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Preface

This guide should be thought of as one of a set of three documents. The other two

• TheAlpha Architecture Reference Manual, 4th Edition, which contains the complete
architecture information

• The appropriate hardware reference manual for a particular processor, which con-
tains the complete hardware specification for that processor

All three documents are available at:

ftp.compaq.com/pub/products/alphaCPUdocs

Audience

This document provides guidance for compiler writers and other programmers who
the Alpha 21264 and 21364 microprocessors (referred to as the21264/21364).

Content

This document contains the following chapters and appendixes:

Chapter 1, Introduction to the 21264 and 21364

Provides an overview of the Alpha architecture and introduces the 21264 a
21364.

Chapter 2, Common 21264/21364 Hardware Features

Contains sections of Chapter 2 of the 21264 and 21364 hardware reference
manuals that are common to all processors and, most importantly, directly
erenced within this guide. This information is correct but not complete. The
complete information resides in the appropriate hardware reference manual.

Chapter 3, Guidelines for Compiler Writers

Provides guidelines for taking advantage of the hardware features of the 21
and 21364.

Appendix A, 21264/21364 Upper-Lower Rules Summary

Provides rules to follow in scheduling instructions.

Appendix B, Checksum Inner Loop Schedule

Provides an example for the rules described in Appendix A.
21264/21364 Compiler Writer’s Guide vii
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Appendix C, IEEE Floating-Point Conformance

Describes the 21264/21364 support for IEEE floating-point. It is directly bas
on Appendix A of the 21264 and 21364 Specifications.

The Glossary lists and defines terms associated with the 21264 and 21364.

An Index is also included.

Terminology and Conventions

This section defines the abbreviations, terminology, and other conventions used
throughout this document.

Abbreviations

• Binary Multiples

The abbreviations K, M, and G (kilo, mega, and giga) represent binary multiple
and have the following values:

For example:

• Register Access

The abbreviations used to indicate the type of access to register fields and bits
the following definitions:

K = 210 (1024)
M = 220 (1,048,576)
G = 230 (1,073,741,824)

2KB = 2 kilobytes = 2 × 210 bytes
4MB = 4 megabytes = 4 × 220 bytes
8GB = 8 gigabytes = 8 × 230 bytes
2K pixels = 2 kilopixels = 2 × 210 pixels
4M pixels = 4 megapixels= 4 × 220 pixels

Abbreviation Meaning

IGN Ignore

Bits and fields specified are ignored on writes.

MBZ Must Be Zero

Software must never place a nonzero value in bits and fields spec-
ified as MBZ. A nonzero read produces an Illegal Operand excep-
tion. Also, MBZ fields are reserved for future use.

RAZ Read As Zero

Bits and fields return a zero when read.

RC Read Clears

Bits and fields are cleared when read. Unless otherwise specified,
such bits cannot be written.
viii 21264/21364 Compiler Writer’s Guide



64.

f

• Sign extension

SEXT(x) meansx is sign-extended to the required size.

Addresses

Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned

The termsalignedandnaturally alignedare interchangeable and refer to data objects
that are powers of two in size. An aligned datum of size 2n is stored in memory at a
byte address that is a multiple of 2n; that is, one that hasn low-order zeros. For ex-
ample, an aligned 64-byte stack frame has a memory address that is a multiple of

A datum of size 2n is unalignedif it is stored in a byte address that is not a multiple o
2n.

RES Reserved

Bits and fields are reserved by Compaq and should not be used;
however, zeros can be written to reserved fields that cannot be
masked.

RO Read Only

The value may be read by software. It is written by hardware.
Software write operations are ignored.

RO,n Read Only, and takes the valuen at power-on reset

The value may be read by software. It is written by hardware.
Software write operations are ignored.

RW Read/Write

Bits and fields can be read and written.

RW,n Read/Write, and takes the valuen at power-on reset

Bits and fields can be read and written.

W1C Write One to Clear

If read operations are allowed to the register, then the value may
be read by software. If it is a write-only register, then a read oper-
ation by software returns an UNPREDICTABLE result. Software
write operations of a 1 cause the bit to be cleared by hardware.
Software write operations of a 0 do not modify the state of the bit.

W1S Write One to Set

If read operations are allowed to the register, then the value may
be read by software. If it is a write-only register, then a read oper-
ation by software returns an UNPREDICTABLE result. Software
write operations of a 1 cause the bit to be set by hardware. Soft-
ware write operations of a 0 do not modify the state of the bit.

WO Write Only

Bits and fields can be written but not read.

WO,n Write Only, and takes the valuen at power-on reset

Bits and fields can be written but not read.

Abbreviation Meaning
21264/21364 Compiler Writer’s Guide ix
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Bit Notation

Multiple-bit fields can include contiguous and noncontiguous bits contained in squa
brackets ([]). Multiple contiguous bits are indicated by a pair of numbers separated b
colon [:]. For example, [9:7,5,2:0] specifies bits 9,8,7,5,2,1, and 0. Similarly, single b
are frequently indicated with square brackets. For example, [27] specifies bit 27. S
also Field Notation.

Caution

Cautions indicate potential damage to equipment or loss of data.

Data Units

The following data unit terminology is used throughout this manual.

Do Not Care (X)

A capital X represents any valid value.

External

Unless otherwise stated, external means not contained in the chip.

Field Notation

The names of single-bit and multiple-bit fields can be used rather than the actual b
numbers (see Bit Notation). When the field name is used, it is contained in square
brackets ([]). For example,RegisterName[LowByte]specifiesRegisterName[7:0].

Note

Notes emphasize particularly important information.

Numbering

All numbers are decimal or hexadecimal unless otherwise indicated. The prefix 0x indi-
cates a hexadecimal number. For example, 19 is decimal, but 0x19 and 0x19A are
decimal (also see Addresses). Otherwise, the base is indicated by a subscript; for
example, 1002 is a binary number.

Ranges and Extents

Rangesare specified by a pair of numbers separated by two periods (..) and are inc
sive. For example, a range of integers 0..4 includes the integers 0, 1, 2, 3, and 4.

Extentsare specified by a pair of numbers in square brackets ([]) separated by a co
(:) and are inclusive. Bit fields are often specified as extents. For example, bits [7:3
specifies bits 7, 6, 5, 4, and 3.

Term Words Bytes Bits Other

Byte ½ 1 8 —

Word 1 2 16 —

Longword 2 4 32 Dword

Quadword 4 8 64 2 longword
x 21264/21364 Compiler Writer’s Guide
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Signal Names

The following examples describe signal-name conventions used in this document.

AlphaSignal[n:n] Boldface, mixed-case type denotes signal names that ar
assigned internal and external to the 21264/21364 (that
the signal traverses a chip interface pin).

AlphaSignal_x[n:n] When a signal has high and low assertion states, a lowe
case italicx represents the assertion states. For example
SignalName_x[3:0] representsSignalName_H[3:0]and
SignalName_L[3:0].

UNDEFINED

Operations specified as UNDEFINED may vary from moment to moment, impleme
tion to implementation, and instruction to instruction within implementations. The
operation may vary in effect from nothing to stopping system operation.

UNDEFINED operations may halt the processor or cause it to lose information. Ho
ever, UNDEFINED operations must not cause the processor to hang, that is, reach
unhalted state from which there is no transition to a normal state in which the mach
executes instructions.

UNPREDICTABLE

UNPREDICTABLE results or occurrences do not disrupt the basic operation of the
cessor; it continues to execute instructions in its normal manner. Further:

• Results or occurrences specified as UNPREDICTABLE may vary from momen
moment, implementation to implementation, and instruction to instruction withi
implementations. Software can never depend on results specified as UNPRED
ABLE.

• An UNPREDICTABLE result may acquire an arbitrary valuesubject to a few con-
straints. Such a result may be an arbitrary function of the input operands or of a
state information that is accessible to the process in its current access mode.
UNPREDICTABLE results may be unchanged from their previous values.

Operations that produce UNPREDICTABLE results may also produce exceptio

• An occurrence specified as UNPREDICTABLE may happen or not based on an
arbitrary choice function. The choice function is subject to the same constraints
are UNPREDICTABLE results and, in particular, must not constitute a security
hole.

Specifically, UNPREDICTABLE results must not depend upon, or be a function
the contents of memory locations or registers that are inaccessible to the curre
process in the current access mode.

Also, operations that may produce UNPREDICTABLE results must not:

– Write or modify the contents of memory locations or registers to which the c
rent process in the current access mode does not have access, or

– Halt or hang the system or any of its components.
21264/21364 Compiler Writer’s Guide xi
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For example, a security hole would exist if some UNPREDICTABLE result
depended on the value of a register in another process, on the contents of proc
temporary registers left behind by some previously running process, or on a
sequence of actions of different processes.

X

Do not care. A capital X represents any valid value.
xii 21264/21364 Compiler Writer’s Guide
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Introduction to the 21264 and 21364

This chapter provides a brief introduction to the Alpha architecture, Compaq Comp
Corporation’s RISC (reduced instruction set computing) architecture designed for h
performance. The chapter then summarizes specific features of theAlpha 21264 and
21364 microprocessors.

The companion volumes to this guide:

• TheAlpha Architecture Reference Manual, 4th Edition contains the completearchitec-
ture information.

• The appropriate hardware reference manual contains the complete hardware speci
fication.

All three documents are available at:

ftp.compaq.com/pub/products/alphaCPUdocs

1.1 The Architecture

The Alpha architecture is a 64-bit load and store RISC architecture designed with p
ticular emphasis on speed, multiple instruction issue, multiple processors, and soft
migration from many operating systems.

All registers are 64 bits long and all operations are performed between 64-bit regis
All instructions are 32 bits long. Memory operations are either load or store operatio
All data manipulation is done between registers.

The Alpha architecture supports the following data types:

• 8-, 16-, 32-, and 64-bit integers

• IEEE 32-bit and 64-bit floating-point formats

• VAX architecture 32-bit and 64-bit floating-point formats

In the Alpha architecture, instructions interact with each other only by one instructi
writing to a register or memory location and another instruction reading from that re
ter or memory location. This use of resources makes it easy to build implementations
that issue multiple instructions every CPU cycle.

The 21264 and 21364 use a set of subroutines, called privileged architecture library
code (PALcode), that is specific to a particular Alpha operating system implementa
and hardware platform. These subroutines provide operating system primitives for
text switching, interrupts, exceptions, and memory management. These subroutine
be invoked by hardware or CALL_PAL instructions. CALL_PAL instructions use the
21264/21364 Compiler Writer’s Guide Introduction to the 21264 and 21364 1–1
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function field of the instruction to vector to a specified subroutine. PALcode is writte
in standard machine code with some implementation-specific extensions to provid
direct access to low-level hardware functions. PALcode supports optimizations for
tiple operating systems, flexible memory-management implementations, and multi
instruction atomic sequences.

The Alpha architecture performs byte shifting and masking with normal 64-bit, regi
ter-to-register instructions. The 21264 and 21364 perform single-byte and single-w
load and store instructions.

1.1.1 Addressing

The basic addressable unit in the Alpha architecture is the 8-bit byte. The 21264 a
21364 support a 48-bit or 43-bit virtual address (selectable under Internal Process
Register (IPR) control).

Virtual addresses as seen by the program are translated into physical memory add
by the memory-management mechanism. The 21264 and 21364 support a 44-bit p
cal address.

1.1.2 Integer Data Types

Alpha architecture supports the four integer data types listed in Table 1–1.

Note: Alpha implementations may impose a significant performance penalty
when accessing operands that are not naturally aligned. Refer to theAlpha
Architecture Reference Manual, 4th Edition, for details.

1.1.3 Floating-Point Data Types

The following floating-point data types are supported:

• Longword integer format in floating-point unit

• Quadword integer format in floating-point unit

• IEEE floating-point formats

– S_floating

– T_floating

Table 1–1 Integer Data Types

Data Type Description

Byte A byte is 8 contiguous bits that start at an addressable byte boundary.
A byte is an 8-bit value.

Word A word is 2 contiguous bytes that start at an arbitrary byte boundary.
A word is a 16-bit value.

Longword A longword is 4 contiguous bytes that start at an arbitrary byte boundary.
A longword is a 32-bit value.

Quadword A quadword is 8 contiguous bytes that start at an arbitrary byte boundary
A quadword is a 64-bit value.
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• VAX floating-point formats

– F_floating

– G_floating

– D_floating (limited support)

1.2 21264 Microprocessor Features

The 21264 microprocessor is a superscalar pipelined processor. It is packaged in a
pin pin grid array (PGA) carrier and has removable application-specific heat sinks.
number of configuration options allow its use in a range of system designs ranging f
extremely simple uniprocessor systems with minimum component count to high-pe
formance multiprocessor systems with very high cache and memory bandwidth.

The 21264 can issue four Alpha instructions in a single cycle, thereby minimizing t
average cycles per instruction (CPI). A number of low-latency and/or high-through
features in the instruction issue unit and the onchip components of the memory su
system further reduce the average CPI.

The 21264 and associated PALcode implements IEEE single-precision and double
cision, VAX F_floating and G_floating data types, and supports longword
(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro
vided by byte-manipulation instructions. Limited hardware support is provided for t
VAX D_floating data type.

Other 21264 features include:

• The ability to issue up to six instructions (peak) or four instructions (sustained) d
ing each CPU clock cycle.

• A peak instruction execution rate of four times the CPU clock frequency.

• An onchip, demand-paged memory-management unit with translation buffer, wh
when used with PALcode, can implement a variety of page table structures and t
lation algorithms. The unit consists of a 128-entry, fully-associative data translati
buffer (DTB) and a 128-entry, fully-associative instruction translation buffer (ITB
with each entry able to map a single 8KB page or a group of 8, 64, or 512 8KB
pages. The allocation scheme for the ITB and DTB is round-robin. The size of e
translation buffer entry’s group is specified byhint bits stored in the entry. The
DTB and ITB implement 8-bit address space numbers (ASN), MAX_ASN=255.

• Two onchip, high-throughput pipelined floating-point units, capable of executin
both VAX and IEEE floating-point data types.

• An onchip, 64KB virtually-addressed instruction cache with 8-bit ASNs
(MAX_ASN=255).

• An onchip, virtually-indexed, physically-tagged dual-read-ported,64KB data
cache.

