MS-DOS and PC-DOS File System

The recommended file extension is .EPS. For EPS files that provide an
EPSI preview, the recommended extension is .EPI. Because the name
and extension may be user-supplied, it is recommended that the appli-
cation provide a default extension of .EPS or, if the file includes an EPSI
preview, the application can provide .EPI as the default extension.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

728 Appendix H: Encapsulated PostScript File Format—Version 3.0

H.4.3 Other File Systems

Although naming is file-system dependent, in general the extension
.epsf is the preferred way to name an EPS file. Likewise, .epsi is the
preferred extension for the interchange format. In systems where lower-
case letters are not recognized or are not significant, all upper-case let-
ters can be used.

H.5 Device-Specific Screen Preview

The EPS file usually has a graphic screen preview so it can be trans-
formed and displayed on a computer screen to aid in page composition
before printing. Depending on the capabilities of the importing appli-
cation, the user may position, scale, clip, or rotate this screen represen-
tation of the EPS file. The composing software should keep track of
these transformations and reflect them in the PostScript language code
that is ultimately sent to the printer.

The exact format of this screen representation is machine-specific. That
is, each computing environment may have its own preferred preview
image format, which is typically the appropriate screen representation
for that environment. Also, a device-independent screen representation
called EPSI is specified in section H.6, “Device-Independent Screen Pre-
view.” It is recommended that all applications support this format.

H.5.1 Apple Macintosh PICT Resource

A QuickDraw™ representation of the EPS file can be created and stored
as a PICT resource in the resource fork of the EPS file. It must be given
resource number 256. If the PICT exists, the importing application may
use it for screen display. If the picframe is transformed to PostScript lan-
guage coordinates, it should agree with the %%BoundingBox: com-
ment.

Given the size limitations on PICT images, the picframe and bounding
box may not always agree. If there is a discrepancy, the
%%BoundingBox: must always be taken as the “truth,” because it accu-
rately describes the area the EPS file will image.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.5 Device-Specific Screen Preview 729

H.5.2 Windows Metafile or TIFF

Either a Microsoft Windows Metafile or a TIFF (tag image file format)
section can be included as the screen representation of an EPS file.

The EPS file has a binary header added to the beginning that provides a
sort of table of contents to the file. This is necessary because there is not
a second “fork” in the file system as there is in the Macintosh file
system.

Note It is always permissible to have a pure ASCII PostScript language file as an
EPS file in the DOS environment.

The importing application must check the first 4 bytes of the EPS file. If
they match the header as shown in Table H.1, the binary header should
be expected. If the first two match %!, it should be taken to be an ASCII
PostScript language file.

Table H.1 DOS EPS Binary File Header

Bytes Description

0-3 Must be hex C5D0D3C6 (byte 0=C5).

4-7 Byte position in file for start of PostScript language code section.

8-11 Byte length of PostScript language section.

12-15 Byte position in file for start of Metafile screen representation.

16-19 Byte length of Metafile section (PSize).

20-23 Byte position of TIFF representation.

24-27 Byte length of TIFF section.

28-29 Checksum of header (XOR of bytes 0-27). If Checksum is FFFF
then ignore it.

It is assumed that either the Metafile or the TIFF position and length
fields are zero. That is, only one or the other of these two formats is
included in the EPS file.

The Metafile must follow the guidelines the Windows specification sets
forth. It should not set the viewport or mapping mode, and it should set
the window origin and extent. The application including the EPS file
should scale the picture to fit within the %%BoundingBox: comment
specified in the EPS file.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

730 Appendix H: Encapsulated PostScript File Format—Version 3.0

H.6 Device-Independent Screen Preview

This screen preview format is designed to allow EPS files to be used as
an interchange format among widely varied systems. The preview sec-
tion of the file is a bitmap represented as ASCII hexadecimal to be sim-
ple and easily transportable. This format is called encapsulated
PostScript interchange format, or EPSI.

An EPSI file is truly portable and requires no special code for decom-
pressing or otherwise understanding the bitmap portion, other than the
ability to understand hexadecimal notation.

The %%BeginPreview: width height depth lines and %%EndPreview com-
ments bracket the preview section of an EPSI file. The width and height
fields provide the number of image samples (pixels) for the preview.
The depth field provides the number of bits of data used to establish one
sample pixel of the preview—typical values are 1, 2, 4, 8. An image that
is 100 pixels wide will always have 100 in the width field, although the
number of bytes of hexadecimal needed to build that line will vary if
depth varies. The lines field tells how many lines of hexadecimal are con-
tained in the preview, so an application that does not care may easily
skip them. All arguments are integers.

The bit order of the preview image data is the same as the bit order used
by the image operator. That is, the preview image is considered to exist
in its own coordinate system. The rectangular boundary of the preview
image has its lower-left corner at (0,0) and its upper-right corner at
(width, height). The byte order is fixed and should be (0,0) through
(width − 1), then (0,1) through (width − 1,1), etc.

H.6.1 Guidelines for EPSI Files

The following guidelines are to clarify a few basic assumptions about
the EPSI format, which is intended to be extremely simple because its
purpose is for interchange. No system should have to do much work to
decipher EPSI files. The format is accordingly kept simple and option
free.

• The preview section must appear after the header comment section,
but before the document prologue definitions. That is, it should
immediately follow the %%EndComments: line in the EPS file.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.6 Device-Independent Screen Preview 731

• In the preview section, 0 is white and 1 is black. Arbitrary transfer
functions and “flipping” black and white are not supported. Note
that in the PostScript language, 0 and 1 have the opposite meaning
(0 is black and 1 is white) for the setgray operator.

• The preview image can be of any resolution. The size of the image is
determined solely by its bounding box, and the preview data should
be scaled to fit that rectangle. Thus, the width and height parameters
from the image are not its measured dimensions, but rather describe
the amount of data supplied for the preview. Only the bounding rec-
tangle describes the dimensions.

• The hexadecimal lines must never exceed 255 bytes in length. In
cases where the preview is very wide, the lines must be broken. The
line breaks can be made at any even number of hex digits, because
the dimensions of the finished preview are established by the width,
height, and depth values.

• All non-hexadecimal characters must be ignored when collecting the
data for the preview, including tabs, spaces, newlines, percent char-
acters, and other stray ASCII characters. This is analogous to the
readhexstring operator.

• Each line of hexadecimal begins with a percent character (%). This
makes the entire preview section a PostScript language comment to
be ignored by the PostScript interpreter. The file can be printed with-
out modification.

• Although the EPSI hex preview can be sent to the printer, to shorten
transmission time it is recommended that the preview image be
stripped out of the document before transmitting the file to the
printer.

• The data for each scan line of the image must be a multiple of 8 bits
long. If necessary, pad the end of the scan line data with 0’s.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

732 Appendix H: Encapsulated PostScript File Format—Version 3.0

Example H.5 is a sample EPSI format file. Remember there are 8 bits to a
byte, and that it requires 2 hexadecimal digits to represent one binary
byte. Therefore, the 80-pixel width of the image requires 20 bytes of
hexadecimal data, which is (80 / 8) × 2. The PostScript language seg-
ment simply draws a box, as can be seen in the last few lines.

Example H.5

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 0 0 80 24
%%Pages: 0
%%Creator: John Smith
%%CreationDate: November 9, 1990
%%EndComments
%%BeginPreview: 80 24 1 24
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FF0000000000000000FF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%FFFFFFFFFFFFFFFFFFFF
%%EndPreview
%%EndProlog
%%Page: "one" 1
4 4 moveto 72 0 rlineto 0 16 rlineto -72 0 rlineto closepath
8 setlinewidth stroke
%%EOF

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.7 EPS Example 733

H.7 EPS Example

The following example illustrates the proper use of DSC comments in a
typical page description that an application might produce when
including an EPS file. For an EPS file that is represented as

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 4 4 608 407
%%Title: (ARTWORK.EPS)
%%CreationDate: (10/17/89) (5:04 PM)
%%EndComments
...PostScript code for illustration..
showpage
%%EOF

the including document’s page description, including the imported EPS
file, would be represented as

%!PS-Adobe-3.0
%%BoundingBox: 0 0 612 792
%%Creator: SomeApplication
%%Title: (Smith.Text)
%%CreationDate: 11/9/89 (19:58)
%%Pages: 1
%%DocumentFonts: Times-Roman Times-Italic
%%DocumentNeededFonts: Times-Roman Times-Italic
%%EndComments

%%BeginProlog
/ms {moveto show} bind def
/s /show load def
/SF { %/FontIndex FontSize /FontName SF --

findfont exch scalefont dup setfont def
} bind def
/sf /setfont load def
/rect { % llx lly w h % Used to create a clipping path

4 2 roll moveto
1 index 0 rlineto
0 exch rlineto
neg 0 rlineto
closepath

} bind def

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

734 Appendix H: Encapsulated PostScript File Format—Version 3.0

/BeginEPSF { %def % Prepare for EPS file
/b4_Inc_state save def% Save state for cleanup
/dict_count countdictstack def
/op_count count 1 sub def % Count objects on op stack
userdict begin % Make userdict current dict
/showpage { } def % Redefine showpage to be null
0 setgray 0 setlinecap
1 setlinewidth 0 setlinejoin
10 setmiterlimit [] 0 setdash newpath
/languagelevel where % If level not equal to 1 then

{pop languagelevel % set strokeadjust and
1 ne % overprint to their defaults
{false setstrokeadjust false setoverprint
} if

} if
}bind def
/EndEPSF { %def

count op_count sub {pop} repeat
countdictstack dict_count sub {end} repeat % Clean up dict stack
b4_Inc_state restore

} bind def
%%EndProlog

%%BeginSetup
%%IncludeFont: Times-Roman
%%IncludeFont: Times-Italic
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
/pgsave save def
%%EndPageSetup
/F1 40 /Times-Roman SF
...Set some text with F1...
/F2 40 /Times-Italic SF
...Set some text with F2...
F1 sf
...Set some more text with F1...
F2 sf
...Set some more text with F2...
BeginEPSF
65.2 10 translate % Position the EPS file
.80 .80 scale % Scale to desired size
-4 -4 translate % Move to lower left of the EPS
4 4 604 403 rect % Set up clipping path
clip newpath % Set the clipping path

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

H.8 Changes Since Version 2.0 735

%%BeginDocument: ARTWORK.EPS
%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: 4 4 608 407
%%Title: (ARTWORK.EPS)
%%CreationDate: (10/17/90) (5:04 PM)
%%EndComments
...PostScript code for illustration..
showpage
%%EOF
%%EndDocument

EndEPSF % Restore state, cleanup stacks
pgsave restore
showpage
%%EOF

H.8 Changes Since Version 2.0

Detailed DSC comment descriptions have been left out of this specifica-
tion. When developing an application that will support EPS files, the
DSC version 3.0 (see Appendix G) should be used with this specifica-
tion.

The following conditionally required DSC comments were added to
this specification as of version 3.0:

%%Extensions:
%%LanguageLevel:
%%DocumentNeededResources:
%%IncludeResource:
%%Begin(End)Document:

H.8.1 Changes Relevant to Applications Producing EPS Files

To help avoid ambiguities, section H.2, “Guidelines for Creating EPS
Files,” has been added. This new section has several guidelines for pro-
ducing EPS files. Following these guidelines will help ensure that an EPS
file can be reliably included in documents without causing any annoy-
ing side effects. Also, these new rules allow applications to easily deter-
mine if an EPS file is compatible with version 3.0 of the EPS file format.
The following is an overview of the new guidelines:

• %%Begin(End)Preview: comments must bracket an EPSI preview.

• There is a list of illegal operators that must not be used in an EPS file.