• Supports a 48-bit or 43-bit virtual address (program selectable).

• Supports a 44-bit physical address.

• An onchip I/O write buffer with four 64-byte entries for I/O write transactions.

• An onchip, 8-entry victim data buffer.
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• An onchip, 32-entry load queue.

• An onchip, 32-entry store queue.

• An onchip, 8-entry miss address file for cache fill requests and I/O read
transactions.

• An onchip, 8-entry probe queue, holding pending system port probe command

• An onchip, duplicate tag array used to maintain level 2 cache coherency.

• A 64-bit data bus with onchip parity and error correction code (ECC) support.

• Support for an external second-level (Bcache) cache. The size and some timin
parameters of the Bcache are programmable.

• An internal clock generator providing a high-speed clock used by the 21264, an
two clocks for use by the CPU module.

• Onchip performance counters to measure and analyze CPU and system perfor-
mance.

• Chip- and module-level test support, including an instruction cache test interface to
support chip- and module-level testing.

• A 2.2-V external interface.

Refer to theAlpha Architecture Reference Manual, 4th Edition,Appendix E, for waivers and
any other implementation-dependent information

1.3 21364 Microprocessor Features

The 21364 microprocessor is a superscalar pipelined processor manufactured usin
0.18µm CMOS 6-layer metal technology. It is packaged in a 1439-contact land grid
array (LGA) carrier and has removable application-specific heat sinks. A number of
configuration options allow its use in a range of system designs ranging from extrem
simple uniprocessor systems to large multiprocessor systems.

The 21364 and associated PALcode implements IEEE single-precision and double
cision, VAX F_floating and G_floating data types, and supports longword
(32-bit) and quadword (64-bit) integers. Byte (8-bit) and word (16-bit) support is pro
vided by byte-manipulation instructions. Limited hardware support is provided for t
VAX D_floating data type.

With the exception of an enlarged MAF and VAF (to support the enlarged MAF), th
21364 shares the same core as the 21264/EV68CB microprocessor.

Other 21364 features include:

• The ability to issue up to six instructions (peak) or four instructions (sustained) d
ing each CPU clock cycle.

• A peak instruction execution rate of six times the CPU clock frequency.

• Affords a glueless, scalable multiprocessor system with directory-based coher
protocol.
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• A demand-paged memory-management unit with translation buffer, which, when
used with PALcode, can implement a variety of page table structures and transla
algorithms. The unit consists of a 128-entry, fully-associative data translation bu
(DTB) and a 128-entry, fully-associative instruction translation buffer (ITB), with
each entry able to map a single 8KB page or a group of 8, 64, or 512 8KB page
The allocation scheme for the ITB and DTB is round-robin. The size of each tra
lation buffer entry’s group is specified byhint bits stored in the entry. The DTB and
ITB implement 8-bit address space numbers (ASN), MAX_ASN=255.

• Two high-throughput pipelined floating-point units, capable of executing both VA
and IEEE floating-point data types.

• A 64KB virtually-addressed L1 instruction cache with 8-bit ASNs
(MAX_ASN=255).

• A virtually-indexed, physically-tagged dual-read-ported, 64KB L1 data cache.

• An integrated 1.75MB 7-way associative L2 cache with the following performan
characteristics:

– Sustained access rate at 16 bytes/cycle, fully pipelined with no “bubbles”,
resulting in 16GB/sec total read/write bandwidth at 1 GHz.

– 16 victim buffers for L1 to L2 caches

– 16 victim buffers for L2 cache to local or remote memory

– ECC single-biterror correction, double-bit error detection (SECDED) code

– 12 ns load-to-use latency at 1 GHz (a 12-cycle latency at 1 GHz)

• Supports a 48-bit or 43-bit virtual address (program selectable).

• Supports a 44-bit physical address.

• Has a four-point integrated network interface for direct interprocessor interconnect.

– Each processor can directly connect to up to 4 other processors.

– 10-GB/sec per processor.

– 15 ns processor-to-processor latency.

– Out-of-order network with adaptive routing.

– Asynchronous clocking between processors.

• Has 8 to 10 channels (2 controllers× 4 to 5 channels each) of Rambus (RDRAM)
memory.

– Up to 800 MHz operation.

– 30 ns CAS latency pin-to-pin.

– 6-GB/sec read or write bandwidth – aggregate 12-GB/sec.

– Directory-based cache coherence.

– ECC SECDED code.

– A fifth channel on each controller offers RAID-like memory redundancy pro-
tection.

• Has one I/O connection per processor with a 3-GB/sec interface.
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• Has an onchip I/O write buffer with four 64-byte entries for I/O write transaction

• An onchip, 32-entry load queue.

• An onchip, 32-entry store queue.

• An onchip, 15-entry miss address file for cache fill requests and I/O read transa
tions.

• A 15-entry onchip L1 Dcache victim buffer and a 16-entry onchip system victim
buffer.

• An onchip, 32-entry probe queue, holding pending system port probe comman

• Hardware cache/system memory coherence support.

• Onchip performance counters to measure and analyze CPU and system perfor-
mance.

• Chip- and module-level test support, including an instruction cache test interface to
support chip- and module-level testing.

• A 1.5-V external interface.

Refer to theAlpha Architecture Reference Manual, 4th Edition,Appendix E, for waivers and
any other implementation-dependent information.
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Common 21264/21364 Hardware Features

This chapter contains sections of Chapter 2 of the 21264 and 21364 hardware reference
manual that are common to all processors andreferencedwithin this guide. This infor-
mation is correct but should not be thought of as complete. You should download the
appropriate hardware reference manual for the processor(s). Youshould also download
theAlpha Architecture Reference Manual. All these documents are available in the
same directory:

ftp.compaq.com/pub/products/alphaCPUdocs

2.1 Register Rename Maps

The instruction prefetcher forwards instructions to the integer and floating-point regis-
ter rename maps. The rename maps perform the two functions listed here:

• Eliminate register write-after-read (WAR) and write-after-write (WAW) data
dependencies while preserving true read-after-write (RAW) data dependencies
order to allow instructions to be dynamically rescheduled.

• Provide a means of speculatively executing instructions before the control flow
previous to those instructions is resolved. Both exceptions and branch
mispredictions represent deviations from the control flow predicted by the
instruction prefetcher.

The map logic translates each instruction’s operand register specifiers from thevirtual
register numbers in the instruction to thephysicalregister numbers that hold the corre-
sponding architecturally-correct values. The map logic also renames each instruct
destination register specifier from the virtual number in the instruction to a physica
register number chosen from a list offreephysical registers, and updates the register
maps.

The map logic can process four instructions per cycle. It does not return the physic
register, which holds the old value of an instruction’s virtual destination register, to
free list until the instruction has been retired, indicating that the control flow up to th
instruction has been resolved.

If a branch mispredict or exception occurs, the map logic backs up the contents of
integer and floating-point register rename maps to the state associated with the ins
tion that triggered the condition, and the prefetcher restarts at the appropriate virtual
program counter (VPC). At most, 20 valid fetch slots containing up to 80 instructio
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can be in flight between the register maps and the end of the machine’s pipeline, w
the control flow is finally resolved. The map logic is capable of backing up the conte
of the maps to the state associated with any of these 80 instructions in a single cyc

The register rename logic places instructions into an integer or floating-point issue
queue, from which they are later issued to functional units for execution.

2.2 Integer Execution Unit

The integer execution unit (Ebox) is a 4-path integer execution unit that is implemen
as two functional-unit “clusters” labeled 0 and 1. Each cluster contains a copy of an
entry, physical-register file and two “subclusters”, named upper (U) and lower (L). F
ure 2–1 shows the integer execution unit. In the figure,iop_wr is the cross-cluster bus
for moving integer result values between clusters.

Figure 2–1 Integer Execution Unit—Clusters 0 and 1

Most instructions have 1-cycle latency for consumers that execute within the same
ter. Also, there is another 1-cycle delay associated with producing a value in one clu
and consuming the value in the other cluster. The instruction issue queue minimize
performance effect of this cross-cluster delay. The Ebox contains the following
resources:

• Four 64-bit adders that are used to calculate results for integer add instructions
(located in U0, U1, L0, and L1)

• The adders in the lower subclusters that are used to generate theeffective virtual
address for load and store instructions (located in L0 and L1)

L0

Register

U0

Load/Store Data

L1

Register

U1

Load/Store Data

iop_wr

iop_wr

eff_VA eff_VA

iop_wr

iop_wr

FM-05643.AI4
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• Four logic units

• Two barrel shifters and associated byte logic (located in U0 and U1)

• Two sets of conditional branch logic (located in U0 and U1)

• Two copies of an 80-entry register file

• One pipelined multiplier (located in U1) with 7-cycle latency for all integer multiply
operations

• One fully-pipelined unit (located in U0), with 3-cycle latency, that executes the
lowing instructions:

– CTLZ, CTPOP, CTTZ

– PERR, MINxxx, MAXxxx, UNPKxx, PKxx

The Ebox has 80 register-file entries that contain storage for the values of the 31 A
integer registers (the value of R31 is not stored), the values of 8 PALshadow regist
and 41 results written by instructions that have not yet been retired.

Ignoring cross-cluster delay, the two copies of the Ebox register file contain identic
values. Each copy of the Ebox register file contains four read ports and six write po
The four read ports are used to source operands to each of the two subclusters wit
cluster. The six write ports are used as follows:

• Two write ports are used to write results generated within the cluster.

• Two write ports are used to write results generated by the other cluster.

• Two write ports are used to write results from load instructions. These two port
are also used for FTOIx instructions.

2.3 Floating-Point Execution Unit

The floating-point execution unit (Fbox) has two paths. The Fbox executes both VA
and IEEE floating-point instructions. It supports IEEE S_floating-point and T_floatin
point data types and all rounding modes. It also supports VAX F_floating-point and
G_floating-point data types, and provides limited support for D_floating-point forma
The basic structure of the floating-point execution unit is shown in Figure 2–2.

Figure 2–2 Floating-Point Execution Units

LK98-0004A
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SQRT

Floating-Point
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The Fbox contains the following resources:

• 72-entry physical register file

• Fully-pipelined multiplier with 4-cycle latency

• Fully-pipelined adder with 4-cycle latency

• Nonpipelined divide unit associated with the adder pipeline

• Nonpipelined square root unit associated with the adder pipeline

The 72 Fbox register file entries contain storage for the values of the 31 Alpha float
point registers (F31 is not stored) and 41 values written by instructions that have n
been retired.

The Fbox register file contains six read ports and four write ports. Four read ports a
used to source operands to the add and multiply pipelines, and two read ports are
to source data for store instructions. Two write ports are used to write results gener
by the add and multiply pipelines, and two write ports are used to write results from
floating-point load instructions.

2.4 Pipeline Organization

The 7-stage pipeline provides an optimized environment for executing Alpha instru
tions. The pipeline stages (0 to 6) are shown in Figure 2–3 and described in the fo
ing paragraphs.

Figure 2–3 Pipeline Organization

Stage 0 — Instruction Fetch

The branch predictor uses a branch history algorithm to predict a branch instruction
get address.
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Up to four aligned instructions are fetched from theIcache, in program order. The
branch prediction tables are also accessed in this cycle. The branch predictor uses
and a branch history algorithm to predict a branch instruction target address for on
branch or memory format JSR instruction per cycle. Therefore, the prefetcher is lim
to fetching through one branch per cycle. If there is more than one branch within th
fetch line, and the branch predictor predicts that the first branch will not be taken, it
predict through subsequent branches at the rate of one per cycle, until it predicts a
branch or predicts through the last branch in the fetch line.

The Icache array also contains a line prediction field, the contents of which are app
to the Icache in the next cycle. The purpose of the line predictor is to remove the p
line bubble which would otherwise be created when the branch predictor predicts a
branch to be taken. In effect, the line predictor attempts to predict the Icache linewhich
the branch predictor will generate. On fills, the line predictor value at each fetch lin
initialized with the index of the next sequential fetch line, and later retrained by the
branch predictor if necessary.

Stage 1 — Instruction Slot

The Ibox maps four instructions per cycle from the 64KB 2-way set-predict Icache.
Instructions are mapped in order, executed dynamically, but are retired in order.

In the slot stage, the branch predictor compares the next Icache index that it genera
the index that was generated by the line predictor. If there is a mismatch, the branc
predictor wins—the instructions fetched during that cycle are aborted, and the inde
predicted by the branch predictor is applied to theIcache during the next cycle. Line
mispredictions result in one pipeline bubble.

The line predictor takes precedence over the branch predictor during memory form
calls or jumps. If the line predictor was trained with a true (as opposed to predicted
memory format call or jump target, then its contents take precedence over the targ
hint field associated with these instructions. This allows dynamic calls or jumps to
correctly predicted.

The instruction fetcher produces the full VPC address during the fetch stage of the
line. The Icache produces the tags for both Icache sets 0 and 1 each time it is acce
That enables the fetcher to separate set mispredictions from true Icache misses. I
access was caused by a set misprediction, the instruction fetcher aborts the last tw
fetched slots and refetches the slot in the next cycle. It also retrains the appropriate
prediction bits.

The instruction data is transferred from the Icache to theinteger and floating-point reg-
ister map hardware during this stage. When the integer instruction is fetched from
Icache and slotted into the IQ, the slot logic determines whether the instruction is f
the upper or lower subclusters. The slot logic makes the decision based on the
resources needed by the (up to four) integer instructions in the fetch block. Althoug
four instructions need not be issued simultaneously, distributing their resource usa
improves instruction loading across the units. For example, if a fetch block contain
two instructions that can be placed in either cluster followed by two instructions tha
must execute in the lower cluster, the slot logic would designate that combination a
EELL and slot them as UULL. Slot combinations are described in Section 2.5.2 an
Table 2–3.
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Stage 2 — Map

Instructions are sent from the Icache to the integer and floating-point register maps dur-
ing the slot stage and register renaming is performed during the map stage. Also, e
instruction is assigned a unique 8-bit number, called aninum, which is used to identify
the instruction and its program order with respect to other instructions during the ti
that it is in flight. Instructions are considered to be in flight between the time they a
mapped and the time they are retired.

Mapped instructions and their associated inums are placed in the integer and float
point queues by the end of the map stage.

Stage 3 — Issue

The 20-entry integer issue queue (IQ) issues instructions at the rate of four per cyc
The 15-entry floating-point issue queue (FQ) issues floating-point operate instructions,
conditional branch instructions, and store instructions, at the rate of two per cycle.
mally, instructions are deleted from the IQ or FQ two cycles after they are issued. F
example, if an instruction is issued in cyclen, it remains in the FQ or IQ in cyclen+1
but does not request service, and is deleted in cyclen+2.

Stage 4 — Register Read

Instructions issued from the issue queues read their operands from the integer and
ing-point register files and receive bypass data.

Stage 5 — Execute

The Ebox and Fbox pipelines begin execution.

Stage 6 — Dcache Access

Memory reference instructions access the Dcache and data translation buffers. No
mally load instructions access the tag and data arrays while storeinstructions only
access the tag arrays. Store data is written to the store queue where it is held until
store instruction is retired. Most integer operate instructions write their register resu
in this cycle.

2.4.1 Pipeline Aborts

The abort penalty as given is measured from the cycle after the fetch stage of the
instruction which triggers the abort to the fetch stage of the new target, ignoring an
Ibox pipeline stalls or queuing delay that the triggering instruction might experience
Table 2–1 lists the timing associated with each common source of pipeline abort.

Table 2–1 Pipeline Abort Delay (GCLK Cycles)

Abort Condition
Penalty
(Cycles) Comments

Branch misprediction 7 Integer or floating-point conditional branch
misprediction.

JSR misprediction 8 Memory format JSR or HW_RET.

Mbox order trap 14 Load-load order or store-load order.

Other Mbox replay traps 13 —

DTB miss 13 —
2–6 Common 21264/21364 Hardware Features 21264/21364 Compiler Writer’s Guide



Instruction Issue Rules

are
2.5 Instruction Issue Rules

This section defines instruction classes, the functional unit pipelines to which they
issued, and their associated latencies.

2.5.1 Instruction Group Definitions

Table 2–2 lists the instruction class, the pipeline assignments, and the instructions
included in the class.

ITB miss 7 —

Integer arithmetic trap 12 —

Floating-point arithmetic
trap

13+latency Add latency of instruction. See Section 2.5.3 for
instruction latencies.

Table 2–2 Instruction Name, Pipeline, and Types

Class
Name Pipeline Instruction Type

cmov L0, U0, L1, U1 Integer CMOV — either cluster

fadd FA All floating-point operate instructions except multiply,
divide, square root, and conditional move instructions

fcbr FA Floating-point conditional branch instructions

fcmov1 FA Floating-point CMOV—first half

fcmov2 FA Floating-point CMOV— second half

fdiv FA Floating-point divide instruction

fld L0, L1 All floating-point load instructions

fmul FM Floating-point multiply instruction

fsqrt FA Floating-point square root instruction

fst FST0, FST1, L0, L1 All floating-point store instructions

ftoi FST0, FST1, L0, L1 FTOIS, FTOIT

iadd L0, U0, L1, U1 Instructions with opcode 1016, except CMPBGE

icbr U0, U1 Integer conditional branch instructions

ild L0, L1 All integer load instructions

ilog L0, U0, L1, U1 AND, BIC, BIS, ORNOT, XOR, EQV, CMPBGE

imisc U0 CTLZ, CTPOP, CTTZ, PERR, MINxxx, MAXxxx,
PKxx, UNPKxx

imul U1 Integer multiply instructions

ishf U0, U1 Instructions with opcode 1216

ist L0, L1 All integer store instructions

Table 2–1 Pipeline Abort Delay (GCLK Cycles) (Continued)

Abort Condition
Penalty
(Cycles) Comments
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2.5.2 Ebox Slotting

Instructions that are issued from the IQ, and could execute in either upper or lower
Ebox subclusters, are slotted to one pair or the other during the pipeline mapping s
based on the instruction mixture in the fetch line. The codes that are used in Table
are as follows:

• U—The instruction only executes in an upper subcluster.

• L—The instruction only executes in a lower subcluster.

• E—The instruction could execute in either an upper or lower subcluster.

Table 2–3 defines the slotting rules. The table fieldInstruction Class 3, 2, 1 and 0iden-
tifies each instruction’s location in the fetch line by the value of bits [3:2] in its PC.

itof L0, L1 ITOFS, ITOFF, ITOFT

jsr L0 BR, BSR, JMP, CALL, RET, COR, HW_RET,
CALL_PAL

lda L0, L1, U0, U1 LDA, LDAH

mem_misc L1 WH64, ECB, WMB

mx_fpcr FM Instructions that move data from the floating-point
control register

mxpr L0, L1
(depends on IPR)

HW_MTPR, HW_MFPR

nop None TRAP, EXCB, UNOP - LDQ_U R31, 0(Rx)

rpcc L1 RPCC

rx L1 RS, RC

Table 2–3 Instruction Group Definitions and Pipeline Unit

Instruction Class
3 2 1 0

Slotting
3 2 1 0

Instruction Class
3 2 1 0

Slotting
3 2 1 0

E E E E U L U L L L L L L L L L

E E E L U L U L L L L U L L L U

E E E U U L L U L L U E L L U U

E E L E U L L U L L U L L L U L

E E L L U U L L L L U U L L U U

E E L U U L L U L U E E L U L U

E E U E U L U L L U E L L U U L

E E U L U L U L L U E U L U L U

E E U U L L U U L U L E L U L U

E L E E U L U L L U L L L U L L

Table 2–2 Instruction Name, Pipeline, and Types (Continued)

Class
Name Pipeline Instruction Type
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E L E L U L U L L U L U L U L U

E L E U U L L U L U U E L U U L

E L L E U L L U L U U L L U U L

E L L L U L L L L U U U L U U U

E L L U U L L U U E E E U L U L

E L U E U L U L U E E L U L U L

E L U L U L U L U E E U U L L U

E L U U L L U U U E L E U L L U

E U E E L U L U U E L L U U L L

E U E L L U U L U E L U U L L U

E U E U L U L U U E U E U L U L

E U L E L U L U U E U L U L U L

E U L L U U L L U E U U U L U U

E U L U L U L U U L E E U L U L

E U U E L U U L U L E L U L U L

E U U L L U U L U L E U U L L U

E U U U L U U U U L L E U L L U

L E E E L U L U U L L L U L LL

L E E L L U U L U L L U U L L U

L E E U L U L U U L U E U L U L

L E L E L U L U U L U L U L U L

L E L L L U L L U L U U U L U U

L E L U L U L U U U E E U U L L

L E U E L U U L U U E L U U L L

L E U L L U U L U U E U U U L U

L E U U L L U U U U L E U U L L

L L E E L L U U U U L L U U L L

L L E L L L U L U U L U U U L U

L L E U L L U U U U U E U U U L

L L L E L L L U U U U L U U U L

— — U U U U U U U U

Table 2–3 Instruction Group Definitions and Pipeline Unit (Continued)

Instruction Class
3 2 1 0

Slotting
3 2 1 0

Instruction Class
3 2 1 0

Slotting
3 2 1 0
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2.5.3 Instruction Latencies

After an instruction is placed in the IQ or FQ, its issue point is determined by the av
ability of its register operands, functional unit(s), and relationship to other instructio
in the queue. There are register producer-consumer dependencies and dynamic fu
tional unit availability dependencies thataffect instruction issue. The mapper removes
register producer-producer dependencies.

The latency to produce a register result is generally fixed. The one exception is for
instructions that miss the Dcache. Table 2–4 lists the latency, in cycles, for each
instruction class.

Table 2–4 Instruction Class Latency in Cycles

Class Latency Comments

cmov1 1 Only consumer is cmov2. Possible 1-cycle Ebox cross-cluster delay.

cmov2 1 Possible 1-cycle Ebox cross-cluster delay.

fadd 4
6

Consumer other than fst or ftoi.
Consumer fst or ftoi.
Measured from when an fadd is issued from the FQ to when an fst or ftoi is issue
from the IQ.

fcbr — Does not produce register value.

fcmov1 4 Only consumer is fcmov2.

fcmov2 4
6

Consumer other than fst.
Consumer fst or ftoi.
Measured from when an fcmov2 is issued from the FQ to when an fst or ftoi is
issued from the IQ.

fdiv 12
9
15
12

Single precision - latency to consumer of result value.
Single precision - latency to using divider again.
Double precision - latency to consumer of result value.
Double precision - latency to using divider again.

fld 4
14+

Dcache hit.
Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency
Bcache latency is greater than 6 cycles.

fmul 4
6

Consumer other than fst or ftoi.
Consumer fst or ftoi.
Measured from when an fmul is issued from the FQ to when an fst or ftoi is issue
from the IQ.

fsqrt 18
15
33
30

Single precision - latency to consumer of result value.
Single precision - latency to using unit again.
Double precision - latency to consumer of result value.
Double precision - latency to using unit again.

fst — Does not produce register value.

ftoi 3 —

iadd 1 Possible 1-cycle Ebox cross-cluster delay.

icbr — Conditional branch. Does not produce register value.
2–10 Common 21264/21364 Hardware Features 21264/21364 Compiler Writer’s Guide
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2.6 Instruction Retire Rules

An instruction is retired when it has been executed to completion, and all previous
instructions have been retired. The execution pipeline stage in which an instruction
becomes eligible to be retired depends upon the instruction’s class.

Table 2–5 gives the minimum retire latencies (assuming that all previous instructio
have been retired) for various classes of instructions.

ild 3
13+

Dcache hit.
Dcache miss, latency with 6-cycle Bcache. Add additional Bcache loop latency i
Bcache latency is greater than 6 cycles.

ilog 1 Possible 1-cycle Ebox cross-cluster delay.

imisc 3 Possible 1-cycle Ebox cross-cluster delay.

imul 7 Possible 1-cycle Ebox cross-cluster delay.

ishf 1 Possible 1-cycle Ebox cross-cluster delay.

ist — Does not produce register value.

itof 4 —

jsr 3 —

lda 1 Possible 1-cycle Ebox cross-cluster delay.

mem_misc — Does not produce register value.

mxpr 1 or 3 HW_MFPR: Ebox IPRs = 1.
Ibox and Mbox IPRs = 3.

HW_MTPR does not produce a register value.

nop — Does not produce register value.

rpcc 1 Possible 1-cycle cross-cluster delay.

rx 1 —

ubr 3 Unconditional branch. Does not produce register value.

Table 2–5 Minimum Retire Latencies for Instruction Classes

Instruction Class Retire Stage Comments

BSR/JSR 10 JSR instruction mispredict is reported in stage 8.

Floating-point add 11 —

Floating-point conditional
branch

11 Branch instruction mispredict is reported in stage 7.

Floating-point DIV/SQRT 11 + latency Add latency of unit reuse for the instruction indicated in Tab
2–4. For example, latency for a single-precision fdiv would be
11 plus 9 from Table 2–4. Latency is 11 if hardware detects tha
no exception is possible (see Section 2.6.1).

Floating-point multiply 11 —

Integer conditional branch 7 —

Table 2–4 Instruction Class Latency in Cycles (Continued)

Class Latency Comments
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2.6.1 Floating-Point Divide/Square Root Early Retire

The floating-point divider and square root unit can detect that, for many combinatio
of source operand values, no exception can be generated. Instructions with these ope
ands can be retired before the result is generated. When detected, they are retired
the same latency as the FP add class. Early retirement is not possible for the follow
instruction/operand/architecture state conditions:

• Instruction is not a DIV or SQRT.

• SQRT source operand is negative.

• Divide operand exponent_a is 0.

• Either operand is NaN or INF.

• Divide operand exponent_b is 0.

• Trapping mode is /I (inexact).

• INE status bit is 0.

Early retirement is also not possible for divide instructions if the resulting exponent
any of the following characteristics (EXP is the result exponent):

• DIVT, DIVG: (EXP >= 3FF16) OR (EXP <= 216)

• DIVS, DIVF: (EXP >= 7F16) OR (EXP <= 38216)

2.7 Retire of Operate Instructions into R31/F31

Many instructions that have R31 or F31 as their destination are retired immediately
upon decode (stage 3). These instructions do not produce a result and are removed
the pipeline as well. They do not occupy a slot in the issue queues and do not occu
functional unit. Table 2–6 lists these instructions and some of their characteristics.
instruction type in Table 2–6 is from Table C-6 in Appendix C of theAlpha Architecture
Reference Manual, 4th Edition.

Integer multiply 7/13 Latency is 13 cycles for the MUL/V instruction.

Integer operate 7 —

Memory 10 —

Table 2–6 Instructions Retired Without Execution

Instruction Type Notes

FLTI, FLTL, FLTV All with F31 as destination. MT_FPCR is not included
because it has no destination—it is never removed from the
pipeline.

FLTS All (SQRT, ITOF) with F31 as destination.

Table 2–5 Minimum Retire Latencies for Instruction Classes (Continued)

Instruction Class Retire Stage Comments
2–12 Common 21264/21364 Hardware Features 21264/21364 Compiler Writer’s Guide
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2.8 Replay Traps

There are some situations in which a load or store instruction cannot be executed d
a condition that occurs after that instruction issues from the IQ or FQ. The instructio
aborted (along with all newer instructions) and restarted from the fetch stage of the
pipeline. This mechanism is called a replay trap.

2.8.1 Mbox Order Traps

Load and store instructions may be issued from the IQ in a different order than they
were fetched from the Icache, while the architecture dictates that Dstream memory
transactions to the same physical bytes must be completed in order. Usually, the M
manages the memory reference stream by itself to achieve architecturally correct
behavior, but the two cases in which the Mbox uses replay traps to manage the me
stream areload-loadandstore-loadorder traps.

2.8.1.1 Load-Load Order Trap

The Mbox ensures that load instructions thatread the same physical byte(s) ultimately
issue in correct order by using theload-loadorder trap. The Mbox compares the
address of each load instruction, as it is issued, to the address of all load instructio
the load queue. If the Mbox finds a newer load instruction in the load queue, it invo
a load-loadorder trap on the newer instruction. This is a replay trap that aborts the
get of the trap and all newer instructions from the machine and refetches instructio
starting at the target of the trap.

2.8.1.2 Store-Load Order Trap

The Mbox ensures that a load instruction ultimately issues after an older store instr
tion that writes some portion of its memory operand by using thestore-loadorder trap.
The Mbox compares the address of each store instruction, as it is issued, to the ad
of all load instructions in the load queue. If the Mbox finds a newer load instruction
the load queue, it invokes astore-loadorder trap on the load instruction. This is a repla
trap. It functions like theload-loadorder trap.