PLRM 2nd Edition January 26, 1994 Encapsulated PostScript File Format—Version

736 Appendix H: Encapsulated PostScript File Format—Version 3.0

• There is a list of restricted operators. If these operators are used in an
EPS file, they must be used in accordance with the guidelines pre-
sented in Appendix I.

• The operand and dictionary stacks must be returned to the state that
they were in before the EPS file was executed.

• It is strongly recommended that an EPS file make its definitions in its
own dictionary or dictionaries.

• An EPS file must not rely on procedures defined outside of the server
loop, such as procedures defined in the LaserPrep file.

H.8.2 Changes Relevant to Applications Importing EPS Files

To help clarify the responsibilities of an application including an EPS
file, section H.3, “Guidelines for Importing EPS Files,” specifies the fol-
lowing new rules:

• The including application must define showpage as null.

• The application must prepare the graphics state for the EPS file.

• The application must give the EPS file a clear operand stack.

• The application must surround the included EPS file by the
%%Begin(End)Document: comments.

PLRM 2nd Edition January 21, 1994 Guidelines for Specific Operators

737

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

APPENDIX I

Guidelines for Specific
Operators

If not properly used, some PostScript language operators can cause
unintended side effects, render a document device dependent, or
inhibit post-processing of a document. There are two basic situations
where these guidelines apply: regular page descriptions and encapsu-
lated PostScript files.

Regular page descriptions are PostScript language programs produced
by a document composition program—for example, a word processor
or page-layout program. Typically, the PostScript language program
produces several pages, uses a number of fonts and other resources, and
activates some printer-specific features such as paper trays or other
physical requirements. A regular page description does not normally
query the printer, perform calibration functions, cause VM to be perma-
nently modified, or produce color separations.

PostScript language programs that have the notation %!PS-Adobe-3.0 as
the first line of the file are considered to be regular page descriptions
that conform to the document structuring conventions (DSC) version
3.0. See Appendix G for more information about DSC conformance and
conventions.

An encapsulated PostScript (EPS) file is a PostScript language program
describing a single page that is typically imported by other applications.
EPS files must be device independent and must not invoke printer spe-
cific operators. EPS files follow specific guidelines and have a particular
structure that is further described in Appendix H.

Table I.1 summarizes the use of specific operators in either a regular
page description or an EPS file. “No” indicates that the operator should
not be used. Alternate suggestions, if any, are listed individually under
each operator. “Careful” indicates that the operator can be used, but
certain restrictions apply. These restrictions are listed individually
under each operator.

Example I.0
Table I.0
Figure I.0

PLRM 2nd Edition January 21, 1994 Guidelines for Specific Operators

738 Appendix I: Guidelines for Specific Operators

Table I.1 Guidelines summary

Operator Regular page description EPS file

banddevice No No

clear Careful No

cleardictstack No No

copypage No No

erasepage Careful No

exitserver No No

framedevice No No

grestoreall No No

initclip Careful No

initgraphics Careful No

initmatrix Careful No

nulldevice Careful Careful

quit No No

renderbands No No

setglobal Careful No

setgstate Careful Careful

sethalftone Careful Careful

setmatrix Careful Careful

setpagedevice Careful No

setscreen Careful Careful

setshared Careful No

settransfer Careful Careful

startjob No No

undefinefont Careful Careful

statusdict operators Careful No

userdict imageable area operators Careful No

PLRM 2nd Edition January 21, 1994 Guidelines for Specific Operators

Guidelines for Specific Operators 739

banddevice Obsolete Level 1 device-setup operator. It should never be used in a
page description.

clear Disrupts nesting of included documents and EPS files. Instead of using
clear, it is recommended that the application keep track of which items
have been placed on the operand stack and clean up the stack intelli-
gently. If it is necessary to perform the equivalent of a clear, a count of
the objects on the operand stack can be saved at the beginning of the
document:

count /numstack exch def

When it is time to remove all objects the document has left on the
operand stack, the following code should be executed:

count numstack sub {pop} repeat

cleardictstack Disrupts nesting of included documents and layering of document pro-
logs. Instead of using cleardictstack, it is recommended that the appli-
cation keep track of which dictionaries have been used and clean up the
stack intelligently. If it is necessary to perform the equivalent of a
cleardictstack, a count of the dictionaries present on the stack can be
saved at the beginning of the document:

/numdict countdictstack def

When it is time to remove all dictionaries the document has left on the
dictionary stack, the following code should be executed:

countdictstack numdict sub {end} repeat

copypage Disrupts operations that depend on page independence. copypage is
primarily used for debugging and should not appear in a page descrip-
tion. For multiple copies of a document, use the #copies convention or
the NumCopies parameter of the setpagedevice operator. The
copypage operator should not be used to simulate forms functionality;
use the execform operator (see section 4.7, “Forms”).

PLRM 2nd Edition January 21, 1994 Guidelines for Specific Operators

740 Appendix I: Guidelines for Specific Operators

erasepage Disrupts nesting of included documents. Normally, it is unnecessary to
erase the page explicitly; a program can assume that the page is already
erased. However, if necessary, the interior of the current clipping path
can be erased by the following:

gsave
clippath
1 setgray fill
grestore

exitserver Should be used only by PostScript language programs that perform sys-
tem administration functions, such as downloading a font program as
part of an unencapsulated job to alter initial VM. While executing an
unencapsulated job, VM is not protected. Also, VM resources the pro-
gram consumes remain in use until the printer is power-cycled. If you
use exitserver, use the %!PS-Adobe-3.0 ExitServer comment (see Appen-
dix G).

framedevice Obsolete Level 1 device-setup operator. It should never be used in a
page description.

grestoreall Discards any graphics state previously established by the document and
disrupts nesting of included documents. Instead of grestoreall, use the
gsave and grestore operators in properly balanced pairs.

initclip Disrupts nesting of included documents. If the current clipping path in
the document must be changed, surround any calls to clipping opera-
tors with a save-restore or gsave-grestore pair.

initgraphics Disrupts nesting of included documents. If a document requires its
graphics state to be initialized, the graphics state should be set explicitly
using operators such as setgray and setlinewidth, surrounded by a save-
restore or gsave-grestore pair.

initmatrix Disrupts nesting of included documents. If a document requires its
CTM to be initialized, modify the current CTM (see concat), surrounded
by a save-restore or gsave-grestore pair, so the current CTM is pre-
served.

nulldevice Installs the “null device” as the current output device. This device pro-
duces no physical output, but behaves like a normal device—in other
words, the current point is moved, the font machinery is invoked, and
so on. If used carefully, it can be helpful when performing color separa-
tions, where knock-out control and overprinting are needed. A gsave-
grestore or save-restore pair around this operator is recommended.

PLRM 2nd Edition January 21, 1994 Guidelines for Specific Operators

Guidelines for Specific Operators 741

quit Terminates the operation of the interpreter; the document will not be
printed. Do not use this operator in a page description.

renderbands Obsolete Level 1 device-setup operator. It should never be used in a
page description.

setglobal Disrupts page independence and nesting of included documents. In
global VM allocation mode, the values of new composite objects are
allocated in global VM. Creation and modification of global objects are
unaffected by the save-restore operators.

setgstate Disrupts page independence and nesting of included documents.
Proper use of setgstate involves resetting a previously obtained graph-
ics state from the currentgstate operator. To assure page independence,
the use of setgstate must not impose a graphics state defined in
another page in the document. That is, it should impose a graphics
state that is local to that page only. The following example illustrates a
proper use of setgstate:

/oldstate gstate def
306 392 translate 135 rotate 5 5 scale
10 setlinewidth
...Draw objects in the transformed coordinate system...
oldstate setgstate
...Draw more objects in the original coordinate system...

To obtain a similar effect as the one produced above by setgstate, it is
recommended that a save-restore or a gsave-grestore pair be used
instead.

sethalftone Should not normally appear in a page description; it can cause prob-
lems if a post-processor attempts to perform color separations. How-
ever, it is appropriate for a systems administrator to use sethalftone to
establish default screening values for the device.The use of sethalftone
in a page description is device dependent; the results will vary from
device to device.

Do not use sethalftone to create patterns; the resulting patterns will
vary depending on the resolution of the output device. Also, patterns
defined by the sethalftone operator cannot be color separated and will
only appear on devices that support halftoning. Patterns should be cre-
ated with the setpattern operator or by defining them as characters in a
special font.

PLRM 2nd Edition January 21, 1994 Guidelines for Specific Operators

742 Appendix I: Guidelines for Specific Operators

setmatrix Should be used with a matrix that was previously obtained using the
currentmatrix operator or its equivalent. It can be used for drawing
objects such as ovals:

matrix currentmatrix
rx ry scale
0 0 1 0 360 arc
setmatrix
stroke

This example ensures that the oval is drawn with an even stroke. How-
ever, do not use this operator to perform such operations as flipping the
coordinate axes. Instead, use the concat operator and concatenate to
the current transformation matrix. Ordinarily, PostScript programs
should modify the CTM (by using the translate, scale, rotate, and
concat operators) rather than replacing it.

setpagedevice Can be used to set printer-specific features in a device independent way.
setpagedevice establishes a new device, implicitly performing the
equivalent of an initgraphics and an erasepage. setpagedevice must
not be used inside an EPS file, as it will erase the entire page in which
the EPS file is included. However, in a document page description it is
often useful to use this operator in the document or page setup sec-
tions. Documents wanting Level 2 emulation services for Level 1 print-
ers from a document manager should enclose the call to setpagedevice
with %%Begin(End)Feature: comments (see section G.6.2, “Requirement
Body Comments”).

The use of setpagedevice at the page level may disrupt any document
manager services, such as n-up printing, that rely on this page count or
rely on the current page being in a different state than the default.
When using setpagedevice at the page level, save the current page
device and re-establish it at the end of the page.

setscreen Should not normally appear in a page description; it can cause prob-
lems if a post-processor attempts to perform color separations. How-
ever, it is appropriate for a systems administrator to use setscreen to
establish default screening values for the device.The use of setscreen in
a page description is device dependent; the results will vary from device
to device.

Do not use setscreen to create patterns; the resulting patterns will vary
depending on the resolution of the output device. Also, patterns
defined by the setscreen operator cannot be color separated and will

PLRM 2nd Edition January 21, 1994 Guidelines for Specific Operators

Guidelines for Specific Operators 743

only appear on devices that support halftoning. Patterns should be cre-
ated with the setpattern operator or by defining them as characters in a
special font.

setshared Disrupts page independence and nesting of included documents. In
global VM allocation mode, the values of new composite objects are
allocated in global VM. Creation and modification of global objects are
unaffected by the save-restore operators.

settransfer Output device colors can be precisely tuned using settransfer and
wholesale replacement of the current transfer function can remove any
calibration already in place. Instead, modify the current transfer func-
tion. In the following example, a negative transfer function is concate-
nated to the current transfer function:

[{1 exch sub} /exec load currenttransfer /exec load] cvx settransfer

Even when performed this way, the effect is device dependent.

startjob Should be used only by PostScript language programs that perform sys-
tem administration functions, such as downloading a font program as
part of an unencapsulated job to alter initial VM. While executing an
unencapsulated job, VM is not protected. Also, VM resources the pro-
gram consumes remain in use until the printer is power-cycled. If you
use startjob, use the %!PS-Adobe-3.0 ExitServer comment (see Appendix
G).

undefinefont Improper use of undefinefont can disrupt document manager process-
ing of the document. For example, if the document manager were to
perform resource optimization on the document and move the font
within the document file, the undefinefont operator could cause that
font to be unavailable for portions of the document. Instead, it is rec-
ommended that you use a save-restore pair around the font definition.

statusdict operators There are operators defined in the statusdict dictionary that are likely to
be highly device dependent—that is, some interpreters will have these
operators defined and others will not. These operators must not be used
in EPS files. Examples of these operators include, but are not limited to:
setsccbatch, duplexmode, setpapertray, tumble, and setmargins. Docu-
ments wanting to promote device independence and receive printer
rerouting services from a document manager must enclose the calls to
these operators with %%Begin(End)Feature: comments (see section
G.6.2, “Requirement Body Comments”).

PLRM 2nd Edition January 21, 1994 Guidelines for Specific Operators

744 Appendix I: Guidelines for Specific Operators

userdict operators There are operators defined in the userdict dictionary that cause an
imageable region to be defined. Examples of these operators include,
but are not limited to: a4, a4small, b5, ledger, legal, letter, lettersmall,
and note. These operators perform the equivalent of an initgraphics
and an erasepage. These operators must not be used in an EPS file, as
they will erase the entire page that includes the EPS file. However, in a
document page description, they are valid in the document setup and
page setup sections. The use of these operators is device dependent—
some interpreters will have these operators defined and others will not.
Documents wanting to promote device independence and receive
printer rerouting services from a document manager must enclose the
calls to these operators with %%Begin(End)Feature: comments (see sec-
tion G.6.2, “Requirement Body Comments”).

PLRM 2nd Edition January 21, 1994 Bibliography

745

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

APPENDIX J

Bibliography

Adobe Systems Incorporated, PostScript Language Tutorial and Cookbook,
Addison-Wesley, 1985. ISBN 0-201-10179-3. Emphasizes examples to
illustrate the many capabilities of the PostScript language.

Adobe Systems Incorporated, PostScript Language Program Design, Addi-
son-Wesley, 1988. ISBN 0-201-14396-8. For programmers interested in
the effective and efficient design of PostScript language programs and
printer drivers.

Adobe Systems Incorporated, The Display PostScript System Reference
Manual, Adobe Systems Incorporated, 1990. Supplementary documen-
tation for programmers writing applications that utilize the Display
PostScript system for on-screen text and graphics imaging.

Adobe Systems Incorporated, Adobe Type 1 Font Format, Addison-Wesley,
1990. ISBN 0-201-57044-0. Explains the internal organization of a Post-
Script language Type 1 font program.

Aldus Corporation, Tag Image File Format Specification, Revision 5.0,
1988. Aldus Corporation, 411 First Avenue South, Suite 200, Seattle, WA
98104. This is the so-called TIFF standard. Several PostScript language
filters use encoding schemes similar to ones included in TIFF. Also, the
optional screen preview portion of an EPS file can be in TIFF format.

CCITT, Blue Book, volume VII.3, 1988. ISBN 92-61-03611-2. Recommen-
dations T.4 and T.6 are the CCITT standards for Group 3 and Group 4
facsimile encoding. One place from which this document may be pur-
chased is: Global Engineering Documents, P.O. Box 19539, Irvine, CA
92713.

Foley, J. and A. van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley, 1982. ISBN 0-201-14468-9. Covers many graphics top-
ics including a thorough treatment of the mathematics of Bézier cubics.

Example J.0
Table J.0
Figure J.0

PLRM 2nd Edition January 21, 1994 Bibliography

746 Bibliography

Foley, J. et al., Computer Graphics: Principles and Practice, Addison-Wes-
ley, 1990. ISBN 0-201-12110-7.

Hunt, R., The Reproduction of Colour in Photography, Printing, and Televi-
sion, Fountain Press, 1987. ISBN 0-85242-356-X. A comprehensive gen-
eral reference on color reproduction; includes an introduction to the
CIE system.

IEEE, Standard 754-1985 for Binary Floating-Point Arithmetic, Institute of
Electrical and Electronic Engineers, Inc., 1985. IEEE, 345 East 47th
Street, New York, NY 10017.

Joint Photographic Experts Group (JPEG), “Revision 8 of the JPEG Tech-
nical Specification,” ISO/IEC JTC1/SC2/WG8, CCITT SGVIII, August 14,
1990. Defines a set of still picture gray-scale and color image data com-
pression algorithms.

Newman, W. and R. Sproull, Principles of Interactive Computer Graphics,
McGraw-Hill, 1979. ISBN 0-07-046338-7. A wide range of topics; the
chapters on two-dimensional transformations and raster graphics are
especially relevant to PostScript.

Smith, A., “Color Gamut Transform Pairs,” Computer Graphics (ACM
SIGGRAPH), Volume 12, number 3, August 1978. Explanation of color
conversions between RGB, HSB, and gray levels. In this article, HSB is
referred as hue-saturation-value, with conversions performed according
to the ‘‘hexcone’’ model.

Wyszecki, G. and W. Styles, Color Science: Concepts and Methods, Quanti-
tative Data and Formulae, John Wiley and Sons, 1982. ISBN 0-471-
02106-7. A detailed reference on color theory.

Wallace, G., “Overview of the JPEG (ISO/CCITT) Still Image Compres-
sion Standard,” presented at the 1990 SPIE/SPSE Symposium on Elec-
tronic Imaging Science & Technologies, February, 1990, Santa Clara,
CA.

Warnock, J. and D. Wyatt, “A Device Independent Graphics Imaging
Model for Use with Raster Devices,” Computer Graphics (ACM SIG-
GRAPH), Volume 16, Number 3, July 1982. Technical background for
the imaging model used in the PostScript language.

PLRM 2nd Edition January 27, 1994

747

1

<< 53, 361
dictionaries and 32
VM use and 57

>> 53, 361
dictionaries and 32
mark objects and 43
VM use and 57, 570

[52, 360
arrays and 31
VM use and 57
See also mark

] 52, 360
arrays and 31
mark objects and 43
VM use and 57, 569

A
abs 51, 363
access 36

execute-only 36
read-only 36
unlimited 36

access strings 77–78
AccurateScreens 315–316

storage requirements and 578
ActualAngle 315–316
ActualFrequency 315–316
add 51, 363
additive colors 309
Adobe Systems Developers’ Association 5
Adobe Type 1 Font Format 5
AdvanceDistance 238
AdvanceMedia 237–238

BeginPage and EndPage and 253
All

Separation color space and 199
aload 52, 364
altering initial VM 69–71

radix syntax 28
#copies

collated printing and 619
document copies and 629

$error 64, 100–101, 363
changes to 560
structured output and 121

% comment syntax 27, 612
%! comment syntax 624
%!PS-Adobe-3.0 640–641

conforming documents and 620
non-conforming documents and 624

%!PS-Adobe-3.0 Query 690
%% comment syntax 612
%%+ comment syntax 647

line length and 628

%lineedit 80
%statementedit 79–80
%stderr 79
%stdin 73, 78
%stdout 73, 79

(...) string syntax 28–30
{...} procedure syntax 32
<...> hexadecimal string syntax 28, 30
<~...~> ASCII base-85 string syntax 28, 30

/ literal name syntax 31
// immediately evaluated name syntax 31
\ escape syntax 29

EOL conventions and 73

= 84, 362
structured output and 120
using interpreter interactively and 21

== 84, 362

Index

PLRM 2nd Edition January 27, 1994 Index

748 Index

alternative color space. See Separation
color space

anchorsearch 53, 364
and 54, 364–365
Angle 311, 315–316
aperture 163, 336
Apple Macintosh file system

EPS files and 727
Apple Macintosh PICT resource

EPS files and 728
applications

device setup and 228–229
EPS files and 710–711, 735–736
PostScript language and 16–22

arc 158, 365
user paths and 164

architectural limits 566
arcn 158, 366

user paths and 164
arct 158, 366–367

user paths and 166
arcto 158, 367

user paths and 166
arithmetic operators 51, 346
array 52, 367

VM use and 57, 569
array objects 37–38

execution of 49
literal 110

array operators 51–54, 347
array(s) 31–32

executable 32, 35
implementation limits for 566
packed 38
See also procedures

ASCII encoding 26–33
uses for 25

ASCII encoding filters 82, 128–130
ASCII85Decode 83, 128
ASCII85Encode 83, 129–130
ASCIIHexDecode 83, 128
ASCIIHexEncode 83, 128
ashow 368

character positioning and 264
astore 52, 368

packed array objects and 53
atan 51, 369
(atend) 635–636

script and 626
attribute operators 55, 350
attributes (media)

matching requests with 240–243
attributes of objects 34
automatic stroke adjustment 322–323

awidthshow 369
character positioning and 264

B
Backus-Naur form. See BNF
banddevice

changes to 560
guidelines for 739

banner pages 615
base color space 194
base fonts 265

dictionary entries in all 266–267
user-defined 265

basic text setting 258–260
BBox

form dictionary and 174
pattern dictionary and 202–203

begin 53, 370
dictionary stack and 44

%%BeginBinary: 647–648
%%BeginCustomColor: 687
%%BeginData: 648–649
%%BeginDefaults 650–651
%%BeginDocument: 672–673

EPS files and 721
%%BeginEmulation: 652
%%BeginExitServer: 698–699
%%BeginFeature: 674
%%?BeginFeatureQuery: 690
%%BeginFile: 675
%%?BeginFileQuery: 691
%%BeginFont: 675–676
%%?BeginFontListQuery 691
%%?BeginFontQuery: 691–692
%%BeginObject: 655
BeginPage 238, 251–255

PolicyReport and 250
%%BeginPageSetup 655–656
%%BeginPreview: 653

EPS files and 730
%%?BeginPrinterQuery 692
%%BeginProcessColor: 688
%%BeginProcSet: 676–677
%%?BeginProcSetQuery: 693
%%BeginProlog 653–654
%%?BeginQuery: 693
%%BeginResource: 677–678
%%?BeginResourceListQuery: 694
%%?BeginResourceQuery: 694–695
%%BeginSetup 654
%%?BeginVMStatus 696
binary

$error dictionary and 101

binary encodings 105–122
token type character and 106

binary object sequence encoding 105
uses for 25

binary object sequences 111–115, 510
garbage collection and 62

binary token encoding 105
uses for 25

binary token(s) 106–111
interpretation of 107–108

bind 102–103, 370
changes to 563
user paths and 166

binding
name 101–104

bitmap fonts 339–342
BitmapWidths 341
BitsPerComponent

Decode and 220–221
image dictionary and 220
masks and 223

bitshift 54, 371
bitwise operators 54, 349
Black

Separation color space and 198
type 5 halftone dictionary and 318

black generation 305, 492
graphics state and 149

BlackPoint 188–189, 192, 297, 299
gamut mapping and 295

BlackIs1
CCITT fax filters and 136

Blue
Separation color space and 199
type 5 halftone dictionary and 318

BlueFrequency 319
BlueValues

deviceinfo dictionary and 339
BNF (Backus-Naur form) 634–635
body comments (DSC) 634
boolean objects 37
boolean operators 54, 349
bounding box

font 266–267
form 174
path 491
pattern 202–203

%%BoundingBox: 641
EPS files and 723

brightness 182–183
BuildChar 281

character encoding and 269
color spaces and 181
Type 3 fonts and 279

PLRM 2nd Edition January 27, 1994 Index

Index 749

BuildGlyph 279–281
.notdef character and 281
adding characters and 277
BuildChar and 281
character encoding and 270
color spaces and 181
Type 3 fonts and 279

BuildTime 573
ByteOrder 118, 573
bytesavailable 84, 371

C
cache device 231, 492–496
cache(s)

font 274–275, 572–573, 576–577
form 572–573, 577
pattern 572–573, 577
screens 572–573
user path 169–170, 572–573, 577

cachestatus 371, 577
calibrated gray space 193
calibrated RGB color spaces 189–190