The Ibox contains extra hardware to reduce the frequency of thestore-loadtrap. There
is a 1-bit by 1024-entry VPC-indexed table in the Ibox called the stWait table. When
Icache instruction is fetched, the associated stWait table entry is fetched along with
Icache instruction. The stWait table produces 1 bit for each instruction accessed fro
the Icache. When a load instruction gets astore-loadorder replay trap, its associated bi
in the stWait table is set during the cycle that the load is refetched. Hence, the trap
load instruction’s stWait bit will be set the next time it is fetched.

INTA, INTL, INTM, INTS All with R31 as destination.

LDQ_U All with R31 as destination.

MISC TRAPB and EXCB are always removed. Others are never
removed.

Table 2–6 Instructions Retired Without Execution

Instruction Type Notes
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The IQ will not issue load instructions whose stWait bit is set while there are older u
sued store instructions in the queue. A load instruction whose stWait bit is set can
issued the cycle immediately after the last older store instruction is issued from the
queue. All the bits in the stWait table are unconditionally cleared every 16384 cycles
every 65536 cycles if I_CTL[ST_WAIT_64K] is set.

2.8.2 Other Mbox Replay Traps

The Mbox also uses replay traps to control the flow of the load queue and store qu
and to ensure that there are never multiple outstanding misses to different physical
addresses that map to the same Dcache or Bcache line. Unlike the order traps, how
these replay traps are invoked on the incoming instruction that triggered the condit

2.9 Floating-Point Control Register

The floating-point control register (FPCR) is shown in Figure 2–4.

Figure 2–4 Floating-Point Control Register

The floating-point control register fields are described in Table 2–7.

Table 2–7 Floating-Point Control Register Fields

Name Extent Type Description

SUM [63] RW Summary bit. Records bit-wise OR of FPCR exception bits.

INED [62] RW Inexact Disable. If this bit is set and a floating-point instruction that enables
trapping on inexact results generates an inexact value, the result is placed in
destination register and the trap is suppressed.

63 62 61 60 59 4958 4857 4756 55 54 53 52 51 50 0

SUM

INED

UNFD

UNDZ

DYN

IOV

INE

UNF

OVF

DZE

INV

OVFD

DZED

INVD

DNZ LK99-0050A
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UNFD [61] RW Underflow Disable. The 21264/21364 hardware cannot generate IEEE com
ant denormal results. UNFD is used in conjunction with UNDZ as follows:

UNDZ [60] RW Underflow to zero. When UNDZ is set together with UNFD, underflow traps
are disabled and the 21264/21364 places a true zero in the destination regis
See UNFD, above.

DYN [59:58] RW Dynamic rounding mode. Indicates the rounding mode to be used by an IEE
floating-point instruction when the instruction specifies dynamic rounding
mode:

IOV [57] RW Integer overflow. An integer arithmetic operation or a conversion from float-
ing-point to integer overflowed the destination precision.

INE [56] RW Inexact result. A floating-point arithmetic or conversion operation gave a resu
that differed from the mathematically exact result.

UNF [55] RW Underflow. A floating-point arithmetic or conversion operation gave a result
that underflowed the destination exponent.

OVF [54] RW Overflow. A floating-point arithmetic or conversion operation gave a result tha
overflowed the destination exponent.

DZE [53] RW Divide by zero. An attempt was made to perform a floating-point divide with a
divisor of zero.

INV [52] RW Invalid operation. An attempt was made to perform a floating-point arithmetic
operation and one or more of its operand values were illegal.

OVFD [51] RW Overflow disable. If this bit is set and a floating-point arithmetic operation gen
erates an overflow condition, then the appropriate IEEE nontrapping result is
placed in the destination register and the trap is suppressed.

DZED [50] RW Division by zero disable. If this bit is set and a floating-point divide by zero is
detected, the appropriate IEEE nontrapping result is placed in the destination
register and the trap is suppressed.

INVD [49] RW Invalid operation disable. If this bit is set and a floating-point operate generate
an invalid operation condition and 21264/21364 is capable of producing the
correct IEEE nontrapping result, that result is placed in the destination registe
and the trap is suppressed.

Table 2–7 Floating-Point Control Register Fields (Continued)

Name Extent Type Description

UNFD UNDZ Result

0 X Underflow trap.

1 0 Trap to supply a possible denormal result.

1 1 Underflow trap suppressed. Destination is written with a
true zero (+0.0).

Bits Meaning

00 Chopped

01 Minus infinity

10 Normal

11 Plus infinity
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Floating-Point Control Register
DNZ [48] RW Denormal operands to zero. If this bit is set, treat all Denormal operands as a
signed zero value with the same sign as the Denormal operand.

Reserved [47:0]1 — —

1 Alpha architecture FPCR bit 47 (DNOD) is not implemented by the 21264 or 21364.

Table 2–7 Floating-Point Control Register Fields (Continued)

Name Extent Type Description
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Guidelines for Compiler Writers

This chapter is a supplement to Appendix A of theAlpha Architecture Reference Man-
ual, 4th Edition. That appendix presents general guidelines for software that are les
dependent on the processor implementation. This chapter identifies some of the sp
features of the 21264 and 21364 that affect performance and that can be controlled
compiler writer or assembly-language programmer.

Note: Chapter 2 in the appropriate hardware reference manual describes the
cific hardware features for which this chapter provides programming
guidelines. Sections of that chapter are included in this guide and refer-
enced in this chapter. Consult the appropriate hardware reference manual
for complete information on hardware features for a particular Alpha pro
cessor. (The sections of Chapter 2 included in this guide are correct but not
complete for all 21264 and 21364 processors.) You can download the h
ware reference manual for your processor from:

ftp.compaq.com/pub/products/alphaCPUdocs/

3.1 Architecture Extensions

Various extensions have been provided to the Alphaarchitecture.

Use the AMASK instruction (see Section 2.15 of the hardware reference manual th
appropriate for your particular processor) to test for the presence of these extensio

If you using this document before the 21364 hardware reference manual is availab
you can use the AMASK values that are described in the 21264/EV68CB hardware
erence manual.

Using AMASK makes it possible to generate efficient code that uses the extension
while still running correctly on implementations that do not contain them.

See theAlpha Architecture Reference Manual, 4th Edition, for more details on
AMASK.

There are also new instructions for memory prefetch, described in Section 3.6.

3.2 Instruction Alignment

Where possible, branch targets should be octaword aligned. Although any NOP ins
tion can be used to pad code for alignment, the UNOP is recommended because i
ensures backwards compatibility. The 21264/21364 discards NOP instructions ear
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the pipeline, so the main costs are space in the instruction cache and instruction fe
bandwidth. See Appendix A of theAlpha Architecture Reference Manual, 4th Edition,
for the encodings to use for NOP instructions.

Always align routine beginnings and branch targets that are preceded in program o
by:

• Computed jumps
• Unconditional branches
• Return instructions

Always align targets of computed jumps (JMP and JSR), even if there is a fall-throu
path to the target.

Although not generally recommended, it may be beneficial to align branch targets
can also be reached by a fall through.

3.3 Data Alignment

As in previous implementations, references to unaligned data continue to trap and are
completed in software. Programmers are encouraged to align their data on natural
boundaries. When data cannot be aligned, use the nontrapping sequences listed i
Alpha Architecture Reference Manual, 4th Edition.

Because the 21264/21364 implements the BWX extension, it is beneficial to do
unaligned word operations with two byte operations. For example, the following
sequence loads an unsigned unaligned word:

LDBU T3, 1(T0)

LDBU T2, (T0)

SLL T3, 8, T3

BIS T2, T3, V0

3.4 Control Flow

As in previous implementations, the compiler should lay out code so that fall throug
the common path. For the 21264/21364, the line predictor is initialized to favor a fa
through path. Furthermore, on a demand miss, the next three lines are prefetched
the instruction cache.

3.4.1 Need for Single Successors

Code should be arranged so that each aligned octaword has at most one likely suc
sor, because each of the following predictors stores only one prediction for each oc
word:

• The line predictor
• The JMP/JSR predictor (which uses the line predictor)
• Parts of the branch predictor

To ensure that there is only one successor, include at most one change of control f
instruction in each octaword. BSR and JSR instructions should be the last instructio
the octaword, so that the octaword does not have both the call target and the fall-
through octaword as successors. If an octaword has a JMP or JSR, there should n
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another control flow instruction, CMOV, LDx_L, STx_C, WMB, MB, RS, RC, or
RPCC instruction; these instructions prevent the line predictor from training. If the
compiler puts multiple rarely taken conditional branches in the same octaword, the
will not be a problem with aliasing in the line predictor or the branch predictor.

3.4.2 Branch Prediction

The branch predictor in the 21264/21364 is sophisticated and can predict branch b
ior where the behavior depends on past history of the same branch or previous
branches. For example, branches are predicted that tend to go in the same directio
that have patterns. However, the following instructions interferewith the branch predic-
tor and cause it to predict fall through when placed in the same octaword as conditi
branch instructions: LDx_L, STx_C, WMB, MB, RS, RC, and RPCC.

Branches that cannot be predicted are costly, so try to use the conditional move in
tion (CMOV) or logical operations to eliminate branch instructions. If a conditional
branch guards a few instructions, it is almost always beneficial to eliminate the bra
For larger blocks of code, the benefit depends on whether the branch is predictable

3.4.3 Filling Instruction Queues

Normally, the 21264/21364 can fetch one aligned octaword per cycle and fill the
instruction queues. There are some situations where it fetches less, which can red
performance if the21264/21364 is removing instructions from the queues (issuing
them) faster than they can be filled. The 21264/21364 can predict at most one bran
per cycle; if an aligned octaword containsn branches, it takesn cycles to fetch the
entire aligned octaword. Thus, there can be a penalty for placing more than one br
in an octaword, even if the branches are rarely all taken. However, spacing out bran
by padding the octaword with NOPs does not speed up the fetch. This is usually on
problem for code with very high ILP (instruction-level parallelism), where instructio
fetch cannot keep up with execution.

3.4.4 Branch Elimination

Removing branches eliminates potential branch mispredicts, improves instruction
fetch, and removes barriers to optimization in the compiler. Many branches can be
removed by using the CMOV instruction or logical instructions. The following sectio
describe some techniques for eliminating branches that are specific to the Alpha
instruction set.

3.4.4.1 Example of Branch Elimination with CMOV

The C code in the following example can be implemented without branches by usin
the CMOV instruction.

In the example, the variableD is assigned on both paths, so it is replaced with an unc
ditional assignment — the value from one path followed by a CMOV to conditional
overwrite it. The variableC is not live out of the conditional, so its assignment can be
done unconditionally. To conditionalize the store (*p=a), a dummy location called th
bitbucket iscreated on the stack, and the address register for thestore is overwritten
with the bitbucket address to prevent the store from occurring when the condition i
false.
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The C code:

if (A < B) {

C = A + B;

D = C + 1;

*P = A;

}

else {

D = 2;

}

Implementation using the CMOV instruction:

CMPLT A,B,R0

ADDL A,B,C

ADDL C,1,R1

MOV 2,D

CMOVNE R0,R1,D

CMOVEQ R0,BB,P

STL A,(P)

3.4.4.2 Replacing Conditional Moves with Logical Instructions

If an octaword containsn CMOV instructions, it takesn+1 cycles to put that aligned
octaword into the instruction queues. This is only a problem for code with very high
ILP. When executing, the CMOV instruction is treated like two dependent instructio
If possible, it is usually a good idea to replace a CMOV instruction with one or two l
ical instructions. Integer compare instructions produce a value of zero or one. By s
tracting one from the result of a compare, the values are all zeroes or all ones, whi
makes a convenient mask in evaluating conditional expressions. For example:

if (A > B) C = 0

could be implemented with:

CMPLT B,A,R0

CMOVNE R0,R31,C

But a better sequence that consumes the same amount of execution resources bu
fetch resources is:

CMPLT B,A,R0

SUBQ R0,1,R0

AND R0,C,C
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3.4.4.3 Combining Branches

Multiple dependent branches can often be combined into a single branch. For exam
the C expression(a > b && c > d) can be computed with:

CMPLT B,A,R1

BEQ R1,L1

CMPLT D,C,R1

BEQ R1,L1

or equivalently as:

CMPLT B,A,R1

CMPLT D,C,R2

AND R1,R2,R2

BEQ R2,L1

Combining the two branches into one branch avoids the problems caused by multi
branches in the same aligned octaword. Of even greater benefit, the combined bran
usually more predictable than the two original branches.

3.4.5 Computed Jumps and Returns

The targets of computed jumps (JMP and JSR instructions) are predicted different
than PC-relative branches and require special attention. The first time a JMP or JS
instruction is brought into the cache, the target is computed by using the predicted
get field contained in the jump instruction to compute an index into the cache, com
bined with the tag currently contained in that index. If that prediction is wrong, the
processor quickly switches to another prediction mode that uses the line predictor
future occurrences of that jump. Because the line predictor predicts aligned octawo
and not individual instructions, it always predicts the beginning of an aligned octaw
even if the target is not the first instruction. Thus, it is important to align targets of co
puted jumps. Note that even if the predicted target field is correct in the JMP instru
tion, it still mispredicts if the target is not in the cache because the tag is wrong.
Therefore, the compiler should both set the hint field bit and align the jump target s
that line predication will work.

The target of a RET instruction is predicted with a return stack, as described in App
dix A of the Alpha Architecture Reference Manual, 4th Edition.

3.5 SIMD Parallelism

Programs can do SIMD-style (single instruction stream, multiple data stream) para
ism in registers. SIMD parallelism can greatly reduce the number of instructions ex
cuted. The MVI instructions support SIMD parallelism and some non-MVI instructio
are also useful. A simple example is implementing a byte-at-a-time copy loop with
quadword copies. Another example is testing for a nonzero byte in an array of eigh
bytes with a single quadword load; aBNEinstruction can determine if all the bytes are
nonzero or aCMPBGEinstruction can determine which byte is nonzero. See Append
B for an example.
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3.6 Prefetching

Prefetching is very important (by a factor of 2) for loops dominated by memory laten
or bandwidth. The 21264 and 21364 both support three styles of prefetch, but the 2
has more highly developed support for marking a cache block as having a short te
ral cache life with theevict nextqualifier.

The actual cache eviction policy is implementation-dependent and described in the
responding implementation’s hardware reference manual.

The prefetch instructions and write hints are recognized as prefetches or ignored on
21264/21364 implementations, so it is always safe for a compiler to use them. The
prefetches have no architecturally visibleeffect, soinserting prefetches never causes a
program error. Because of its more powerful memory system, prefetches on a 212
21364 have more potential benefit than previous Alpha implementations and unne
sary prefetching is less costly. Support for prefetching varies between implementat
consult the appropriate hardware reference manual for particular support and theAlpha
Architecture Reference Manual, 4th Edition for general information.

How far ahead to prefetch depends on whether the processor is a 21264 or21364. The
number of instructions that are prefetched can be normally controlled by a compile
switch. The 21264 has an 8-entry miss address file (MAF); the 21364 a 15-entry M
Therefore, prefetch ahead further with the 21364, as follows:

21264

Always prefetch ahead at least two cache blocks for each stream. Prefetch fart
ahead if possible, unless doing so requires more than eight offchip references
in progress at the same time. That is, for a loop that referencesn streams, prefetch

Table 3–1 Prefetch Support Summary

Prefetch Type Instruction Processor Support Description

Normal prefetch PREFETCH 21264 and 21364 Prefetch for loading data that is expec
to be read only. Reduces the latency to
read memory.

Normal prefetch, evict
next

PREFETCH_EN 21264 and 21364 Normal prefetch and mark for preferent
eviction in future cache fills.

Prefetch with modify
intent

PREFETCH_M 21264 and 21364 Prefetch for data that will probably be
written. Reduces the latency to read
memory and bus traffic.

Prefetch with modify
intent, evict next

PREFETCH_MEN 21364 only Prefetch with modify intent and mark for
preferential eviction in future cache fills.

Write hint – 64 bytes WH64 21264 and 21364 Execute if the program intends to write
entire aligned block of 64 bytes. Reduces
the amount of memory bandwidth
required to write a block of data.

Write hint – 64 bytes,
evict next

WH64EN 21364 only Hint to the processor that the correspond
ing block should be marked for preferen-
tial eviction in future cache fills.
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ahead 2 blocks for each stream or 8/n blocks, whichever is greater. Note, however
that for short trip count loops, it may be beneficial to reduce the prefetchdistance,
so that the prefetched data is likely to be used.

21364

Always prefetch ahead at least two cache blocks for each stream. Prefetch fart
ahead if possible (up to 10 blocks), unless doing so requires more than 15 offc
references to be in progress at the same time. That is, for a loop that referencen
streams, prefetch ahead 2 blocks for each stream or 15/n blocks, whichever is
greater. Note, however, that for short trip count loops, it may be beneficial to red
the prefetch distance, so that the prefetched data is likely to be used.

Prefetches to invalid addresses are dismissed by PALcode, so it is safe to prefetch
the end of an array, but it does incur a small (less than 30 cycle) performance pena
Prefetches can have alignment traps, so align the pointer used to prefetch.

The WH64 instruction sets an aligned 64-byte block to an unknown state. Use WH
when the program intends to completely write an aligned 64-byte area of memory.
Unlike load prefetches, the WH64instruction modifies data, and it is not safe to execu
WH64 off the end of an array. Although a conditional branch can guard the WH64
instruction so that it does not go beyond the end of an array, a better solution is to c
a dummy aligned block of 64 bytes of memory on the stack (bitbucket) and use a
CMOV instruction to select the bitbucket address when nearing the end of the array
example:

CMPLT R0,R1,R2 # test if there are at least 64 bytes left

CMOVEQ R2,R3,R4 # if not, overwrite r4 with address of bit bucket

WH64 R4

3.7 Avoiding Replay Traps

The 21264/21364 can have several memory operations in progress at the same tim
rather than necessarily waiting for one memory operation to complete before start
another. The 21264/21364 can reorder memory operations if one operation is delayed
because its input operands are not data ready or because of system dynamics.

There are some situations where the execution of a memory operation must be aborted,
together with all newer instructions in progress. When the situation is corrected, th
instruction is refetched and execution continues. This is called a replay trap and is
described in Section 2.8.

A replay trap is a hardware mechanism for aborting speculative work and is not the
same as a software exception or trap. Typically, the main cost of a replay trap is the
cessor must wait for the condition that caused the trap (such as a cache miss or a
queue drain) to clear before executing any instructions after the trapping instructio
addition, instructions must be restarted in the pipeline, which adds the penalty liste
Table 2–1. The actual effect on performance depends on the length of the stall and ho
much the processor can overlap the stall with other work, such as restarting the pip
line.

Replay traps occur when there are multiple concurrent loads and/or stores in progr
to the same address or same cache index. The farther apart the loads and/or stores
the instruction stream, the less likely they will be active at the same time. It is impo
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ble to predict exactly how much distance is needed, but 40 instructions should be s
the data is in the level 2 cache. The best way to avoid replay traps is to keep value
registers so that multiplereferences to the same address are not in progress at the s
time.

Generally, there are three causes for multiple loads and stores to the same addres
following lists those causes and suggests remedies:

• High register pressure causes repeated spills and reloads of variables. Profile
mation is especially useful to ensure that frequently referenced values are kep
registers.

• Memory aliasing prevents the compiler from keeping values in registers. Pointe
and interprocedural analysis are important techniques for eliminating unnecess
memory references.

• Reuse of stack location for temporaries leads to repeatedreferences to the stack
address. Immediate reuse of stack locations is discouraged because it creates
dependence through memory that the 21264/21364 is unable to break.

Section 2.8 describes the general concept of replay traps and provides some exam
The following sections describe the replay traps that have been found to occur fre-
quently and contain specific recommendations for avoiding them.

3.7.1 Store-Load Order Trap

Stores go into the store queue, and loads to the same address can get the data fro
store queue. Operations tend to be executed in program order, unless an operation
data ready. However, if the processor reorders the instructions so that the load exe
before the store, a replay trap occurs and execution restarts at the load. This is cal
store-load order trap. If this happens frequently enough, the processor will learn to
delay issuing the load until all previous stores have completed. Delaying the load c
decrease performance because it must wait for all stores, rather than juststores to the
same address. However, the delay is faster than replay trapping.

The FTOIx and ITOFx instructions transfer data between the floating-point and integ
register files. Because they avoid situations where data is stored and immediately
loaded back, they avoid store-load order replay traps and should be used whereve
sible.

3.7.2 Wrong-Size Replay Trap

If there is a store followed by a load that reads the same data, and the load data ty
larger than the store, then the load must get some of the data from the store queue
the rest from the cache. The processor replay traps until the store queue drains int
Dcache and then gets all the data from the cache. This is called a wrong-size repla
trap. Unlike the store-load order replay trap, the wrong-size replay trap occurs eve
the store and load execute in order. The trap can take over 20 cycles and can be av
by widening the store, narrowing the load, or eliminating the load and getting the va
from a register. If the store data is larger than the load data, a wrong-size replay tra
does not occur.
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3.7.3 Load-Miss Load Replay Trap

If there is a load followed by another load to the same address and the first load mi
then the processor replay traps until the data comes back from the cache. This is c
a load-miss load replay trap.

3.7.4 Mapping to the Same Cache Line

Loads and stores that are in progress at the same time and map to the same cach
(32KB apart) can replay trap. This is similar to the problem that direct-mapped caches
have, the difference being that the 21264/21364 cache can hold two data items tha
to the same index, but can have only one memory operation in progress at a time t
maps to any one cache index. See Section A.3.3 of theAlpha Architecture Reference
Manual, 4th Edition, for a discussion of laying out data to avoid direct-mapped cach
thrashes. If possible, avoid loops where a single iteration or nearby interations touc
data that is 32KB apart. Avoid creating data that is a multiple of 32KB and pad it wi
extra cache blocks if possible. Also note that prefetches can cause these traps and
of-order execution can cause multiple iterations of a loop to overlap in execution, s
when padding or spacing data references apart, one must consider factors such as
prefetchdistance and store delay in computing a safe distance.

3.7.5 Store Queue Overflow

Each store instruction is buffered in the store queue until it retires, up to a maximum
32. If the store queue overflows, the processor replay traps. To avoid overflow, avo
code with a burst of more than 32 stores and do not expect the processor to sustain
than one store per cycle.

3.8 Scheduling

The 21264/21364 can rearrange instruction execution order to achieve maximum
throughput. However, it has limited resources: instruction queue slots and physica
isters. The closer the compiler’s static schedule is to the actual desired issue order
less likely the processor will run out of resources and stall. Therefore, it is still bene
cial to schedule the code as if the 21264/21364 is an in-order microprocessor, suc
the 21164. Software pipelining is also beneficial for loops.

The basic model is a processor that can execute 4 aligned instructions per cycle. S
ule for the resources described in Table 2–2 and the latencies in Table 2–4 and ass
cross-cluster delay will occur. When determining load latency, assume that scalar r
ences are Dcache hits and array and pointer references are not. Load latencies in
2–4 are best case, so schedule for longer latencies if register pressure is not high.
Prefetch data where possible and assume the actual load is a Dcache hit.

To reduce Dcache bus traffic, loadsshould be grouped with loads, stores with stores,
two per cycle. Memory operations to different parts of the same cacheblock can com-
bine together. Group operations with different offsets off the same pointer where possi-
ble. Do operations in memory address order (such as a bunch of stack saves) whe
possible.
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3.9 Detailed Modeling of the Pipeline

Section 3.8 describes a simple model for a compiler. More detailed models must t
into account physical register allocation and Ebox slotting and clustering. Such mo
are difficult to get right because the compiler cannot easily predict the order in whic
instructions will be executed. However, it is possible to produce schedules that ach
higher performance by more accurately modeling the 21264/21364. This section
describes such a model.

3.9.1 Physical Registers

Physical registers are a resource that need to be managed to achieve optimal perf
mance. As described in Section 2.1, architectural registers are renamed to physica
isters. A physical register is allocated when an instruction is placed in the instructi
queue and a physical register is released when the instruction is retired; the physic
register that is released is the prior mapping of the destination register. A distinct p
ical register is required to hold the result of each instruction that has not yet retired
instructions that do not write a register (such as stores, conditional branches, prefet
and other instructions that target R31 or F31) do not allocate a physical register.

Table 3–2 presents the minimum latency between an instruction allocating a physi
register and the instruction releasing the physical register. That latency is divided
the latency from the map stage to the retire stage and an additional latency from th
retire stage until the physical register is actually released. Note that instructions re
in order — a delay in the retire of one instruction delays the retire and the release o
physical registers for all subsequent instructions. Table 3–2 is an approximation; t
register mapper has a number of special cases and edge conditions that are ignore

Table 3–2 Minimum Latencies from Map to Release of a Physical Register

Instruction Class Map-to-Retire Retire-to-Release Map-to-Release

BSR/JSR 8 2 10

Floating-point add 9 4 13

Floating-point conditional branch 9 4 13

Floating-point divide/square root 9+latency1

1 See Table 2–5 and Section 2.6.1.

4 13+latency1

Floating-point load 8 2 10

Floating-point multiply 9 4 13

Floating-point store 12 42 162

Integer conditional branch 5 22

2 Conditional branches and stores do not release physical registers. However, their retire point delay
the release of registers from subsequent instructions.

72

Integer load 8 2 10

Integer multiply 5/11 2 7/13

Integer operate 5 2 7

Integer store 8 22 102
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3.9.1.1 Integer Execution Unit

Of the 80 physical registers in the integer execution unit, 33 are available to hold t
results of instructions in flight.

The 80 physical registers are allocated as follows:

• 39 registers to hold the values of the 31 Alpha architectural registers — the valu
R31 is not stored — and the values of eight PALshadow registers.

• 41 registers to hold results that are written by instructions that have not retired
released a physical register. Of those 41, the mapper holds eight in reserve to
the instructions presented in the next two cycles1. That leaves the 33 registers to
hold the results of instructions in flight.

If 33 instructions that require an integer physical register have been mapped and h
not retired and released a physical register, stage 2 of the pipeline (see Section 2.4
stalls if an additional integer physical register is requested.

For a schedule of integer instructions that contains loads or stores, the peak sustai
rate of physical register allocation is 3.3 registers per cycle. (This is obtained by di
ing 33 instructions by a 10-cycle map-to-release latency.) Experiments have confir
that 3.2 physical registers per cycle is a sustainable rate for integer schedules conta
loads or stores. This assumes the loads and stores are best-case Dcache hits. If th
no loads or stores, it is possible to sustain 4 physical registers per cycle. Sometime
best schedule has loads and stores grouped together and has significant stretches
ister-to-register instructions.

3.9.1.2 Floating-Point Execution Unit

Of the 72 physical registers in the floating-point execution unit, 37 are available to h
the results of instructions in flight.

The 72 physical registers are allocated as follows:

• 31 registers to hold the values of the 31 Alpha architectural registers — the valu
F31 is not stored.

• 41 registers to hold results that are written by instructions that are not yet retire
and released a physical register. Of these 41, the mapper holds 4 in reserve to
the instructions presented in the next two cycles2. This leaves 37 registers to hold
the results of instructions in flight.

If 37 instructions that require a floating-point physical register have been mapped a
have not retired and released a physical register, stage 2 of the pipeline (see Sectio
stalls if an additional floating-point physical register is requested.

For a schedule of floating-point instructions that contains floating-point loads, the p
sustainable rate of physical register allocation is 2.85 registers per cycle. (This is
obtained by dividing 37 instructions by a 13-cycle map-to-release latency.) Experi-

1 Reserving 8 registers is an approximation of a more complicated algorithm.
2 Reserving 4 registers is an approximation of a more complicated algorithm.
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ments have confirmed that 2.9 physical registers per cycle1is a sustainable rate for
floating-point schedules containing loads. This assumes the loads and stores are
case Dcache hits.

Floating-point stores take 3 cycles longer to retire than a floating-point operate. Ev
though a store does not free a register, it delays the retiring of subsequent instructi
For schedules of floating-point instructions that contain floating-point stores, the pe
sustainable rate of physical register allocation is 2.31 registers per cycle. (This is
obtained by dividing 37 instructions by a 16-cycle map-to-release latency.) Experi-
ments have confirmed that 2.3 physical registers per cycle is a sustainable rate.