See also CIEBasedABC
Cartesian coordinate system 150
Category 95
category implementation dictionary

94–95
Category resource category 88

creating resource categories and 93
CCITTFaxDecode 83, 134

entries in 135–136
CCITTFaxEncode 83, 134–136

entries in 135–136
CDevProc 268

changing character metrics and 277
ceiling 51, 372
changes

documentation 562–564
DSC 699–705
EPSF format 735–736
implementation 562–564
PostScript language 555–564

changing
character metrics 276–277
encoding vector 275

character bounding box 272
character codes

BuildChar and 281
BuildGlyph and 279
character mapping and 287–289
Encoding and 269–271

character coordinate system 271

character definitions 258
adding 277–278
replacing 277–278

character encoding 269–271
character mapping 287–289
character metrics 271–274

changing 276–277
character names

BuildGlyph and 279
character operators 143–144, 357
character origin 272
character positioning 263–264
character set(s) 591–606

Expert 600–601
Roman 596–597
Symbol 604–605

character width 263, 272
charpath 372

changes to 560, 563
outline text and 262
user paths and 166

CharStrings 268
.notdef character and 271
adding characters and 277–278
changing character metrics and 276
character encoding and 270

CIE-based color spaces 177, 185–193
CIE-based color to device color 294–302
CIEBasedA 186, 191–193

entries in 192
typical Decode arrays and 221

CIEBasedABC 186, 186–191
entries in 187–188
image dictionaries and 219
typical Decode arrays and 221

clear 50, 373
EPS files and 715, 720
guidelines for 739

cleardictstack 53, 373
dictionary stack and 44
EPS files and 715
guidelines for 739

cleartomark 373
mark objects and 43

Client Library 326
clip 374

source coordinate system and 218
clippath 374–375
clipping path 146, 158

EPS files and 725
graphics state and 148
guidelines for changing 740
view clipping and 335

closed subpath 157

closefile 375
closing file objects and 78
encoding filters and 127

closepath 158, 375
path construction and 157
stroking paths and 161

closing file objects 77–78
%%CMYKCustomColor: 686
Collate 235
collated printing 619
color (graphics state parameter) 148
color body comments 687–688, 708
color components, defined 176
color header comments 686–687, 708
color map. See Indexed color space
color page comments 688, 708
ColorRendering resource category 88, 92
color rendering 176, 293–320, 497

graphics state and 149
color rendering dictionaries

type 1 298–302
ColorRenderingType 296, 298
ColorRenderingType resource category 88

instances of 92
color separation conventions 633,

685–688, 708
ColorSpace resource category 88, 91
ColorSpaceFamily resource category 88

instances of 92
color space(s) 176–200, 498–499

CIE-based 177, 185–193
current 177
device 177, 181–185, 303–307
graphics state and 148
images and 218–219
special 177, 194–200
types of 176–181

color specification 176
color table. See Indexed color space
ColorValues

deviceinfo dictionary and 339
colored patterns 205–208
colorimage 211–226, 376

color spaces and 177, 218
data representation for 212–215
patterns and 206
source coordinate system and 216–218
using 225–226

Colors
DCTEncode dictionary and 138, 140
deviceinfo dictionary and 338

ColorTransform
DCTDecode dictionary and 137
DCTEncode dictionary and 139

PLRM 2nd Edition January 27, 1994 Index

750 Index

Columns
CCITT fax filters and 135
DCTEncode dictionary and 138, 140

command
$error dictionary and 101

comment(s) 27, 612
conditionally required for EPS

files 713–714
recommended for EPS files 714
required for EPS files 712–713
See also document structuring

conventions
Commission Internationale de

l’Éclairage. See entries beginning
with CIE

communication channel 74–75
compatibility 581–589

EPS files and 726
techniques 585–588

complete emulation 585–586
composite fonts 265, 285–291

language extensions for 558
mapping algorithm for 286
nested 290–291

composite objects 34
access attributes and 36
VM and 58
VM use and 57–59

compression filters 82–83
concat 152, 377
concatenation, defined 156
concatmatrix 377
condition 329–330, 377
condition objects 43, 329
conditional emulation 588–589
conditionally required comments

EPS files and 713–714
configurationerror 378

page device dictionary and 231
Policies and 246, 248

conforming documents 620–624
context operators 327–331
context synchronization 328–331
control characters 26

communication channel and 74–75
interactive executive 21

control constructs 48
control operators 54–55, 349
conventions

document structuring 611–708
end-of-line 73–74

conversion operators 55, 350
conversions

among device color spaces 303–307

between DeviceCMYK and
DeviceGray 304

between DeviceRGB and
DeviceGray 304

from DeviceCMYK to DeviceRGB 307
from DeviceRGB to

DeviceCMYK 305–307
coordinate system operators 143, 354
coordinate system transformation

EPS files and 722–725
coordinate system(s) 150–157

character 271
form 174
pattern 203
source 216–218

coordinate transformation
operators 151

#copies
collated printing and 619
document copies and 629

copy 50–51, 378–379
changes to 560

copying objects 34
copypage 379

BeginPage and 251–253
changes to 561
document copies and 629
EndPage and 251–253
forms and 175
guidelines for 739
patterns and 204
Separation color space and 196

%%Copyright: 641
cos 51, 380
count 50, 380
countdictstack 53, 380
countexecstack 54, 381
counttomark 51, 381

mark objects and 43
Courier 594
creating file objects 77–78
%%CreationDate: 642
%%Creator: 642
cshow 381

character positioning and 264
CTM 148, 152

BuildGlyph and 280
guidelines for initializing 740

CurDisplayList 574
CurFontCache 573
CurFormCache 573
CurMID

composite fonts and 290
CurOutlineCache 573

CurPatternCache 573
current clipping path 146
current color space 177
current font 259
current halftone dictionary 312
current path 145, 157
current point 158
current transformation matrix 152

See also CTM
currentblackgeneration 382
currentcacheparams 382, 577
currentcmykcolor 180, 382

conversions among device color
spaces and 303

DeviceCMYK and 184
currentcolor 180, 382

DeviceCMYK and 184
DeviceGray and 185
DeviceRGB and 183

currentcolorrendering 295, 383
currentcolorscreen 383

defining halftones and 311
currentcolorspace 180, 383
currentcolortransfer 384
currentcontext 327, 384
currentdash 384
currentdevparams 85, 384, 572, 579
currentdict 385
currentfile 84, 385

creating filters and 82
currentflat 386
currentfont 386

graphics state and 146
currentglobal 386
currentgray 180, 386

conversions among device color
spaces and 303

DeviceGray and 185
currentgstate 387

device setup and 253
graphics state and 146–147

currenthalftone 312, 387
defining halftones and 311

currenthalftonephase 337, 387
currenthsbcolor 180, 388

conversions among device color
spaces and 303

DeviceRGB and 183
currentlinecap 388
currentlinejoin 388
currentlinewidth 388
currentmatrix 389
currentmiterlimit 389
currentobjectformat 389

PLRM 2nd Edition January 27, 1994 Index

Index 751

currentoverprint 389
currentpacking 53, 389
currentpagedevice 229–230, 390

PolicyReport and 250
currentpoint 390
currentrgbcolor 180, 390–391

conversions among device color
spaces and 303

DeviceRGB and 183
currentscreen 391

changes to 560
defining halftones and 311

currentshared 391
currentstrokeadjust 391
currentsystemparams 392, 571, 575
currenttransfer 392
currentundercolorremoval 392
currentuserparams 392, 571, 574
CurScreenStorage 573
CurUPathCache 573
curveto 158, 393
CutMedia 237

BeginPage and EndPage and 253
cvi 55, 394
cvlit 55, 394

user paths and 170
cvn 55, 394

VM use and 570
cvr 55, 395
cvrs 55, 395

changes to 563
cvs 55, 396
cvx 55, 396
Cyan

Separation color space and 198
type 5 halftone dictionary and 318

D
dash pattern 149, 500

typical limits in Level 1 for 568
data

end of 125–127
data arrays 167
DataSource

image dictionary and 220
data sources 122–125

files as 123
procedures as 123
strings as 125

data strings 167
data targets 122–125

files as 123
procedures as 123

strings as 125
data type(s) 33–43
DCTDecode 84, 137
DCTEncode 83, 137–140

entries in 138
EOD and 127

Decode 220–222
image dictionary and 220
masks and 223
typical arrays 221

DecodeA 192
DecodeABC 187–188
DecodeLMN 188, 192
decoding filters 80, 122, 126

EOD and 126
EOF and 126

decompression filters 82–83
def 53, 397

userdict and 41
Default 318
defaultmatrix 397
defaults section (DSC) 625
deferred execution 25, 46–47

procedures and 32
definefont 398

changes to 560
composite fonts and 288, 290
font dictionaries and 265
font names and 269
nested composite fonts and 291
resource files and 97

DefineResource
category implementation dictionary

and 94
defineresource 86–87, 398–399

category implementation dictionary
and 94

font dictionaries and 265
implicit resources and 92
resource categories and 89
resource files and 97

defineusername 333–334, 400
defineuserobject 66, 400–401
defining halftone screens 310–311
deletefile 75, 77, 401
descendant fonts, defined 286
detach 327–328, 401
Developers’ Association 5
DeviceCMYK 182, 183–184

conversion between DeviceGray
and 304

conversion from DeviceRGB to
305–307

conversion to DeviceRGB from 307

transfer functions and 309
typical Decode arrays and 221

device color
CIE-based color to 294–302

device color spaces 177, 181–185
conversions among 303–307

device gamut, defined 295
DeviceGray 182, 185

conversion between DeviceCMYK
and 304

conversion between DeviceRGB
and 304

transfer functions and 309
typical Decode arrays and 221

device information 338–339
device parameters 501, 572, 579
DeviceRGB 181–183

conversion between DeviceGray
and 304

conversion from DeviceCMYK to 307
conversion to DeviceCMYK

from 305–307
Indexed color space and 195
typical Decode arrays and 221

device setup 149, 226–255
See also setpagedevice

device setup operators 144, 356
device space 150–152
device space origin 150
device-dependent page description 612
device-independent color spaces. See CIE

based color spaces
device-independent screen preview

EPS files and 730–732
deviceinfo 338, 402

entries in 338–339
device-specific screen preview

EPS files and 728–729
dict 52, 402

changes to 561
local and global VM and 59
VM use and 57, 570

dictfull 403
changes to 561

dictionaries 32–33, 40–41
accessing 40
color rendering 296–302
EPS files and 715
font 264–269
form 173–174
global 64
halftone 308, 312–320
image 211, 219–222, 226
implementation limits for 566

PLRM 2nd Edition January 27, 1994 Index

752 Index

dictionaries (continued)
local 64
page device 229–231
pattern 201–204
standard 63–66
user-defined 63–66

dictionary operators 51–54, 348
dictionary stack 40, 44, 55

clearing 739
typical limits in Level 1 568
user parameters and 573

dictstack 53, 403
dictstackoverflow 403
dictstackunderflow 403
Display PostScript 325–342

language extensions 557–558
programming restrictions 331–332

Display PostScript operators 358–359,
557

displaying EPS files 718–719
div 51, 404
document manager services 614–620
document structure 621–622, 624–639

constraints 627–630
page independence 627–628
prolog 624–625
restricted operators 629–630
script 626

document structuring conventions
(DSC) 611–708

categories of 632–634
changes to 699–705
color separation conventions

685–688
conformance 620–624
general conventions 639–658
open structuring conventions

696–698
query conventions 688–696
requirement conventions 658–685
special structuring conventions