For schedules with no load or stores, only 2 floating-point operate instructions can
executed per cycle, and physical register allocation should not be a limit for schedu
that respect the latencies of the instructions. This is true for square root and divide
if the instructions retire early (see Section 2.6.1).

3.9.1.3 Register Files

The integer and floating-point register files are separate. Schedules that intermix i
ger and floating-point instructions must separately meet the limits for allocating inte
physical registers and floating-point physical registers. For example, a schedule th
requires two integer physical registers and two floating-point physical registers per
cycle is sustainable.

3.9.2 Ebox Slotting and Clustering

As described in Section 2.2, the integer execution unit has four functional units, im
mented as two nearly-identical functional unit clusters labeled 0 and 1. Each cluste
an upper (U) and lower (L) functional unit called a subcluster. When they are decod
instructions are statically assigned (orslotted) to an upper or lower subcluster. When
they are issued, instructions are dynamically assigned (orclustered) to cluster 0 or clus-
ter 1. To obtain optimal performance, the scheduler must understand the algorithm
used for slotting and clustering.

The slotting of an instruction is determined by its opcode and its position in the alig
octaword that contains the instruction. The details of the slotting algorithm are
described in Section 2.5.2 and in Appendix A.

Most integer instructions have a one-cycle latency for consumers that execute with
the same cluster. There is an additional one-cycle delay associated with producing
value in one cluster and consuming the value in the other cluster. If it is not possibl
provide two cycles of latency for an integer instruction, controlling the cluster assig
ment of the producer and consumer is necessary to avoid a stall.

The following rules are used to issue an instruction:

• An instruction is a candidate to be issued when its operands are data ready.

– Values produced by integer instructions will be data ready in one cluster be
another.

– Values loaded from cache or memory are available in both clusters at the s
time.

1 The fact that the experimental result is larger than our analytic result is due to approximation
of the map-to-release latencies and number of reserved registers.
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• Older data-ready instructions have priority over younger instructions.

• An instruction assigned to the upper subcluster (U) will first check if it can issue
cluster 1, then on cluster 0.

• An instruction assigned to the lower subcluster (L) will first check if it can issue
cluster 0, then on cluster 1.

Appendix B contains an example of scheduled code that considers these issue rul
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21264/21364 Upper-Lower Rules Summary

As required for instructions, the subclustersupper, lower, andeitherare defined in
Table 2–3.

Cases are organized by what is the maximum number of requirements for either up
or lower.

Cases Quad-pack 3&4

When your quad-pack of instructions has more than two instructions requiring uppe
more than two instructions requiring lower, the more-than-two's will meet their require-
ment; others will go to the other level. The machine can't execute this in one cycle;
there are only two uppers and two lowers.

SLL U Requires upper

ZAP => U Requires upper

addq L Either; forced to lower

BGT U Requires upper

Case Quad-pack 2

When your quad-pack of instructions has two instructions requiring upper, and/or t
instructions requiring lower, these two's will meet their requirement; others will go t
the other level.

LDQ L Requires lower

STT => L Requires lower

NOP U Vacated slot for NOP; forced to upper

XOR U Either; forced to upper

Cases Quad-pack 0&1

When your quad-pack has less than two instructions requiring upper, and less than
instructions requiring lower, each of the first and last PAIR's of instructions will map
one to upper and one to lower. So the CASES here are handled by pairs. Many loo
can be pair-wise assigned.
21264/21364 Compiler Writer’s Guide 21264/21364 Upper-Lower Rules Summary A–1
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Case Either Pair 1 (Also Fits Quad-pack 2, Requires Split by Pairs)

When one or more of the instruction pair has a requirement, that requirement is me
other instruction go to the other level.

MB => L Requires lower

CMOVEQ U Either; pair forced to upper

Case Last Pair 0

When the third and fourth instructions of the quad-pack have NO requirements (co
be either L or U), the third is lower and the fourth is upper.

ADDT => L Vacated slot for float; rule assigns to lower

ADDQ U Either; rule assigns upper

Case First Pair 0

When the first and second instructions of the quad-pack have NO requirements (co
be either L or U), their UL pattern is the same as that of the third and fourth instructi
(whether or not the third and fourth instructions had any requirement)!

BIS U Either; upper same as third

BIC => L Either; lower same as fourth

S4ADDQ U Either; pair forced to upper

BR L Requires lower
A–2 21264/21364 Upper-Lower Rules Summary 21264/21364 Compiler Writer’s Guide
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Checksum Inner Loop Schedule

The following algorithm illustrates 21264/21364 scheduling and SIMD parallelism.
significantly more efficient algorithm is provided aftewards.

# Here we have the inner loop for a one's

# compliment checksum of 16-bit data.

# $16 is the pointer.

# $17 is the counter.

# $18, and $19 are input quadwords.

#

# We split the input DCBA to 0C0A and D0B0.

# The latter gets shifted down

# and they are added into dual acc's $24 and $25.

# The LDBU is the two-block-ahead-pfetch.

# We would want that to be larger for a big loop

# going to memory. This two-at-a-time speeds the

# code and we can only do this for 65536 times without

# overflow problems.

#

# NOPs bring the code density to 2.8 physical registers

# per cycle (quadpack). Only do this if you are sure.

# If you are going to stall ANYWAY, you don't

# want the NOPs, just code it packed.

# In the first aligned octaword, the zaps are upper,

# the load is lower, and the ALU is forced to lower

# to meet 2 upper and 2 lower. The 1's and 0's

# on the sides show precedence.

# In the second half of the second aligned octaword, the

# shift is upper, forcing partner LDA (an ALU operation)

# to lower. The indeterminate first 2, then

# 'follow' the second 2.

# The third and fourth quad packs have the same pattern

# as the first and second.

# For the fifth quad pack, the branch is upper, forcing

# its 'nothing' partner to lower. The first two

# 'follow' the second two.
21264/21364 Compiler Writer’s Guide Checksum Inner Loop Schedule B–1



# Note that register usage in sequential cycles

# has been held to the same side.

# Note, loads can be delayed to prefetch filling

# traffic, so leave the MT's in lower wherever

# possible to relieve rescheduling strain.

# For iteration counts of moderate size, the BGT will

# be trained, so we only take a mispredict on the

# final fall through. For (consistent) iteration counts

# of 10 or less, the branch can learn to exit without

# a mispredict. (There still remains a line mispredict

# of one cycle.)

# So this will predominantly execute in the proposed

# five cycles per loop iteration.

# The use, use, refill of r18 is totally legal.

# There is no impact on the physical registers of

# which architectual names are used. so you can

# create new R1's every cycle, or do the R18 trick

# with no cost. The R18 trick allows 5 cycles of

# latency to bring up data from the Dcache. This

# is tight. For a heavy-duty loop, we would have

# unrolled to do 16 data in 9 cycles (2.9 reg's).

# We could then have provided more latency

# coverage for the stores. Only one prefetch would

# still be needed in the larger loop. It is still

# only 1/2 cache-block per loop. The 21264 releases

# the 'irrelevant' extra prefetches cheaply. For

# a heavy-duty memory loop, we would have the prefetch

# at 512($16), eight cache blocks.

# Note, side can affect load/store operations.

# We do the lda $16, 16($16).

# It is NOT possible to do two loads in the next

# cycle because $16 is only valid on one side and loads

# can only be done in lower.

# Note, the data ARRIVING from loads is posted in

# both sides.

# Note, the extra blank line has no function to

# the assembler. But it is great for a person to

# see where the quad-packs are.

# Note that the example uses Tru64 Unix assembler syntax.

loop:
B–2 Checksum Inner Loop Schedule 21264/21364 Compiler Writer’s Guide
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ZAPNOT $18, 51, $0 # U1 low zebra

UNOP $31, $31, $31 # L (NOPs not clustered)

ZAP $18, 51, $1 # U0 hi zebra

LDQ $18, ($16) # L1 get next data

# LDA result side 1

ADDQ $24, $0, $24 # U1 accum 0

UNOP $31, $31, $31 # L (NOPs not clustered)

SRL $1, 16, $1 # U0 hi=>lo

LDA $17, -8($17) # L0 countdown

ZAPNOT $19, 51, $0 # U1 low zebra

UNOP $31, $31, $31 # L (NOPs not clustered)

ZAP $19, 51, $27 # U0 hi zebra

LDQ $19, 8($16) # L0 get next data

ADDQ $24, $0, $24 # U1 accum 0

ADDQ $25, $1, $25 # L0 accum 1

SRL $27, 16, $27 # U0 hi=>lo

LDBU $31, 128($16) # L1 prefetch

LDA $16, 16($16) # U1 move pointer

ADDQ $25, $27, $25 # L0 accum 1

BGT $17, loop # U0 loop cntl

Wrapup code....

Better Design Algorithm

The following unscheduled algorithm provides superior performance to the previou
algorithm.

LDQ $18, ($16) # Fetch quadword,

# provide latency, of course.

ADDQ $24, $18, $24 # Full quadword add

# each 16 carries to the bottom

# of some other 16.....

CMPULT $24, $18, $18 # Except the one, out of the top

# $24 is only less, unsigned, than

# either argument, if there

# was overflow!

ADDQ $24, $18, $24 # This wraps back the top.

# For scheduling, one might want

# to collect the overflow(s) into

# separate register(s).

# Collect the 16’s within the register

# at wrapup time.

# If we want to maximize the $18

# latency, then, instead --

ADDQ $24, $18, $25 # Pingpong between two accum’s.
21264/21364 Compiler Writer’s Guide Checksum Inner Loop Schedule B–3
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CMPULT $25, $24, $24 # One if overflow, else zero.

ADDQ $25, $24, $25 # Gather overflow (has to fit).

The four instructions in the better algorithm replace the following six instructions in t
first algorithm:

ZAPNOT $19, 51, $0 # U1 low zebra

ZAP $18, 51, $1 # U0 hi zebra

LDQ $18, ($16) # L1 get next data

# LDA result side 1

SRL $1, 16, $1 # U0 hi=>lo

ADDQ $24, $0, $24 # U1 accum 0

ADDQ $25, $1, $25 # L0 accum 1
B–4 Checksum Inner Loop Schedule 21264/21364 Compiler Writer’s Guide
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IEEE Floating-Point Conformance

The 21264/21364 supports the IEEE floating-point operations defined in theAlpha Sys-
tem Reference Manual, Revision8 and therefore also from theAlpha Architecture Ref-
erence Manual, 4th Edition. Support for a complete implementation of the IEEE
Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Standard 754 1985) is p
vided by a combination of hardware and software.

The 21264/21364 provides the following hardware features tofacilitate complete sup-
port of the IEEE standard:

• The 21264/21364 implements precise exception handling in hardware, as deno
by the AMASK instruction returning bit 9 set. TRAPB instructions are treated a
NOPs and are not issued.

• The 21264/21364 accepts both Signaling and Quiet NaNs as input operands a
propagates them as specified by the Alpha architecture. In addition, the 21264
21364 delivers a canonical Quiet NaN when an operation is required to produc
NaN value and none of its inputs are NaNs. Encodings for Signaling NaN and
Quiet NaN are defined by theAlpha Architecture Reference Manual, 4th Edition.

• The 21264/21364 accepts infinity operands and implements infinity arithmetic
defined by the IEEE standard and theAlpha Architecture Reference Manual, 4th

Edition.

• The 21264/21364 implements SQRT for single (SQRTS) and double (SQRTT)
cision in hardware.

Note: In addition, the 21264/21364 also implements the VAX SQRTF and
SQRTG instructions.

• The 21264/21364 implements the FPCR[DNZ] bit. When FPCR[DNZ] is set,
denormal input operand traps can be avoided for arithmetic operations that inc
the /S qualifier. When FPCR[DNZ] is clear, denormal input operands for arithme
operations produce an unmaskable denormal trap. CPYSE/CPYSN, FCMOVx
and MF_FPCR/MT_FPCR are not arithmetic operations, and pass denormal va
without initiating arithmetic traps.

• The 21264/21364 implements the following disable bits in the floating-point con
trol register (FPCR):

– Underflow disable (UNFD)

– Overflow disable (OVFD)
21264/21364 Compiler Writer’s Guide IEEE Floating-Point Conformance C–1
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– Inexact result disable (INED)

– Division by zero disable (DZED)

– Invalid operation disable (INVD)

If one of these bits is set, and an instruction with the /S qualifier set generates t
associated exception, the 21264/21364 produces the IEEE nontrapping result
suppresses the trap. These nontrapping responses include correctly signed
infinity, largest finite number, and Quiet NaNs as specified by the IEEE
standard.

The 21264/21364 will not produce a Denormal result for the underflow exceptio
Instead, a true zero (+0) is written to the destination register. In the 21264/2136
the FPCR underflow to zero (UNDZ) bit must be set if underflow disable (UNFD
bit is set. If desired, trapping on underflow can be enabled by the instruction and
FPCR, and software may compute the Denormal value as defined in the IEEE S
dard.

The 21264/21364 records floating-point exception information in two places:

• The FPCR status bits record the occurrence of all exceptions that are detected
whether or not the corresponding trap is enabled. The status bits are cleared o
through an explicit clear command (MT_FPCR); hence, the exception informat
they record is a summary of all exceptions that have occurred since the last tim
they were cleared.

• If an exception is detected and the corresponding trap is enabled by the instruc
and is not disabled by the FPCR control bits, the 21264/21364 willrecord the
condition in the EXC_SUM register and initiate an arithmetic trap.

The following items apply to Table C–1:

• The 21264/21364 traps on a Denormal input operand for all arithmetic operatio
unless FPCR[DNZ] = 1.

• Input operand traps take precedence over arithmetic result traps.

• The following abbreviations are used:

Inf: Infinity

QNaN: Quiet NaN

SNaN: Signalling NaN

CQNaN: Canonical Quiet NaN

For IEEE instructions with /S, Table C–1 lists all exceptional input and output c
ditions recognized by the 21264/21364, along with the result and exception ge
ated for each condition.