698–699
summarized 706–708
syntax 634–639
using 613–614

document trailer 626
documentation changes 562–564
%%DocumentCustomColors: 686
%%DocumentData: 642–643
%%DocumentFonts: 662
%%DocumentMedia: 658–659
%%DocumentNeededFiles: 661
%%DocumentNeededFonts: 662
%%DocumentNeededProcSets: 663

%%DocumentNeededResources:
659–660

%%DocumentPrinterRequired: 660–661
%%DocumentProcessColors: 686
%%DocumentProcSets: 663
documents

conforming 620–624
non-conforming 624

%%DocumentSuppliedFiles: 661
%%DocumentSuppliedFonts: 662
%%DocumentSuppliedProcSets: 663
%%DocumentSuppliedResources: 660
DOS file system

EPS files and 727, 729
double escape mapping algorithm 288
driver

emulation in 587–588
DSC. See document structuring conventions
dstack

$error dictionary and 101
dtransform 404
dup 50, 404

VM and 57
Duplex 235

BeginPage and EndPage and 253

E
early name binding 101–104
echo 405
eexec 405–406
8/8 mapping algorithm 287, 289
%%Emulation: 643
emulation(s)

complete 585–586
conditional 588–589
in the driver 587–588
naming 588
partial 586–587

Emulator resource category 88
instances of 92

encapsulated jobs 68
circumventing 69

encapsulated PostScript file format. See
EPSF format

EncodeABC 297, 299
EncodeLMN 297–298
EncodedByteAlign

CCITT fax filters and 135–136
encoded number strings 118–119
encoded system names 115–116
encoded user names 332–334
encoded user paths 167–169, 171

emulation and 585

opcodes for 168
Encoding 266, 269–271

BuildGlyph and 279
changing character metrics and 276
composite fonts and 290
Type 0 fonts and 286
Type 3 fonts and 282

encoding filters 80, 126–127
ASCII 82

Encoding resource category 88, 90
encoding vectors 269, 591–606

changing 275
Expert 602
ExpertSubset 603
ISOLatin1Encoding 599
StandardEncoding 598

encoding
ASCII 26–33
binary 105–122
binary object sequence 105
binary token 105
character 269–271, 591–606
system name 607–610

end 53, 406
dictionary stack and 44

%%EndBinary 647–648
%%EndComments 643

header comments and 634
prolog and 625

%%EndCustomColor 687
%%EndData 648–649
%%EndDefaults 650–651
%%EndDocument 672–673

EPS files and 721
%%EndEmulation 652
%%EndExitServer 698–699
%%EndFeature 674
%%?EndFeatureQuery: 690
%%EndFile 675
%%?EndFileQuery 691
%%EndFont 675–676
%%?EndFontListQuery 691
%%?EndFontQuery 691–692
%%EndObject 655
EndOfBlock

CCITT fax filters and 136
end-of-data (EOD) 125–127

decoding filters and 126
encoding filters and 126–127

end-of-file (EOF) 125–127
decoding filters and 126
encoding filters and 126–127

EndOfLine
CCITT fax filters and 135

PLRM 2nd Edition January 27, 1994 Index

Index 753

end-of-line conventions 73–74
communicaton channel and 74

EndPage 238–239, 251–255
%%EndPageSetup 655–656
%%EndPreview 653

EPS files and 730
%%?EndPrinterQuery: 692
%%EndProcessColor 688
%%EndProcSet 676–677
%%?EndProcSetQuery 693
%%EndProlog 653–654
%%?EndQuery: 693
%%EndResource 677–678
%%EndResourceListQuery: 694
%%?EndResourceQuery: 694–695
%%EndSetup 654
%%?EndVMStatus: 696
eoclip 406
EOD. See end-of-data
%%EOF 658

document structure and 626
EOF. See end-of-file
eofill 406–407
EOL. See end-of-line
eoviewclip 336, 407
.EPI file extension 727
.EPS file extension 727
.epsf file extension 727–728
.epsi file extension 727–728
EPS (encapsulated PostScript) files

creating 712–718, 735–736
device-independent screen preview

and 730–732
device-specific screen preview

and 728–729
displaying 718–719
example 733–735
file types and 727–728
illegal operators 714–715
importing 718–727, 736
naming 727–728
operator guidelines for 737–744
preparation for including 726
restricted operators 714–715

EPSF (encapsulated PostScript file)
format 709–736

background 709–711
changes to 735–736

EPSI (encapsulated PostScript
interchange) files

guidelines for 730–732
eq 54, 407
erasepage 408

BeginPage and EndPage and 252

guidelines for 740
setpagedevice and 231

$error 64, 100–101, 363
changes to 560
structured output and 121

errordict 64, 408
error handling and 100–101
errors and 99

error handling 100–101
errorinfo

$error dictionary and 101
error initiation 99–100
error management 616–617
errorname

$error dictionary and 100
errors 99–101, 359
escape mapping algorithm 287
EscChar 286–288

nested composite fonts and 290
estack

$error dictionary and 101
even-odd rule 162–163
ExactSize 341–342
exch 50, 408
exec 54, 72, 409

binary object sequences and 111
filtered files and 81
special files and 79

execform 173–175, 410
execstack 54, 411
execstackoverflow 411
execuserobject 66, 411
executable array 32, 35
executable name 35
executable name objects 30
executable objects 35–36
executable operators 35
executeonly 55, 412
execute-only access 36
execution 45–50

deferred 46–47
immediate 45–46
of specific types 48–50

execution contexts 326–332
execution stack 44, 55

typical limits in Level 1 568
user parameters and 573

executive
interactive 20, 21

executive 412
special files and 79
using interpreter interactively and 22

existing fonts
modifying 275–278

exit 54, 413
changes to 563

exitserver
altering initial VM and 70–71
guidelines for 740
See also startjob

exp 51, 413
Expert character set 600–601
Expert encoding vector 602
ExpertSubset encoding vector 603
extended unique ID numbers 285

See also XUID
extensions

color 558
composite font 558
Display PostScript 557–558

%%Extensions: 643–644

F
false 54, 414
FamilyName 268–269
FDepVector 286
feature inclusion 617–618
FID

changing encoding vector and 276
composite fonts and 290
font dictionaries and 265

file 77–80, 414
changes to 561
creating file objects and 77
creating special files with 78

file input 71–85
file names

implementation limits for 566
file objects 42–43, 72

closing 77–78
creating 77–78
execution of 49
standard input and 73
standard output and 73

file operators 72, 84–85, 350–351
file output 71–85
file system operators 559
file(s)

end of 125–127
filtered 122–142
named 75–78
positionable 78, 502
PPD 227
resources as 96–99
special 78–80
standard input 56, 72–73
standard output 56, 72–73

PLRM 2nd Edition January 27, 1994 Index

754 Index

typical limits in Level 1 for 569
filenameforall 75, 77, 415
fileposition 75, 416
fill 160, 161–163, 416

changes to 561
graphics state and 146
halftone dictionaries and 312
insideness testing and 163
patterns and 200
scan conversion and 321
user paths and 164–165

filter 81, 416–417
Filter resource category 88

instances of 92
filters 80–84, 122–142

compression 82–83
creating 81–82
decoding 80, 126
decompression 82–83
encoding 80, 126–127
pipelining input data and 81–82
standard 82–84
subfile 83

findencoding 417
findfont 261, 418

basic text setting and 259
changes to 560
font dictionaries and 265
global VM and 65

FindResource
category implementation dictionary

and 94
findresource 86–87, 418–419

global VM and 98
implicit resources and 92
resource categories and 89

fixed point numbers 108–109
fixed-pitch fonts, defined 264
flatness 149, 502–503
flattenpath 419
floor 51, 420
flush 72, 420
flushfile 72, 420

decoding filters and 126
encoding filters and 127

FMapType 286–287
mapping algorithms 287-289
nested composite fonts and 290–291

FMapType resource category 88
instances of 92

FontBBox 266–267
font metrics and 273

font cache 274–275, 576–577
font dictionaries 264–269

FontDirectory 64, 421
typical limits in Level 1 568

font directory 258
fontID objects 43
FontInfo 266

conventions for entries in 268–269
entries in 268

FontMatrix 266
composite fonts and 289
nested composite fonts and 291

font metrics 271–274, 276–277
FontName 266

conventions for 269
font operators 143–144, 357
font program, defined 257
Font resource category 88, 89–90

enumerating fonts and 90
findresource and 98
font dictionaries and 265

FontType 265–266
composite fonts and 285
Unique ID numbers and 284

FontType resource category 88
instances of 92

fonts 257–291
base 266–267
bitmap 339–342
cache parameters 572–573, 576–577
composite 285–291, 558
modifying existing 275–278
organization of 257–264
selecting 260–261, 418, 490, 503
Type 0 265–266, 285–291
Type 1 265–268
Type 3 265–267, 278–283
using 257–264

%%For: 644
for 54, 422
forall 52, 54, 423
fork 327–328, 424
form coordinate system 174
form dictionary 173

entries in 174
form operators 356
Form resource category 88, 91
FormType

form dictionary and 174
FormType resource category 88

instances of 92
forms 172–175

cache parameters 572–574, 577
using 173–175

framedevice
changes to 560

guidelines for 740
Frequency 311, 315–316
FullName 268–269

G
gamma correction 293, 307
gamut mapping 295
garbage collection 61–63, 519
gcheck 425

local and global VM and 59
ge 54, 425
general body comments 647–654, 706
general header comments 640–647, 706
general page comments 654–657, 707
general trailer comments 657–658, 707
generating unique IDs 283–285
Generic resource category 88, 95–96
get 51, 426

changes to 560
getinterval 52, 426–427

arrays and 38
changes to 560

global dictionaries 64
GlobalFontDirectory 64, 427
global VM 58–59, 503

category implementation dictionary
and 95

globaldict and 41
resource behavior and 98

globaldict 41, 63–65, 427
creating contexts and 327
dictionary stack and 44

glyphshow 428
BuildChar and 281
BuildGlyph and 279
character encoding and 271

graphics 143–255
window systems and 334–339

graphics state 56, 143, 146–149, 504
EPS files and 716, 720
guidelines for initializing 740

graphics state operators 143, 352–353
graphics state stack 146
Gray

type 5 halftone dictionary and 318
GrayFrequency 319
GrayValues

deviceinfo dictionary and 339
Green

Separation color space and 199
type 5 halftone dictionary and 318

GreenFrequency 319

PLRM 2nd Edition January 27, 1994 Index

Index 755

GreenValues
deviceinfo dictionary and 339

grestore 429
BuildGlyph and 279
device setup and 253
forms and 175
graphics state and 146–147
page device dictionary and 229
path construction and 157, 159
patterns and 204
user paths and 164–165
view clipping and 335

grestoreall 429
device setup and 253
guidelines for 740
page device dictionary and 229

gsave 430
BuildGlyph and 279
device setup and 253
forms and 175
graphics state and 146–147
path construction and 157, 159
patterns and 204
user paths and 164–165
view clipping and 335

gsave level
implementation limits for 566

gstate 430
graphics state and 146–147
VM use and 57

gstate objects 43, 146–147
global VM and 65

gt 54, 431

H
halftone cells 311
halftone dictionaries 312–320

type 1 315
type 2 319
type 3 317
type 4 319
type 5 318

halftone phase 149, 334, 337–338, 505
patterns and 203

Halftone resource category 88, 91
halftone screens 149, 309–320, 505, 514

defining 310–311
storage for 577–578

HalftoneType 313, 315–320
threshold arrays and 316

HalftoneType resource category 88
instances of 92

handleerror 431

error handling and 100–101
structured output and 121

header comments (DSC) 625, 633–634
Height

image dictionary and 219
type 3 halftone dictionary and 317
type 4 halftone dictionary and 319