Table C–1 Exceptional Input and Output Conditions

Alpha Instructions
21264/21364 Hardware
Supplied Result Exception

ADDx SUBx INPUT

Inf operand ±Inf (none)

QNaN operand QNaN (none)
C–2 IEEE Floating-Point Conformance 21264/21364 Compiler Writer’s Guide



SNaN operand QNaN Invalid Op

Effective subtract of two Inf operands CQNaN Invalid Op

ADDx SUBx OUTPUT

Exponent overflow ±Inf or ±MAX Overflow

Exponent underflow +0 Underflow

Inexact result Result Inexact

MULx INPUT

Inf operand ±Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

0 * Inf CQNaN Invalid Op

MULx OUTPUT (same as ADDx)

DIVx INPUT

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

0/0 or Inf/Inf CQNaN Invalid Op

A/0 (A not 0) ±Inf Div Zero

A/Inf ±0 (none)

Inf/A ±Inf (none)

DIVx OUTPUT (same as ADDx)

SQRTx INPUT

+Inf operand +Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

-A (A not 0) CQNaN Invalid Op

-0 -0 (none)

SQRTx OUTPUT

Inexact result root Inexact

CMPTEQ CMPTUN INPUT

Inf operand True or False (none)

QNaN operand False for EQ, True for UN (none)

SNaN operand False for EQ, True for UN Invalid Op

Table C–1 Exceptional Input and Output Conditions (Continued)

Alpha Instructions
21264/21364 Hardware
Supplied Result Exception
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See Section 2.9 for information about the floating-point control register (FPCR).

CMPTLT CMPTLE INPUT

Inf operand True or False (none)

QNaN operand False Invalid Op

SNaN operand False Invalid Op

CVTfi INPUT

Inf operand 0 Invalid Op

QNaN operand 0 Invalid Op

SNaN operand 0 Invalid Op

CVTfi OUTPUT

Inexact result Result Inexact

Integer overflow Truncated result Invalid Op

CVTif OUTPUT

Inexact result Result Inexact

CVTff INPUT

Inf operand ±Inf (none)

QNaN operand QNaN (none)

SNaN operand QNaN Invalid Op

CVTff OUTPUT (same as ADDx)

FBEQ FBNE FBLT FBLE FBGT FBGE
LDS LDT
STS STT
CPYS CPYSN
FCMOVx

Table C–1 Exceptional Input and Output Conditions (Continued)

Alpha Instructions
21264/21364 Hardware
Supplied Result Exception
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Glossary

This glossary provides definitions for specific terms and acronyms associated with
Alpha 21264/21364 microprocessor and chips in general.

abort

The unit stops the operation it is performing, without saving status, to perform some
other operation.

address space number (ASN)

An optionally implemented register used to reduce the need for invalidation of cach
address translations for process-specific addresses when a context switch occurs.
are processor specific; the hardware makes no attempt to maintain coherency acro
multiple processors.

address translation

The process of mapping addresses from one address space to another.

ALIGNED

A datum of size 2**N is stored in memory at a byte address that is a multiple of 2**
(that is, one that has N low-order zeros).

ALU

Arithmetic logic unit.

ANSI

American National Standards Institute. An organization that develops and publishe
standards for the computer industry.

ASIC

Application-specific integrated circuit.

ASM

Address space match.

ASN

Seeaddress space number.

assert

To cause a signal to change to its logical true state.

AST

Seeasynchronous system trap.
21264/21364 Compiler Writer’s Guide Glossary –1
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asynchronous system trap (AST)

A software-simulated interrupt to a user-defined routine. ASTs enable a user process t
be notified asynchronously, with respect to that process, of the occurrence of a spe
event. If a user process has defined an AST routine for an event, the system interr
the process and executes the AST routine when that event occurs. When the AST
tine exits, the system resumes execution of the process at the point where it was in
rupted.

bandwidth

Bandwidth is often used to express the rate of data transfer in a bus or an I/O chan

barrier transaction

A transaction on the external interface as a result of an MB (memory barrier) instru
tion.

Bcache

Seesecond-level cache.

bidirectional

Flowing in two directions. The buses are bidirectional; they carryboth input and output
signals.

BiSI

Built-in self-initialization.

BiST

Built-in self-test.

bit

Binary digit. The smallest unit of data in a binary notation system, designated as 0 or

bit time

The total time that a signal conveys a single valid piece of information (specified in n
All data and commands are associated with a clock and the receiver’s latch on bot
rise and fall of the clock. Bit times are a multiple of the 21264/21364 clocks. System
must produce a bit time identical to 21264/21364’s bit time. The bit time is one-half
period of the forwarding clock.

BIU

Bus interface unit.SeeCbox.

block exchange

Memory feature that improves bus bandwidth by paralleling a cache victim write-ba
with a cache miss fill.

board-level cache

Seesecond-level cache.
Glossary –2 21264/21364 Compiler Writer’s Guide
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boot

Short for bootstrap. Loading an operating system into memory is called booting.

BSR

Boundary-scan register.

buffer

An internal memory area used for temporary storage of data records during input o
output operations.

bugcheck

A software condition, usually the response to software’s detection of an “internal inc
sistency,” which results in the execution of the system bugcheck code.

bus

A group of signals that consists of many transmission lines or wires. It interconnec
computer system components to provide communications paths for addresses, dat
control information.

byte

Eight contiguous bits starting on an addressable byte boundary. The bits are numb
right to left, 0 through 7.

byte granularity

Memory systems are said to have byte granularity if adjacent bytes can be written
currently and independently by different processes or processors.

cache

Seecache memory.

cache block

The smallest unit of storage that can be allocated or manipulated in a cache. Also
known as a cache line.

cache coherence

Maintaining cache coherence requires that when a processor accesses data cache
another processor, it must not receive incorrect data and when cached data is mod
all other processors that access that data receive modified data. Schemes for main
ing consistency can be implemented in hardware or software. Also called cache co
tency.

cache fill

An operation that loads an entire cache block by using multiple read cycles from m
memory.

cache flush

An operation that marks all cache blocks as invalid.
21264/21364 Compiler Writer’s Guide Glossary –3
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cache hit

The status returned when a logic unit probes a cache memory and finds a valid cac
entry at the probed address.

cache interference

The result of an operation that adversely affects the mechanisms and procedures u
keep frequently used items in a cache. Such interference may cause frequently us
items to be removed from a cache or incur significant overhead operations to ensu
correct results. Either action hampers performance.

cache line

Seecache block.

cache line buffer

A buffer used to store a block of cache memory.

cache memory

A small, high-speed memory placed between slower main memory and the process
cache increases effective memory transfer rates and processor speed. It contains
of data recently used by the processor and fetches several bytes of data from mem
anticipation that the processor will access the next sequential series of bytes. The
21264/21364 microprocessor contains two onchip internal caches.See alsowrite-
through cache and write-back cache.

cache miss

The status returned when cache memory is probed with no valid cache entry at the
probed address.

CALL_PAL instructions

Special instructions used to invoke PALcode.

Cbox

External cache and system interface unit. Controls the Bcache and the system por

central processing unit (CPU)

The unit of the computer that is responsible for interpreting and executing instructi

CISC

Complex instruction set computing. An instruction set that consists of a large num
of complex instructions.Contrast withRISC.

clean

In the cache of a system bus node, refers to a cache line that is valid but has not b
written.

clock

A signal used to synchronize the circuits in a computer.
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clock offset (or clkoffset)

The delay intentionally added to the forwarded clock to meet the setup and hold
requirements at the Receive Flop.

CMOS

Complementary metal-oxide semiconductor. A silicon device formed by a process
combines PMOS and NMOS semiconductor material.

conditional branch instructions

Instructions that test a register for positive/negative or forzero/nonzero. They can also
test integer registers for even/odd.

control and status register (CSR)

A device or controller register that resides in the processor’s I/O space. The CSR i
tiates device activity and records its status.

core

That part of the pipeline that lies between the L1 Icache and the L1 Dcache.

CPI

Cycles per instruction.

CPU

Seecentral processing unit.

CSR

Seecontrol and status register.

cycle

One clock interval.

data bus

A group of wires that carry data.

Dcache

Data cache. A cache reserved for storage of data. The Dcache does not contain in
tions.

DDR

Dual-data rate. A dual-data rate SSRAM can provide data on both the rising and fa
edges of the clock signal.

denormal

An IEEE floating-point bit pattern that represents a number whose magnitude lies
between zero and the smallest finite number.

DIP

Dual inline package.
21264/21364 Compiler Writer’s Guide Glossary –5
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direct-mapping cache

A cache organization in which only one address comparison is needed to locate an
data in the cache, because any block of main memory data can be placed in only o
possible position in the cache.

direct memory access (DMA)

Access to memory by an I/O device that does not require processor intervention.

dirty

One status item for a cache block. The cache block is valid and has been written so
it may differ from the copy in system main memory.

dirty victim

Used in reference to a cache block in the cache of asystem bus node. The cache block
is valid but is about to be replaced due to a cache block resource conflict. The data
therefore be written to memory.

DMA

Seedirect memory access.

DRAM

Dynamic random-access memory. Read/write memory that must berefreshed (read
from or written to) periodically to maintain the storage of information.

DTB

Data translation buffer.Also defined asDstream translation buffer.

DTL

Diode-transistor logic.

dual issue

Two instructions are issued, in parallel, during the same microprocessor cycle. The
instructions use different resources and so do not conflict.

ECC

Error correction code. Code and algorithms used by logic to facilitate error detectio
and correction. See alsoECC error.

ECC error

An error detected by ECC logic, to indicate that data (or the protected “entity”) has
been corrupted. The error may be correctable (soft error) or uncorrectable (hard error

ECL

Emitter-coupled logic.

EEPROM

Electrically erasable programmable read-only memory. A memory device that can
byte-erased, written to, and read from.Contrast withFEPROM.
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external cache

Seesecond-level cache.

FEPROM

Flash-erasable programmable read-only memory. FEPROMs can be bank- or bulk
erased.Contrast withEEPROM.

FET

Field-effect transistor.

FEU

The unit within the 21264/21364 microprocessor that performs floating-point calcula-
tions.

firmware

Machine instructions stored in nonvolatile memory.

floating point

A number system in which the position of the radix point is indicated by the expone
part and another part represents the significant digits or fractional part.

flush

Seecache flush.

forwarded clock

A single-ended differential signal that is aligned with its associated fields. The for-
warded clock is sourced and aligned by the sender with a period that is two times th
time. Forwarded clocks must be 50% duty cycle clocks whose rising and falling ed
are aligned with the changing edge of the data.

FPGA

Field-programmable gate array.

FPLA

Field-programmable logicarray.

FQ

Floating-point issue queue.

framing clock

The framing clock defines the start of a transmission either from the system to the
21264/21364 or from the 21264/21364 to the system. The framing clock is a powe
2 multiple of the 21264/21364GCLK frequency, and is usually the system clock. The
framing clock and the input oscillator can have the same frequency. The
add_frame_select IPR sets that ratio of bit times to framing clock. The frame clock
could have a period that is four times the bit time with a add_frame_select of 2X.
Transfers begin on the rising and falling edge of the frame clock. This is useful for
tems that have system clocks with a period too small to perform the synchronous r
21264/21364 Compiler Writer’s Guide Glossary –7
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of the clock forward logic. Additionally, the framing clock can have a period that is
less than, equal to, or greater than the time it takes to send a full four cycle comma
address.

GCLK

Global clock within the 21264/21364.

granularity

A characteristic of storage systems that defines the amount of data that can be rea
or written with a single instruction, or read and/or written independently.

hardware interrupt request (HIR)

An interrupt generated by a peripheral device.

high-impedance state

An electrical state of high resistance to current flow, which makes the device appea
physically connected to the circuit.

hit

Seecache hit.

Icache

Instruction cache. A cache reserved for storage of instructions. One of the threeareas of
primary cache (located on the 21264/21364) used to store instructions. The Icache
tains 8KB of memory space. It is a direct-mapped cache. Icache blocks, or lines, c
tain 32 bytes of instruction stream data with associated tag as well as a 6-bit ASM f
and an 8-bit branch history field per block. Icache does not contain hardware for m
taining cache coherency with memory and is unaffected by the invalidate bus.

IDU

A logic unit within the 21264/21364 microprocessor that fetches, decodes, and issu
instructions. It also controls the microprocessor pipeline.

IEEE Standard 754

A set of formats and operations that apply to floating-point numbers. The formats co
32-, 64-, and 80-bit operand sizes.

IEEE Standard 1149.1

A standard for the Test Access Port and Boundary Scan Architecture used in board
level manufacturing test procedures.

ILP

Instruction-level parallelism.

Inf

Infinity.

Instruction queues

Both the integer issue queue (IQ) and the floating-point issue queue (FQ).
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The term INTnn, wherenn is one of 2, 4, 8, 16, 32, or 64, refers to a data field size ofnn
contiguous NATURALLY ALIGNED bytes. For example, INT4refers to a NATU-
RALLY ALIGNED longword.

interface reset

A synchronously received reset signal that is used to preset and start the clock forw
ing circuitry. During this reset, all forwarded clocks are stopped and the presettab
count values are applied to the counters; than, some number of cycles later, the clo
are enabled and are free running.

Internal processor register (IPR)

Special registers that are used to configure options or report status.

IOWB

I/O write buffer.

IPGA

Interstitial pin grid array.

IQ

Integer issue queue.

ITB

Instruction translation buffer.

JFET

Junction field-effect transistor.

latency

The amount of time it takes the system to respond to an event.

LCC

Leadless chip carrier.

LFSR

Linear feedback shift register.

load/store architecture

A characteristic of a machine architecture where data items are first loaded into a p
cessor register, operated on, and then stored back to memory. No operations on me
other than load and store are provided by the instruction set.

longword (LW)

Four contiguous bytes starting on an arbitrary byte boundary. The bits are number
from right to left, 0 through 31.

LQ

Load queue.
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LSB

Least significant bit.

machine check

An operating system action triggered by certain system hardware-detectederrors that
can be fatal to system operation. Once triggered, machine check handler software
lyzes the error.

MAF

Miss address file.

main memory

The large memory, external to the microprocessor, used for holding most instructio
code and data. Usually built from cost-effective DRAM memory chips. May be used
connection with the microprocessor’s internalcaches and an external cache.

masked write

A write cycle that only updates a subset of a nominal data block.

MBO

Seemust be one.

Mbox

This section of the processor unit performs address translation, interfaces to the
Dcache, and performs several other functions.