Helvetica 593
high-order byte 117
hit detection 336–337
homogeneous number array 109–111

encoded number strings and 119
HSamples

DCTEncode dictionary and 138
HSB. See hue-saturation-brightness
hue 182–183
hue-saturation-brightness (HSB) color

model 182, 304, 506
HuffTables

DCTEncode dictionary and 139
HWResolution 236

I
IDs

extended unique 285
unique 283–285
See also UniqueID and XUID

identmatrix 431
idiv 51, 432

changes to 563
idtransform 432
IEEE standard format 117
if 54, 433
ifelse 54, 433
image 210–226, 434

CCITT fax filters and 136
changes to 561
CIE-based color spaces and 186
color spaces and 177, 218–219
data representation for 212–215
EPSI files and 730
filtered files and 81–82
font cache and 274
image dictionary and 219–220
Indexed color space and 195–196
Interpolate and 222
patterns and 206
scan conversion and 321
Separation color space and 197–198
source coordinate system and

216–218
using 224–226

image dictionaries 211, 219–222

entries in 219–220
example 226

image interpolation 222
ImageMatrix

image dictionary and 219
source coordinate system and 216

image space 216
ImageType

image dictionary and 219
ImageType resource category 88

instances of 92
images 210–226

color 225–226
color spaces and 218–219
monochrome 224–225
typical limits in Level 1 for 569
using 224–226

imagemask 211–223, 435–436
changes to 561, 563
color spaces and 181
data representation for 212–215
font cache and 275
image dictionary and 219–220
images and color spaces and 219
Interpolate and 222
patterns and 208
source coordinate system and

216–218
imaging model 144–146
ImagingBBox 234
immediate execution 45–46
immediately evaluated names 103–104
Implementation

form dictionary and 174
pattern dictionary and 201, 203

implementation changes 562–564
implementation limits 565–570
implicit resources 88, 89, 92–93
importing EPS files 718–727, 736
InBetweenSize 341–342
%%IncludeDocument: 673
%%IncludeFeature: 674–675
%%IncludeFile: 675
%%IncludeFont: 676
%%IncludeProcSet: 677
%%IncludeResource: 678–682
index 50, 436
Indexed 194–196

Separation color space and 198
typical Decode arrays and 221

ineofill 164, 436
infill 163, 336, 437
initclip 437

guidelines for 740

PLRM 2nd Edition January 27, 1994 Index

756 Index

initgraphics 438
BeginPage and EndPage and 252
guidelines for 740
setpagedevice and 231

initial VM
altering 69–71

initializing variables
EPS files and 716–717

initmatrix 438–439
guidelines for 740

initviewclip 336, 439
input

file 71–85
input files

standard 56, 72–73
input media selection 232–234
InputAttributes 233–248

managing 243–245
matching requests with attributes

and 240–243
media selection and 239–248

insideness testing 163–164, 356
Install 238
InstanceType

category implementation dictionary
and 95

instroke 163, 336, 439
integer numbers 27

implementation limits for 566
integer objects 37
interactive executive 20

control characters for 21
interactive session, defined 16
interchange standard, defined 14
internaldict 440
Interpolate 222

image dictionary and 220
interpreter 16–17, 24–25

error response and 99
using interactively 20–22

interpreter level
typical limits in Level 1 and 568

interpreter parameters 358, 571–579
interrupt 440

error initiation and 99
inueofill 164, 440

encoded number strings and 119
inufill 164, 441

encoded number strings and 119
inustroke 164, 442

encoded number strings and 119
invalidaccess 442

creating and closing file objects
and 78

local and global VM and 59
invalidcontext 328, 443
invalidexit 443
invalidfileaccess 443

creating and closing file objects
and 78

invalidfont 443
invalidid 444
invalidrestore 444
invertmatrix 444
IODevice resource category 88

device parameters and 579
instances of 92

ioerror 444
creating and closing file objects

and 78
isFixedPitch 268
ISOLatin1Encoding 271, 445
ISOLatin1Encoding encoding vector 599
ItalicAngle 268
itransform 445

hit detection and 337

J
job 67

encapsulated 68
unencapsulated 69–70

job execution environment 67–71
Jog 236

BeginPage and EndPage and 253
join 327–328, 446

K
K

CCITT fax filters and 135
key, defined 40
known 53, 446

conditional emulation and 589
operator objects and 42

kshow 447
character positioning and 264

L
L*a*b* color space 190–191, 193

See also CIEBasedABC
%%LanguageLevel: 644–645
*LanguageLevel PPD keyword

providing compatibility and 583
LanguageLevel 266

languagelevel 447
conditional emulation and 588–589
providing compatibility and 583

languages. See page-description languages
late binding 102
le 54, 448
left sidebearing 272
left sidebearing point 272
length 52, 448

changes to 560, 563
Level 2 operators 555–556
limitcheck 449, 565–567

implementation limits and 565–567
numbers and 28
path construction and 159
typical limits and 569

limits
architectural 566
implementation 565–570
memory 566, 568–569
typical 566–569

line cap 148, 160, 506
line join 149, 160, 507
line width 148, 508
%lineedit 80
lineto 158, 449

coordinate transformation and 154
stroking paths and 161

literal array objects 110
literal names 31
literal objects 35–36

garbage collection and 62
immediately evaluated names

and 104
VM and 57

ln 51, 449
load 53, 450
local dictionaries 64
local VM 58–59, 503

userdict and 41
lock 329–330, 450
lock objects 43, 328
log 51, 450
loop 54, 451
lossy compression algorithm 138
low-order byte 117
lt 54, 451
LZWDecode 83, 130
LZWEncode 83, 130–132

M
Macintosh file system

EPS files and 727

PLRM 2nd Edition January 27, 1994 Index

Index 757

Magenta
Separation color space and 198
type 5 halftone dictionary and 318

makefont 452
basic text setting and 259
changes to 561
nested composite fonts and 291

makepattern 201, 203–204, 207–208,
453

halftone phase and 338
managing

InputAttributes 243–245
OutputAttributes 243–245

ManualFeed 234
mapping

character 287–289
gamut 295

Margins 236–237
mark 50, 52, 454

See also [
mark objects 43
masks 222–223, 435
MatchAll

matching requests with attributes
and 243

Policies and media selection and 248
matching requests with attributes

240–243
mathematical operators 51, 346
Matrix

form dictionary and 174
matrix 454

VM use and 569
MatrixABC 297–299
MatrixLMN 297–298
matrix operators 143, 354
MatrixPQR 297, 300–301
matrix representation and

manipulation 154–157, 508
MatrixA 192
MatrixABC 188
MatrixLMN 188, 190, 192
MaxDictStack 573, 578
MaxDisplayList 574
MaxExecStack 573, 578
MaxFontCache 573, 577
MaxFontItem 572, 576
MaxFormCache 573, 577
MaxFormItem 572, 577
maxlength 53, 454

changes to 561
VM use and 570

MaxLocalVM 573, 578
MaxOpStack 573, 578

MaxOutlineCache 573
MaxPatternCache 573, 577
MaxPatternItem 572, 577
MaxScreenItem 572, 577–578
MaxScreenStorage 573, 578
MaxUPathCache 573, 577
MaxUPathItem 572, 577
MediaColor 233

media selection and 239–248
media selection 239–249
MediaType 233

media selection and 239–248
MediaWeight 233

media selection and 239–248
memory limits 566–569

typical in Level 1 568–569
memory management 55–71
memory, virtual. See virtual memory (VM)
Metafile (Windows)

EPS files and 729
Metrics 267

changing character metrics and
276–277

character positioning and 264
metrics

character 271–274, 276–277
Metrics2 267

changing character metrics and 277
MIDVector

composite fonts and 290
MinFontCompress 572, 576
MirrorPrint 237
miscellaneous operators 352
miter limit 149, 509
mod 51, 455
modal fonts 290
modifying existing fonts 275–278
monitor 328–330, 455
monochrome images 224–225
monospaced fonts, defined 264
moveto 158, 456

basic text setting and 259
coordinate transformation and 154
user paths and 164

MS-DOS. See DOS
mul 51, 456
MultipleDataSources

image dictionary and 220
sample data representation and 215

multiple execution contexts 326–332

N
name binding

early 101–104
late 102

name conventions
font 269

name indexes 115–116
system 109, 115, 332–333
user 109, 115, 332–334

name objects 30, 39
execution of 49

names 30–31, 39
encoded system 115–116
executable 35
immediately evaluated 103–104
implementation limits for 566
literal 31

named files 75–78
named resources 85–99
naming conventions

emulation 588
EPS file 727–728

native format 118
ne 54, 456
neg 51, 456
NegativePrint 237
nested composite fonts 290–291
newerror

$error dictionary and 100
newline character 26

end-of-line conventions and 73
newpath 457

forms and 175
path construction and 158
user paths and 164–165

9/7 mapping algorithm 288-289
noaccess 55, 457
nocurrentpoint 457

path construction and 158
non-conforming documents 624
None

Separation color space and 199
non-modal fonts 291
non-zero winding number rule 161–162
not 54, 458
.notdef

character encoding and 271
Type 3 fonts and 279, 281

Notice 268
notify 329–330, 458
NTSC color space 187
null 458

dictionaries and 40

PLRM 2nd Edition January 27, 1994 Index

758 Index

null device 231
NullEncode 84, 142
null objects 43

execution of 50
nulldevice 459

BeginPage and 254
guidelines for 740

number representations 117–118
IEEE standard 117
native format 118

number strings
encoded 118–119

numbers 27–28
fixed point 108–109
integer 27
radix 28
real 27

NumCopies 235
numeric objects

integer 37
real 37

n-up printing 619

O
object types

list of 33
objects 24, 33–43

access attribute of 36
array 37–38
attributes of 34
boolean 37
composite 34, 39
condition 43, 329
copying 34
dictionary 40–41
executable 35–36
file 42–43, 72, 77–78
fontID 43
gstate 43, 146–147
integer 37
literal 35–36
literal array 110
lock 43, 328
mark 43
name 30, 39
null 43
operator 41–42
packed array 38
real 37
save 43, 60
simple 34
string 38–39
user 66–67

octal character codes
strings and 29

1/7 mapping algorithm 287–289
open structuring conventions 633,

696–698
open subpath 157
operand order 46
operand stack 44, 55

clearing 739
EPS files and 720
typical limits in Level 1 568
user parameters and 573

operand stack manipulation
operators 346

operator objects 41–42
early name binding and 102
execution of 49

operator strings 167
operators 343–553

arithmetic 51, 346
array 51–54, 347
attribute 55, 350
bitwise 54, 349
boolean 54, 349
character 143–144, 357
context 327–331
control 54–55, 349
conversion 55, 350
coordinate system 143, 354
coordinate transformation 151
device setup 144, 356
dictionary 51–54, 348
Display PostScript 358–359, 557
early name binding and 102–103
executable 35
file 84–85, 350–351
file system 559
font 143–144, 357
form 356
graphics state 143, 352–353
guidelines for 737–744
insideness testing 356
interpreter parameter 358
Level 2 555–556
mathematical 51, 346
matrix 143, 354
miscellaneous 352
operand stack manipulation 346
output 144, 356
packed array 51–54, 347
painting 143–145, 355
path construction 143, 145, 354–355
pattern 356
relational 54, 349

resource 86–87, 351
stack 50–51
string 51–54, 348–349
type 55, 350
user path 170–171
virtual memory 351

%%OperatorIntervention: 664
%%OperatorMessage: 664
or 54, 459
organization of fonts 257–264
%%Orientation: 645
Orientation 237
ostack

$error dictionary and 101
output

file 71–85
structured 120–122

output files
standard 56, 72–73

output operators 144, 356
OutputAttributes 235

managing 243–245
media selection and 239–248

OutputFaceUp 236
OutputType 234

media selection and 239–248
overprint 149, 511

P
packed array objects 38

execution of 49
packed array operators 51–54, 347
packedarray 52, 460

VM use and 57
%%Page: 656

document structure and 621
page breakout 618
page comments (DSC) 634
page-description languages 13–15
page description, defined 16
page device dictionary 229–231
page device, defined 231
page independence 627–628
page management 618–620
page reversal 618–619
%%PageBoundingBox: 656–657
%%PageCustomColors: 688
%%PageFiles: 683
%%PageFonts: 683
%%PageMedia: 683–684
%%PageOrder: 646

page independence and 628
%%PageOrientation: 657

PLRM 2nd Edition January 27, 1994 Index

Index 759

%%PageProcessColors: 688
%%PageRequirements: 685
%%PageResources: 685
%%Pages: 645–646
PageSize 232–233

media selection and 239–249
Policies dictionary and 246, 247

%%PageTrailer 657
painting 160–164
painting operators 143–145, 160–164,

355
PaintProc

color spaces and 181
colored patterns and 205–207
form dictionary and 174
forms and 173–175
pattern dictionary and 203–204
uncolored patterns and 208–210

PaintType
color spaces and 181
colored patterns and 205
pattern dictionary and 202
Type 1 font dictionary and 267
uncolored patterns and 208

PAL color space 187
parallel printing 618
partial emulation 586–587
Password 575
path construction operators 143, 145,

354–355
path(s)

clipping 146, 158
constructing 157–160
current 157
graphics state and 148
typical limits in Level 1 for 568
user 164–172

pathbbox 461
changes to 564

pathforall 462
changes to 560

Pattern 194
Indexed color space and 194
Separation color space and 198
typical Decode arrays and 221

pattern cell, defined 200
Pattern color space 204–210
pattern coordinate system 203
pattern dictionary 201–204

entries in 202–203
pattern operators 356
Pattern resource category 88, 91
PatternType

pattern dictionary and 202

PatternType resource category 88
instances of 92

patterns 200–210, 513
cache parameters 572–574, 577
colored 205–208
uncolored 208–210

PC-DOS. See DOS
PICT resource

EPS files and 728
pixels, defined 11
pointers 34
polarity 223
Policies 238, 245–251

entries in 246–247
managing input and output attributes

and 244
matching requests with attributes

and 241
media selection and 248–249
page device dictionary and 231
PolicyReport and 250

PolicyNotFound
Policies dictionary and 246

PolicyReport 250–251
Policies dictionary and 247

polymorphic operators, defined 51
pop 50, 463

mark objects and 43
portability of EPS files 717
position (graphics state parameter) 148
positionable files 78, 502
postfix notation, defined 23
PostScript language

background 5–7
changes to 555–564
color extensions 558
composite font extensions 558
DPS extensions 557–558
DPS operators 557
imaging model 144–146
Level 2 operators 555–556
Level 2 overview 7–9
miscellaneous additions 559
operator guidelines 737–744
overview 1–10
trademarks and copyrights 9–10
using 16–22
version 25.0 additions 559

PostScript Language Program Design 5
PostScript Language Tutorial and

Cookbook 5
PostScript Level 2 overview 7–9
PPD (PostScript printer description)

files 227, 613

PrefEnc 286
composite fonts and 290

preview
screen 728–732

print 463
standard output file and 72
structured output and 120
using interpreter interactively and 21

print logging 615
print management 617–618
printer rerouting 617
printing services 623–624
printobject 464

structured output and 120–121
Priority

managing input and output attributes
and 244

matching requests with attributes
and 241–242

Private 268
procedures 24, 32, 37, 91

early name binding and 103
filters and 123–125
See also arrays

procedures section (DSC) 625
process colors. See Separation color space
ProcSet resource category 88, 91
product 465
program structure 18–19
prolog, defined 18
prologs 624–625

early name binding of procedures
in 103

global VM and 65
prompt 21, 465

changes to 564
%%ProofMode: 664–665
proportional fonts, defined 264
PS> prompt 21
%!PS-Adobe-3.0 640–641

conforming documents and 620
non-conforming documents and 624

%!PS-Adobe-3.0 Query 690
pstack 84, 465

changes to 564
pswrap 333
put 51, 466

changes to 560
packed array objects and 53

putinterval 52, 467
changes to 560
packed array objects and 53

PLRM 2nd Edition January 27, 1994 Index

760 Index

Q
QFactor

DCTEncode dictionary and 139
QuantTables

DCTEncode dictionary and 139–140
query comments 690–696
quit 328, 468

guidelines for 741
using interpreter interactively and 21

R
radix numbers 28
rand 468
range printing 619
RangeA 192
RangeABC 187, 299
rangecheck 468

arrays and 38
user paths and 166

RangeLMN 188, 192, 298
RangePQR 300
rcheck 55, 469
rcurveto 158, 469
read 72, 469

end-of-line translation and 74
filtered files and 81

readhexstring 72, 470
image sample data and 224–225

readline 72, 470
changes to 562
end-of-line conventions and 73–74

readonly 55, 471
read-only access 36
readstring 72, 471

end-of-line translation and 74
filtered files and 81

real numbers 27
implementation limits for 566

real objects 37
RealFormat 118, 573
realtime 472
recommended comments

EPS files and 714
recordstacks

$error dictionary and 101
rectangles 172
rectclip 172, 472

encoded number strings and 119
rectfill 172, 473

emulation for 586–587
encoded number strings and 119

rectstroke 172, 474
encoded number strings and 119

rectviewclip 336, 475
encoded number strings and 119

Red
Separation color space and 198
type 5 halftone dictionary and 318

RedAngle 319
RedFrequency 319
RedSpotFunction 319
RedValues

deviceinfo dictionary and 339
red-green-blue (RGB) color model 182,

304
reference point 272
relational operators 54, 349
renamefile 75, 77, 476
render color space, defined 296
RenderTable 297–298, 302
renderbands

changes to 560
guidelines for 741

rendering 293–323
color 176, 293–294
scan conversion and 320–323

repeat 54, 476
replacing characters 277–278
requests

matching with attributes 240–243
required comments

EPS files and 712–713
requirement body comments 671–682,

707
requirement header comments

658–671, 707
requirement page comments 682–685,

707
%%Requirements: 665–669

parsing and 631
resetfile 477
resolution, defined 12
resource categories 87–93

creating 93–99
generic 95–96

resource downloading 616
resource inclusion 615–616
resource management 615–616
resource operators 86–87, 351
resource optimization 616
resources 85–99

as files 96–99
global VM and 98
implicit 88, 92–93
regular 88

ResourceFileName
category implementation dictionary

and 95, 96–97
ResourceForAll

category implementation dictionary
and 95

resourceforall 85–86, 478–479
implicit resources and 92
resource categories and 89

ResourceStatus
category implementation dictionary

and 94
resourcestatus 86, 480

implicit resources and 92
resource categories and 89

restore 60–61, 481
changes to 561
closing file objects and 78
device setup and 253
EPS files and 719
error handling and 100
garbage collection and 62–63
implementation limits and 565
local and global VM and 58
multiple contexts and 331–332
page device dictionary and 229
page independence and 627
resource operators and 87
save objects and 43
server operation and 68
user parameters and 571
view clipping and 335
VM use and 570

reversepath 482
revision 482
RGB to YUV conversion 139–140
RGB. See red-green-blue
%%RGBCustomColor: 687
rlineto 158, 482
rmoveto 158, 483
roll 50, 483
Roman character set 596–597
root font, defined 286
rootfont 484
rotate 151–152, 156, 484

image mapping and and 218
user path cache and 170

round 51, 485
%%Routing: 646
Rows

CCITT fax filters and 135
DCTEncode dictionary and 138, 140

rrand 485
run 84, 486

PLRM 2nd Edition January 27, 1994 Index

Index 761

RunLengthDecode 83, 133
RunLengthEncode 83, 133–134

S
sampled image 210
saturation 182–183
save 60–61, 486

changes to 561
device setup and 253
EPSF files and 719
error handling and 100
garbage collection and 62–63
implementation limits and 565
local and global VM and 58
multiple contexts and 331–332
page independence and 627
resource operators and 87
save objects and 43
server operation and 68
user parameters and 571
VM use and 570

save level
implementation limits for 566

save objects 43, 60
scale 151–152, 156, 487

image mapping and 218
user path cache and 170

scalefont 488
basic text setting and 259
changes to 561
nested composite fonts and 291

scan conversion 12–13, 294, 320–323
scanner 25–26
scheck 489

See also gcheck
screen fonts 339
screen preview(s)

device-independent 730–732
device-specific 728–729
EPS files and 725

script 18, 626
scrolling 337
search 53, 489
SECAM color space 187
selectfont 261, 490

emulation for 585–586
Separation 196–200

image dictionaries and 219
Indexed color space and 194
type 5 halftone dictionary and 318
typical Decode arrays and 221

Separations 236
serialnumber 490

server operation 68
sessions 16–17

interactive 16
setbbox 164–165, 491

user path cache and 169
setblackgeneration 306, 492
setcachedevice 492–493

BeginPage and 254
BuildGlyph and 280
color spaces and 181
font cache and 275
user parameters and 576
view clipping and 335

setcachedevice2 493
BuildGlyph and 280
changing character metrics and 277
color spaces and 181
font cache and 275

setcachelimit 494, 577
setcacheparams 495, 577

changes to 561
setcharwidth 496

BuildGlyph and 280
setcmykcolor 180, 496

color spaces and 177
DeviceCMYK and 184

setcolor 180, 497
CIE-based color spaces and 186
color spaces and 177
colored patterns and 205
Decode and 220
DeviceCMYK and 184
DeviceGray and 185
DeviceRGB and 183
Indexed color space and 195–196
Pattern color space and 205
patterns and 201
Separation color space and 197–198
uncolored patterns and 208

setcolorrendering 295, 497
setcolorscreen 311, 498

defining halftones and 311
rendering and 294

setcolorspace 180, 498–499
CIEBasedA and 192
CIEBasedABC and 187
color spaces and 177
colored patterns and 205
DeviceCMYK and 184
DeviceGray and 185
DeviceRGB and 183
gamut mapping and 295
Indexed color space and 194
Pattern color space and 205

patterns and 201
Separation color space and 197–198
type 5 halftone dictionary and 318

setcolortransfer 308, 499
rendering and 294

setdash 500
setdevparams 85, 501, 572, 579
setfileposition 75, 502

positionable files and 78
setflat 502–503
setfont 503

basic text setting and 259
graphics state and 146

setglobal 503
guidelines for 741
local and global VM and 58

setgray 180, 504
changes to 561
color spaces and 177
DeviceGray and 185
setting text and 261

setgstate 504
device setup and 253
graphics state and 147
guidelines for 741
page device dictionary and 229

sethalftone 308, 311, 312, 505
guidelines for 741
spot functions and 316

sethalftonephase 337, 505
sethsbcolor 180, 506

changes to 561
color spaces and 177
DeviceRGB and 183

setlinecap 506
setlinejoin 507
setlinewidth 508
setmatrix 508

guidelines for 742
setmiterlimit 509
setobjectformat 510

structured output and 120
setoverprint 511

Separation color space and 199
setpacking 53, 511
setpagedevice 227–255, 512

collated printing and 619
document copies and 629
guidelines for 742
input media entries 232–234
managing input and output

attributes 243–245
matching requests with

attributes 240–243

PLRM 2nd Edition January 27, 1994 Index

762 Index

setpagedevice (continued)
media selection 239–249
Policies and 245–251
policy and special action entries