MBZ

Seemust be zero.

MESI protocol

A cache consistency protocol with full support for multiprocessing. The MESI proto
consists of four states that define whether a block is modified (M), exclusive (E), sha
(S), or invalid (I).

MIPS

Millions of instructions per second.

miss

Seecache miss.

module

A board on which logic devices (such as transistors, resistors, and memory chips)
mounted and connected to perform a specific system function.

module-level cache

Seesecond-level cache.

MOS

Metal-oxide semiconductor.
Glossary –10 21264/21364 Compiler Writer’s Guide
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MOSFET

Metal-oxide semiconductor field-effect transistor.

MSI

Medium-scale integration.

multiprocessing

A processing method that replicates the sequential computer and interconnects th
lection so that each processor can execute the same or a different program at the same
time.

must be one (MBO)

A field that must be supplied as one.

must be zero (MBZ)

A field that is reserved and must be supplied as zero. If examined, it must be assum
be UNDEFINED.

NaN

Not-a-Number. An IEEE floating-point bit pattern that represents something other t
a number. This comes in two forms: signaling NaNs (for Alpha, those with an initial
fraction bit of 0) and quiet NaNs (for Alpha, those with an initial fraction bit of 1).

NATURALLY ALIGNED

SeeALIGNED.

NATURALLY ALIGNED data

Data stored in memory such that the address of the data is evenly divisible by the si
the data in bytes. For example, an ALIGNED longword is stored such that the addr
of the longword is evenly divisible by 4.

NMOS

N-type metal-oxide semiconductor.

NVRAM

Nonvolatile random-access memory.

OBL

Observability linear feedback shift register.

octaword

Sixteen contiguous bytes starting on an arbitrary byte boundary. The bits are numb
from right to left, 0 through 127.

OpenVMS Alpha operating system

The version of the open VMS operating system for Alpha platforms.

operand

The data or register upon which an operation is performed.
21264/21364 Compiler Writer’s Guide Glossary –11
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output mux counter

Counter used to select the output mux that drives address and data. It is reset with
Interface Reset and incremented by a copy of the locally generated forwarded cloc

PAL

Privileged architecture library.See alsoPALcode.AlsoProgrammable array logic
(hardware). A device that can be programmed by a process that blows individual fu
to create a circuit.

PALcode

Alpha privileged architecture library code, written to support Alpha microprocessor
PALcode implements architecturally defined behavior.

PALmode

A special environment for running PALcode routines.

parameter

A variable that is given a specific value that is passed to a program before executio

parity

A method for checking the accuracy of data by calculating the sum of the number o
ones in a piece of binary data. Even parity requires the correct sum to be an even n
ber; odd parity requires the correct sum to be an odd number.

PGA

Pin grid array.

pipeline

A CPU design technique whereby multiple instructions are simultaneously overlap
in execution.

PLA

Programmable logic array.

PLCC

Plastic leadless chip carrier or plastic-leaded chip carrier.

PLD

Programmable logic device.

PLL

Phase-locked loop.

PMOS

P-type metal-oxide semiconductor.

PQ

Probe queue.
Glossary –12 21264/21364 Compiler Writer’s Guide
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PQFP

Plastic quad flat pack.

primary cache

The cache that is the fastest and closest to the processor. The first-level caches, lo
on the CPU chip, composed of the Dcache and Icache.

program counter

That portion of the CPU that contains the virtual address of the next instruction to b
executed. Most current CPUs implement the program counter (PC) as a register. T
register may be visible to the programmer through the instruction set.

PROM

Programmable read-only memory.

pull-down resistor

A resistor placed between a signal line and a negative voltage.

pull-up resistor

A resistor placed between a signal line to a positive voltage.

quad issue

Four instructions are issued, in parallel, during the same microprocessor cycle. Th
instructions use different resources and so do not conflict.

quadword

Eight contiguous bytes starting on an arbitrary byte boundary. The bits are numbered
from right to left, 0 through 63.

RAM

Random-access memory.

RAS

Row address select.

RAW

Read-after-write.

READ_BLOCK

A transaction where the 21264/21364 requests that an external logic unit fetch rea
data.

read data wrapping

System feature that reduces apparent memory latency by allowingread data cycles to
differ theusual low-to-high sequence. Requires cooperation between the 21264/21
and external hardware.
21264/21364 Compiler Writer’s Guide Glossary –13
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read stream buffers

Arrangement whereby each memory module independently prefetches DRAM dat
prior to an actual read request for that data. Reduces average memory latency wh
improving total memory bandwidth.

receive counter

Counter used to enable the receive flops. It is clocked by the incoming forwarded c
and reset by the Interface Reset.

receive mux counter

The receive mux counter is preset to a selectable starting point and incremented b
locally generated forward clock.

register

A temporary storage or control location in hardware logic.

reliability

The probability a device or system will not fail to perform its intended functions duri
a specified time interval when operated under stated conditions.

reset

An action that causes a logic unit to interrupt the task it is performing and go to its i
tialized state.

RISC

Reduced instruction set computing. A computer with an instruction set that is paire
down and reduced in complexity so that most can be performed in a single processor
cycle. High-level compilers synthesize the more complex, least frequently used ins
tions by breaking them down into simpler instructions. This approach allows the RI
architecture to implement a small, hardware-assisted instruction set, thus eliminati
the need for microcode.

ROM

Read-only memory.

RTL

Register-transfer logic.

SAM

Serial access memory.

SBO

Should be one.

SBZ

Should be zero.

scheduling

The process of ordering instruction execution to obtain optimum performance.
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SDRAM

Synchronous dynamic random-access memory.

second-level cache

A cache memory provided outside of the microprocessor chip, usually located on t
same module. Also called board-level, external, or module-levelcache.

set-associative

A form of cache organization in which the location of a data block in main memory
constrains, but does not completely determine, its location in the cache. Set-assoc
organization is a compromise between direct-mapped organization, in which data f
a given address in main memory has only one possible cache location, and fully as
ciative organization, in which data from anywhere in main memory can be put any-
where in the cache. An “n-way set-associative” cache allows data from a given addre
in main memory to be cached in any ofn locations.

SIMD

Single instruction stream, multiple data stream.

SIMM

Single inline memory module.

SIP

Single inline package.

SIPP

Single inline pin package.

SMD

Surface mount device.

SNaN

Signaling NaN.SeeNan.

SRAM

SeeSSRAM.

SROM

Serial read-only memory.

SSI

Small-scale integration.

SSRAM

Synchronous static random-access memory.
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stack

An area of memory set aside for temporary datastorage or for procedure and interrupt
service linkages. A stack uses the last-in/first-out concept. As items are added to
(pushed on) the stack, the stack pointer decrements. As items are retrieved from
(popped off) the stack, the stack pointer increments.

STRAM

Self-timed random-access memory.

superpipelined

Describes a pipelined machine that has a larger number of pipe stages and more c
plex scheduling and control.See alsopipeline.

superscalar

Describes a machine architecture that allows multiple independent instructions to b
issued in parallel during a given clock cycle.

system clock

The primary skew controlled clock used throughout the interface components to cl
transfer between ASICs, main memory, and I/O bridges.

tag

The part of a cache block that holds the address information used to determine if a
memory operation is a hit or a miss on that cache block.

target clock

Skew controlled clock that receives the output of the RECEIVE MUX .

TB

Translation buffer.

tristate

Refers to a bused line that has three states:high, low, and high-impedance.

TTL

Transistor-transistor logic.

UART

Universal asynchronous receiver-transmitter.

UNALIGNED

A datum of size 2**N stored at a byte address that is not a multiple of 2**N.

unconditional branch instructions

Instructions that change the flow of program control without regard to any condition
Contrast withconditional branch instructions.
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UNDEFINED

An operation that may halt the processor or cause it to lose information. Only privile
software (that is, software running in kernel mode) can trigger an UNDEFINED ope
tion. (This meaning only applies when the word is written in all upper case.)

UNPREDICTABLE

Results or occurrences that do not disrupt the basic operation of the processor; the
cessor continues to execute instructions in its normal manner. Privileged or unprivi
leged software can trigger UNPREDICTABLE results or occurrences. (This meanin
only applies when the word is written in all upper case.)

UVPROM

Ultraviolet (erasable) programmable read-only memory.

VAF

Seevictim address file.

valid

Allocated. Valid cache blocks have been loaded with data and may return cache hi
when accessed.

VDF

Seevictim data file.

VHSIC

Very-high-speed integrated circuit.

victim

Used in reference to a cache block in the cache of asystem bus node. The cache block
is valid but is about to be replaced due to a cache block resource conflict.

victim address file

The victim address file and the victim data file, together, form an 8-entry buffer used
hold information for transactions to the Bcache and main memory.

victim data file

The victim address file and the victim data file, together, form an 8-entry buffer used
hold information for transactions to the Bcache and main memory.

virtual cache

A cache that is addressed with virtual addresses. The tag of the cache is a virtual
address. This process allows direct addressing of the cache without having to go
through the translation buffer making cache hit times faster.

VLSI

Very-large-scale integration.
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VPC

Virtual program counter.

VRAM

Video random-access memory.

WAR

Write-after-read.

word

Two contiguous bytes (16 bits) starting on an arbitrary byte boundary. The bits are n
bered from right to left, 0 through 15.

write data wrapping

System feature that reduces apparent memory latency by allowing write data cycle
differ theusual low-to-high sequence. Requires cooperation between the 21264/21
and external hardware.

write-back

A cache management technique in which write operation data is written into cache
is not written into main memory in the same operation. This may result in temporar
differences between cache data and main memory data. Some logic unit must maintain
coherency between cache and main memory.

write-back cache

Copies are kept of any data in the region; read and write operations may use the co
and write operations use additional state to determine whether there are other cop
invalidate or update.

write-through cache

A cache management technique in which a write operation to cache also causes th
same data to be written in main memory during the same operation. Copies are ke
any data in a region; read operations may use the copies, but write operations upda
actual data location and either update or invalidate all copies.

WRITE_BLOCK

A transaction where the 21264/21364 requests that an external logic unit process
data.
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Address conventions, ix

Aligned, terminology, ix

Alignment, instruction, 3–1

B
Binary multiple abbreviations, viii

Bit notation conventions, x

Branch misprediction, pipeline abort delay from,
2–6

Branch predictor, 3–3

Branches, CMOV instructions instead, 3–3

C
Cache line, mapping to same, 3–9

Caution convention, x

Computed jumps, aligning targets of, 3–2

Conventions, viii
abbreviations, viii
address, ix
bit notation, x
caution, x
do not care, x
external, x
field notation, x
note, x
numbering, x
ranges and extents, x
signal names, xi
X, x

D
Data alignment, 3–2

Data types
floating-point support, 1–2
integer supported, 1–2
supported, 1–1

Data units, terminology, x

Dcache
pipelined, 2–6

Do not care convention, x

DTB, pipeline abort delay with, 2–6

E
Ebox

described, 2–2
executed in pipeline, 2–6
slotting, 2–8
subclusters, 2–8

Exception condition summary, C–2

External convention, x

F
F31

retire instructions with, 2–12
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Fbox
described, 2–3
executed in pipeline, 2–6

Field notation convention, x

Floating-point arithmetic trap, pipeline abort delay
with, 2–7

Floating-point control register, 2–14

Floating-point execution unit. See Fbox

FPCR. See Floating-point control register

I
Ibox

register rename maps, 2–1
IEEE floating-point conformance, C–1

Instruction alignment, 3–1

Instruction fetch, pipelined, 2–4

Instruction issue rules, 2–7

Instruction latencies, pipelined, 2–10

Instruction queues, filling, 3–3

Instruction retire latencies, minimum, 2–11

Instruction retire rules
F31, 2–12
floating-point divide, 2–12
floating-point square root, 2–12
pipelined, 2–11
R31, 2–12

Instruction slot, pipelined, 2–5

Integer arithmetic trap, pipeline abort delay with,
2–7

Integer execution unit. See Ebox

Integer issue queue
pipelined, 2–6

ITB miss, pipeline abort delay with, 2–7

J
JSR misprediction, 3–5

pipeline abort delay with, 2–6

L
Line predictor, 3–2

Load instructions
Mbox order traps, 2–13

Load-load order trap, 2–13

Load-miss load order replay trap, 3–9

M
Mbox

order traps, 2–13
pipeline abort delay with order trap, 2–6
pipeline abort delays, 2–6
replay traps, 2–13

Modify intent, prefetch with, 3–6

N
NOP instruction, 3–2

Normal prefetch, 3–6

Note convention, x

Numbering convention, x

P
Pipeline

abort delay, 2–6
Dcache access, 2–6
Ebox execution, 2–6
Ebox slotting, 2–8
Fbox execution, 2–6
instruction fetch, 2–4
instruction group definitions, 2–7
instruction issue rules, 2–7
instruction latencies, 2–10
instruction retire rules, 2–11
instruction slot, 2–5
issue queue, 2–6
organization, 2–4
register maps, 2–6
register reads, 2–6

Prediction
branch, 3–3
jumps, 3–2
line, 3–2

Prefetch, 3–6

R
R31

retire instructions with, 2–12
Ranges and extents convention, x

Register access abbreviations, viii

Register maps, pipelined, 2–6

Register rename maps, 2–1

Replay traps, 2–13
avoiding, 3–7

RO,n convention, ix

RW,n convention, ix
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S
Scheduling instructions, 3–9

Security holes
with UNPREDICTABLE results, xii

Signal name convention, xi

SIMD parallelism, 3–5

Single successors, 3–2

Store instructions
Mbox order traps, 2–13

Store queue overflow, 3–9

Store-load order trap, 2–13, 3–8

Subclusters, A–1

T
Terminology, viii

aligned, ix
data units, x
unaligned, ix
UNDEFINED, xi
UNPREDICTABLE, xi

Traps
load-load order, 2–13
Mbox order, 2–13
replay, 2–13
store-load order, 2–13

U
Unaligned, terminology, ix

UNDEFINED, terminology, xi

UNPREDICTABLE, terminology, xi

V
Virtual address support, 1–2

W
WAR, eliminating, 2–1

WAW, eliminating, 2–1

WH64 instruction, 3–7

WO,n convention, ix

Write-after-read. See WAR

Write-after-write. See WAW

Wrong-size replay trap, 3–8

X
X convention, x
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