238–239
processing and output entries

234–237
roll media entries 237–238

setpattern 180, 201, 205, 513
color spaces and 177

setrgbcolor 180, 514
changes to 561
color spaces and 177
DeviceRGB and 183

setscreen 310–311, 514
changes to 560
guidelines for 742-743
rendering and 294
spot functions and 315

setshared 515
guidelines for 743
See also setglobal

setstrokeadjust 323, 515
setsystemparams 516, 571, 574

passwords and 576
setting text 258–260
settransfer 308–309, 516–517

guidelines for 743
rendering and 294

setucacheparams 517, 577
setundercolorremoval 306, 518
setuserparams 518–519, 571, 574
setvmthreshold 519, 579
shareddict 519
SharedFontDirectory 520

See also GlobalFontDirectory
shift mapping algorithm 288
ShiftIn 287–288
ShiftOut 286–288
show 261–264, 520

basic text setting and 259
changes to 561
character encoding and 270
character positioning and 264
composite fonts and 286
font metrics and 272–273
garbage collection and 62
graphics state and 146
halftone dictionaries and 312
patterns and 200
SubsVector and 288

showpage 520–521
BeginPage and 251–254
changes to 561

device setup and 227
EndPage and 251–254
EPS files and 719, 736
forms and 175
patterns and 204
save and restore and 61
Separation color space and 196

sidebearing 272
signature printing. See n-up printing
simple objects 34
sin 51, 522
source coordinate system 215–218
source gamut, defined 295
sources

data 81, 122–125
space character 26
special color spaces 177, 194–200
special files 78–80
special structuring conventions

698–699
spool management 614–615
spot colors. See Separation color space
spot functions 313–316
SpotFunction 311, 315
sqrt 51, 522
srand 522
stack 84, 522
stack operators 50–51
stack(s) 43–45

dictionary 40, 44, 568
EPS files and 715, 721
execution 44, 568
graphics state 146
operand 44, 568
user parameters and 578–579

stackoverflow 523
stackunderflow 523
standard character sets 591–606
standard dictionaries 63–66

global 64
local 64

StandardEncoding 271, 523
StandardEncoding encoding vector 598
standard filters 82–84
standard input files 56, 72–73
standard output files 56, 72–73
standard Roman character set 596–597
start 524

changes to 564
startjob 524–525

altering initial VM and 69–70
guidelines for 743
passwords and 576
See also exitserver

StartJobPassword 573, 575, 576
%statementedit 79–80
status 77, 525

changes to 561
statusdict 64, 526

device setup and 227
statusdict operators

guidelines for 743
%stderr 79
%stdin 73, 78
%stdout 73, 79
stop 54, 526

error handling and 100
stopped 55, 527

context termination and 328
error handling and 100

store 53, 527
string 52, 528

VM use and 57, 569
string objects 38–39

execution of 49
garbage collection and 62

string operators 51–54, 348–349
string token, defined 109
strings 28–30

access 77–78
encoded number 118–119
filters and 125
implementation limits for 566

stringwidth 528
character positioning and 264
font metrics and 273

stroke 160–161, 528–529
BuildGlyph and 280
changes to 561
halftone dictionaries and 312
insideness testing and 163
patterns and 200
scan conversion and 321
stroke adjustment and 323

stroke adjustment 149, 322–323, 515
strokepath 529

changes to 564
StrokeWidth 267
structured output 120–122
structuring convention. See document

structuring conventions
sub 51, 529
SubFileDecode 84, 140–142
subfile filters 83
subpath, defined 157
SubsVector 287, 288–289
subtractive colors 197, 305
suspending context execution 328

PLRM 2nd Edition January 27, 1994 Index

Index 763

Symbol 595
character set 604–605
encoding vector 606

synchronization
context 328–331

syntax 25–33
syntaxerror 530
system name encodings 115–116,

607–610
system name indexes 109, 115, 332–333
system parameters 516, 571–579
systemdict 41, 63–64, 531

dictionary stack and 44
operators and 42

SystemParamsPassword 573, 575, 576
changing 576

T
tab character 26
tag image file format (TIFF)

EPS files and 729
LZW filters and 132

targets
data 81, 122–125

terminating context execution 328
text setting

basic 258–260
threshold arrays 316–318
Thresholds

type 3 halftone dictionary and 318
type 4 halftone dictionary and 319

thumbnail printing. See n-up printing
TIFF. See tag image file format
tiling 200
TilingType

pattern dictionary and 202
timeout 531

error initiation and 99
Times 592
%%Title: 646
token 53, 72, 532
token type character 106
token(s) 26

binary 106–111
string 109

%%Trailer 657
parsing and 631

trailer pages 615
TranScript 19
transfer functions 149, 293, 307–309,

516–517
TransferFunction

type 1 halftone dictionary and 315

type 3 halftone dictionary and 318
transform 533
TransformPQR 297, 300–301
transformation matrix 152
transformations 150–157

coordinate system 722–725
TransformedChar 341–342
transforming CIE-based color to device

color 294–302
translate 151–152, 156, 533

image mapping and 218
user path cache and 170

true 54, 533
truncate 51, 534
Tumble 235–236
type 55, 534

mark objects and 43
Type 0 fonts 265–266, 285–291

dictionary entries specific to 286
Type 1 fonts 265–268

dictionary entries specific to 267–268
Type 3 fonts 265–267, 278–283
type operators 55, 350
typecheck 535

user paths and 166

U
uappend 171, 535

encoded number strings and 119
ucache 164, 536

user path cache and 169
ucachestatus 536, 577
ueofill 170, 537

encoded number strings and 119
ufill 164–165, 170, 537

encoded number strings and 119
garbage collection and 62

uncolored patterns 208–210
Uncompressed

CCITT fax filters and 135
undef 53, 537

garbage collection and 62–63
undefined 538
undefinedfilename 538
undefinedresource 538
undefinedresult 538
undefinefont 539

font dictionaries and 265
guidelines for 743

UndefineResource
category implementation dictionary

and 94
undefineresource 86, 539

resource categories and 89
undefineuserobject 66, 540
undercolor removal 305, 518

graphics state and 149
underlays 620
UnderlinePosition 268
UnderlineThickness 268
unencapsulated job 69–70
UniqueID 267, 284–285

See also XUID
unlimited access 36
unmatchedmark 540
unregistered 540
upath 171, 541
user name indexes 109, 115, 332–334
user names

encoded 332–334
UserObjects 66, 542
user objects 66–67
user parameters 518–519, 571–579
user path cache 169–170, 517
user path operators 170–171
user paths 164–172

cache parameters 517, 572–574, 577
constructing 165–167
encoded 167–169, 171
garbage collection and 62

user space 150–152
default 151

user-defined dictionaries 63–66
user-defined fonts 265
userdict 41, 63–64, 541

creating contexts and 327
dictionary stack and 44
EPS files and 720
typical limits in Level 1 568

userdict operators
guidelines for 744

usertime 542
ustroke 170, 543

encoded number strings and 119
ustrokepath 171, 544

V
value, defined 40
variable-pitch fonts, defined 264
variables

initializing 716–717
%%Version: 647
version 268, 544
view clipping 334–336
viewclip 336, 544
viewclippath 336, 545

PLRM 2nd Edition January 27, 1994 Index

764 Index

virtual memory (VM) 56–57
altering initial 69–71
global 58–59
local 58–59
typical limits in Level 1 for 568–569
usage 569–570
user parameters and 578–579

virtual memory operators 351
VM allocation mode 58
VMerror 546

implementation limits and 565
%%VMlocation: 670
VMReclaim 573, 579
vmreclaim 546–547, 579
vmstatus 547, 579
VMThreshold 573, 579
%%VMusage: 670–671
VSamples

DCTEncode dictionary and 139

W
wait 328–330, 548
wcheck 55, 548
Weight 268–269
where 53, 549

conditional emulation and 589
operator objects and 42

WhitePoint 188–190, 192, 297, 299
gamut mapping and 295

white space characters 26–27
names and 30

Width
image dictionary and 219
type 3 halftone dictionary and 317
type 4 halftone dictionary and 319

widthshow 549
character positioning and 264

wildcard file names. See filenameforall
window devices 231
window systems

graphics and 334–339
Windows Metafile

EPS files and 729
WMode 266, 273

composite fonts and 290
write 72, 550

end-of-line translation and 74
filtered files and 81

writehexstring 72, 550
writeobject 551
writestring 72, 551

end-of-line translation and 74
filtered files and 81

wtranslation 337, 551

X
xcheck 55, 552
xor 54, 552
xshow 552

character positioning and 264
encoded number strings and 119

XStep
pattern dictionary and 203

XUID 267, 284–285
form dictionary and 174
pattern dictionary and 202
See also UniqueID

xyshow 553
character positioning and 264
encoded number strings and 119

Y Z
Yellow

Separation color space and 198
type 5 halftone dictionary and 318

yield 328, 553
yshow 553

character positioning and 264
encoded number strings and 119

YStep
pattern dictionary and 203

YUV to RGB conversion 139–140

PLRM 2nd Edition January 27, 1994 Colophon

Example 1.0
Example 2.0
Example 3.0
Example 4.0
Example 5.0
Example 6.0
Example 7.0
Example 8.0
Example 9.0
Example 10.0

APPENDIX K

Colophon

This book was produced on Sun-3™, Macintosh, and NeXT™ comput-
ers using FrameMaker®, Adobe Illustrator®, and other application soft-
ware packages that support the PostScript language and Type 1 fonts.
Proof copies were printed on a DEC PrintServer 20 PostScript laser
printer. Camera-ready film masters were produced on a high-resolution
PostScript imagesetter.

The type used is from the ITC Stone family. Heads are set in ITC Stone
Sans Semibold and the body text is set in 9 on 12 point ITC Stone Serif,
ITC Stone Serif Italic, and ITC Stone Sans Semibold.

Authors—Ed Taft, Jeff Walden

Key Contributors—Rob Babcock, Doug Brotz, Matt Foley, Linda Gass,
Ron Gentile, Peter Hibbard, Jim King, Ken Lent, Deborah MacKay,
Carl Orthlieb, Paul Rovner, Mike Schuster, Scott Seltz, Andy Shore,
John Warnock

Editing—Jeff Walden, Paul Engstrom

Index—Ira Kleinberg

Illustrations—Carl Yoshihara, Wendy Bell, Dayna Porterfield

Book and Cover Design—Nancy Winters

Book Production—Lisa Kelly, Minette Norman, Dayna Porterfield

Reviewers—Ken Anderson, Rob Babcock, Ned Batchelder, Perry Caro,
Holly Cochran, David Gelphman, Deborah MacKay, Jim Sandman,
Norin Saxe, Lydia Stang, Ed Taft, and numerous others at Adobe
Systems and elsewhere.

Publication Management—Eve Lynes, Joan Delfino

Project Management—Rob Babcock

Example K.0
Table K.0
Figure K.0

PLRM 2nd Edition January 27, 1994 Colophon

	Table of Contents
	Preface
	Ch1: Introduction
	Ch2: Basic Ideas
	Ch3: Language
	Ch4: Graphics
	Ch5: Fonts
	Ch6: Rendering
	Ch7: Display PostScript
	Ch8: Operators
	Apx A: Changes to Lang & Implementation
	Apx B: Implementation Limits
	Apx C: Interpreter Parameters
	Apx D: Compatibility Strategies
	Apx E: Standard Character Sets and Encoding Vectors
	Apx F: System Name Encodings
	Apx G: DSC Spec v3.0
	Apx H: EPS Format v3.0
	Apx I: Guidelines for Operators
	Bibliography
	Index
	Colophon

